
An Automated, yet Interactive and Portable DB designer
Ioannis Alagiannis1

ioannis.alagiannis@epfl.ch
Debabrata Dash1, 2
ddash@cmu.edu

Karl Schnaitter3
karlsch@soe.ucsc.edu

Anastasia Ailamaki1
natassa@epfl.ch

Neoklis Polyzotis3
alkis@ucsc.edu

1 École Polytechnique Fédérale
de Lausanne

2 Carnegie Mellon University 3 UC Santa Cruz

ABSTRACT
Tuning tools attempt to configure a database to achieve optimal
performance for a given workload. Selecting an optimal set of
physical structures is computationally hard since it involves
searching a vast space of possible configurations. Commercial
DBMSs offer tools that can address this problem. The usefulness
of such tools, however, is limited by their dependence on greedy
heuristics, the need for a-priori (offline) knowledge of the
workload, and lack of an optimal materialization schedule to get
the best out of suggested design features. Moreover, the open
source DBMSs do not provide any automated tuning tools.

This demonstration introduces a comprehensive physical designer
for the PostgreSQL open source DBMS. The tool suggests design
features for both offline and online workloads. It provides close to
optimal suggestions for indexes for a given workload by modeling
the problem as a combinatorial optimization problem and solving
it by sophisticated and mature solvers. It also determines the
interaction between indexes to suggest an effective
materialization strategy for the selected indexes. The tool is
interactive as it allows the database administrator (DBA) to
suggest a set of candidate features and shows their benefits and
interactions visually. For the demonstration we use large real-
world scientific datasets and query workloads.

Categories and Subject Descriptors
H.2.2 [Physical Design]: Access Methods

General Terms
Algorithms, Performance, Design

Keywords
Physical Design Tuning, Continuous Tuning, Index Interaction

1. INTRODUCTION
Database Management Systems (DBMSs) have been widely
deployed the last years and the more complicated the database
applications become the more important the physical design is.
Selecting indexes, materialized views, horizontal and vertical

partitions that can enhance performance in a workload is a
challenging optimization problem especially if storage resources
are limited. Manual physical design is both time consuming and
very tedious, as the DBA needs to find the benefits of individual
design features. Thus, the need for automating physical design
tools has become more demanding than ever.

There are several commercial tools that offer automating tuning
with several features [1][3][10]. These tools are based on greedy
heuristics. They allow what-if design exploration and have useful
user interface. Although these greedy heuristics make the existing
design tools practical, they prune away large fractions of the
search space and often suggest locally optimal solutions instead of
the globally optimal one. On the other hand, little work has been
done in providing similar tools for open source DBMSs, such as
PostgreSQL and MySQL. Thus, one has to face the dilemma of
selecting an expensive commercial DBMS that provides
automating tools or an open source DBMS whose lack of
automated tools might increase the operational cost in the long
run. In addition, in the real world, the queries running on a
database evolve over time. Thus, the suggested physical designs
may become obsolete and require re-optimizations. Since the re-
optimization is expensive, it is desirable to have a lightweight
online tuning tool to monitor the query evolution and frequently
to optimize the design. Finally, since the design features, such as
indexes, typically take considerable amount of time to build, it is
essential to schedule their construction in a way that maximizes
their benefits.

We address the above requirements by developing an automated
and interactive physical design tool for the PostgreSQL open
source DBMS. Our tool incorporates miscellaneous algorithms
and techniques to improve overall performance and provided
features. Given a database, a set of queries and resource
constraints, our tool suggests a near optimal configuration. It uses
CoPhy [4] to suggest the indexes. CoPhy develops a convex
combinatorial optimization formulation for the problem of
suggesting indexes and then employs mature existing techniques
to solve it. CoPhy allows to trade off execution time against the
quality of the suggested solutions. The tool uses AutoPart [8] to
suggest optimal partitions for the workload. It also incorporates a
lightweight online physical designer—COLT [11]—to monitor
the performance of the queries and suggest changes to the
physical design when the existing design is suboptimal for the
workload. It also suggests an effective materialization schedule
for the suggested indexes using their interactions [12]. Finally, it
makes the design selection process more interactive by allowing
the DBA or a novice user to specify a candidate set of indexes and
study the benefit of these indexes efficiently by using simulated
what-if indexes, and visualizing their interactions. The user can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMOD’10, June 6–10, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06...$10.00.

