Low Rank Updates for the Cholesky Decomposition

Matthias Seeger
Department of EECS
University of California at Berkeley
485 Soda Hall, Berkeley CA
mseeger@cs.berkeley.edu

April 5, 2008

Abstract

Usage of the Sherman-Morrison-Woodbury formula to update linear systems after
low rank modifications of the system matrix is widespread in machine learning. How-
ever, it is well known