also control the physical design search by suggesting a candidate
set of indexes as the starting point of the search algorithm in the
designer.

In this demonstration, we use PostgreSQL because of its
popularity and its relatively mature cost-based optimizer.
However, the tool is designed so that it can be ported to any
relational DBMS, which offers a query optimizer, a way to extract
and create statistics, and control over join operations. To run the
aforementioned diverse techniques on PostgreSQL, we modify the
query optimizer to add what-if capabilities. The what-if
capabilities simulate the original design features without actually
building them, hence enabling efficient exploration of the feature
space. We then extend the INUM [9] cache-based cost model to
cache table partitions and partial plans to further increase the
efficiency of the selection tool by orders of magnitude.

Figure 1. System Architecture

Demonstration Structure: This demonstration presents a new
tool which extends PostgreSQL by adding automatic physical
design features. Because scientific datasets are usually very big
and involve complex queries, we demonstrate the effectiveness of
the tool using a real-world SDSS [13] dataset and query
workload. We demonstrate three physical design scenarios. In the
first scenario, the DBA manually selects the combination of
design features and the tool determines the benefit of using that
combination. The second one finds the optimal indexes and
partitions for a given query workload. It also suggests a schedule
to implement the suggested indexes. The last one continuously
monitors the performance of the DBMS under incoming queries,
and suggests new indexes when the indexes offer sufficient
workload speedup.

The rest of the paper is organized as follows: Section 2 presents
the related work; Section 3 describes the system architecture;
Section 4 presents the demonstration scenarios; and Section 5
concludes the paper.

2. RELATED WORK
Researchers propose several techniques for automated physical
design. Due to space limit, we list only the recent commercial
automated physical design tools, such as the Data Tuning Advisor

(DTA) for SQL Server [1], the Design Advisor for DB2 [14], and
the SQL Access Advisor for Oracle[10]. These commercial tools
use what-if design features [5], scale by pruning away the space
in greedy manner, and do not support online physical design.

The automated physical designers for open source DBMSs are
relatively new compared to commercial ones. Monterio et al.
implement and design an index suggestion tool for PostgreSQL
[7]. They, however, assume the size of the indexes to be zero,
which severely affects the accuracy of the optimizer when what-if
indexes are used. Kao et al. propose changing the optimizer to
store the access paths and suggest the frequently requested access
paths [6]. This, however, requires drastic changes to the
optimizer, and does not explore new access paths.

Similar to COLT, Bruno et al. suggest online index tuning [2].
They, however, use proprietary interfaces with SQL Server,
which are not portable to PostgreSQL and they also provide a
heuristic method for index interaction, but Schnaitter et al. [12]
extends the concept by comprehensively analyzing its properties
and providing algorithms to schedule the suggested indexes.

3. SYSTEM ARCHITECTURE
In this section we outline the basic components of our system,
their role and how they interact with each other. A high-level
architecture of our system is illustrated in Figure 1.

3.1 What-if Component
The what-if component is a basic component of our architecture
and all the other components are attached to it. It allows for
simulating the potential benefit from the presence of physical
structures such as partitions and indexes without having to
construct them. To achieve this, we modify PostgreSQL query
optimizer and evaluate the cost of queries using what-if analysis.
The optimizer computes the execution plan of a query, assuming
that what-if indexes and tables are implemented in the database.
Thus, we escape the cost of explicitly building a structure. This
component consists of three sub-components: a) the what-if index
component which is used for index simulation, b) the what if table
component which simulates the presence of vertical and
horizontal partitions and c) the what-if join component which
controls the join methods in the query execution plan.

3.2 Index Recommendations
Our tool provides two ways of index tuning: the automatic index
suggestion component and the continuous tuning component for
offline and online index recommendations respectively.

3.2.1 Automatic Index Suggestion
The automatic index suggestion component uses Cophy [4]. It
takes as input the query workload, the physical design and size
constraints. Then, it develops a convex combinatorial
optimization formulation for the index selection problem. While
the candidate indexes are analyzed, a cache-based cost model
(INUM) speeds up the cost estimation process by caching and
reusing intermediate results. The component returns a set of
suggested indexes.

3.2.2 Continuous Tuning
The continuous tuning component uses COLT [11]. COLT is an
online index selection framework that continuously monitors
incoming streams of queries, evaluates the benefit from adopting
different indexes and proposes the most promising configuration

Figure 3. Automatic Partition Suggestion Interface

of single-column indexes respecting the workload and potential
space constraints. Continuous tuning component operates
additionally to the rest of our tool and it can be enabled or
disabled in accordance with workload or administrator’s will.
Initially, it examines workload traffic in a preconfigured database
system. If it detects a change in indexes that can improve
performance, an alert message is sent. The new proposed
configuration includes only single column indexes. So, whether
this configuration would be adopted or not, depends on the DBA.
She might have to choose between the new single column index
configuration proposed by the continuous tuning component and a
multicolumn index configuration initially proposed by the
automatic index suggestion component.

Figure 2. Index Interaction

3.3 Automatic Partition Suggestion
The automatic partition component uses the AutoPart technique
[8]. This component receives as input the query workload, the
original physical design, and constraints such as space limitations
for replicating columns in the partition. It produces vertical and
horizontal partitions which can optimally improve the execution
time for the aforementioned workload. In this component, we
have also extended the INUM cost model to include partitions.

3.4 Interactive Partitioning/Indexing
The interactive partitioning/indexing component receives as input
the original schema and a query workload and enables the user to
select indexes and partitions interactively. Apart from that, the
average workload benefit and the individual queries benefits from
the new schema are computed by using the indexes’ and
partitions’ cost model in a unified approach.

3.5 Index Interaction
The index interaction component embeds to our system the
functionality of two database tuning tools introduced by
Schnaitter et al. [12]. Both tools exploit knowledge about index
interaction and are combined with the automatic index suggestion
and interactive partitioning/indexing component. The first tool
receives as input the recommended indexes from one of the
aforementioned components and provides DBA with visualization
of interactions between them. The goal is to help the DBA gain
some understanding about the interactions between the specified
indexes. The second tool schedules the materialization of
suggested indexes. The rationale that lies behind the use of this
tool is that an appropriately scheduled materialization of indexes
can lead to higher benefit in contrast with a schedule that does not
take into account index interaction.

4. DEMONSTRATION
In this section, we describe three application scenarios that
demonstrate how the features of our tool are used to tune the
physical design of a database.

Scenario #1: The goal of this scenario is to estimate the potential
benefits of a new physical design. The user provides the query
workload and the original physical schema. Then, she creates
several what-if partitions and indexes using the tool’s interface.
Now, the tool presents the benefits from using the new physical
design for the particular workload. The user can examine
interactions between the what-if indexes as visualized by the
Index Interaction component and save the rewritten queries for
the new table partitions. Figure 2 presents how index interaction
is visualized. We use an undirected graph in which the vertices of
the graph represent indexes and the weights of the edges are the
degree of interaction for a pair of indexes. If the graph has too
many edges, the user can dynamically change the number of
interactions that are being displayed.

Scenario #2: In this scenario, the user provides the query
workload, the original physical schema and size constraints. Then,
the tool recommends a set of indexes and partitions which
maximize the performance. The interface presents the list of
suggested indexes and partitions, the average workload benefit
and the benefit per query. Again, the interaction between the
proposed indexes is illustrated. The user has the option to

physically create the suggested partitions and indexes. In the case
of indexes, a materialization schedule becomes available. This
schedule takes into consideration the index interactions to find a
beneficial order of index materialization. Figure 3 shows an
example of how suggested partitions are presented to the user.
The list of suggested partitions is displayed in the right panel of
the user interface. The user can examine the individual query
benefit and the average workload benefit in case she adopts the
suggested changes to the schema. Additionally, the user has the
option of physically creating the suggested partitions and save the
workload queries according to the new partitions.

Scenario #3: This scenario focuses on the use of the continuous
tuning component. This component monitors the behavior of the
system when the workload changes and suggests changes to the
set of indexes. Our tool presents the change in system’s
performance accruing from adopting the new suggested indexes.

5. CONCLUSION
In this demonstration, we presented a new automating physical
design tool for open source DBMSs. The tool uses what-if
analysis to simulate potential changes to the schema and
integrates algorithms for suggesting indexes and partitions. It can
modify the schema if there is a change in the workload, visualize
interaction between indexes and present a materialization
schedule for indexes. We demonstrate the tool on three different
scenarios using scientific datasets and present the functionality
using the tool’s interface.

6. ACKNOWLEDGMENTS
This work was partially supported by Sloan research fellowship,
NSF grants CCR-0205544, IIS-0133686, and IIS-0713409, an
ESF EurYI award, and SNF funds.

7. REFERENCES
[1] S. Agrawal et al. Database Tuning Advisor for Microsoft

SQL Server 2005. In Proceedings of the International
Conference on Very Large Databases (VLDB), 2004.

[2] N. Bruno and S. Chaudhuri. An Online Approach to
Physical Design Tuning. ICDE’07.

[3] N. Bruno and Surajit Chaudhuri. Automatic physical
database tuning: a relaxation-based approach. In
Proceedings of the SIGMOD Conference, 2005.

[4] D. Dash, A. Ailamaki. CoPhy: Automated Physical
Design with Quality Guarantees. Technical Report CMU-
CS-10-109.

[5] S. Finkelstein,M. Schkolnick,P. Tiberio: Physical database
design for relational databases. ACM ToDS. 1988.

[6] Kao, K., Liao, I. 2009. An index selection method without
repeated optimizer estimations. Inf. Sci. 179, 13 (Jun. 09)

[7] Monteiro, J. M., Lifschitz, S. and Brayner, A.: An
Architecture for Automated Index Tuning. In V Ph.D. and
M.S. SBBD, 2006.

[8] S. Papadomanolakis, A. Ailamaki, AutoPart: Automating
Schema Design for Large Scientific Databases Using Data
Partitioning, 6th International Conference on Scientific
and Statistical Database Management (SSDBM'04), 2004.

[9] S. Papadomanolakis, D. Dash, A. Ailamaki. Efficient Use
of the Query Optimizer for Automated Physical Design.
VLDB 2007.

[10] Performance Tuning using the SQLAccess Advisor.
http://www.oracle.com/technology/products/bi/db/10g/pdf
/twp_general_perf_tuning_using_sqlaccess_advisor_10gr1
_1203.pdf

[11] K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis.
Colt: continuous on-line tuning. In proceedings of the
2006 ACM SIGMOD, pages 793–795, 2006.

[12] K. Schnaitter, N. Polyzotis, L. Getoor: Index Interactions
in Physical Design Tuning: Modeling, Analysis, and
Applications. PVLDB 2(1): 1234-1245 (2009).

[13] Sloan Digital Sky Survey, http://www.sdss.org/

[14] D. C. Zilio, J. Rao, et al. DB2 Design Advisor: Integrated
Automatic Physical Data-base Design. VLDB’04.

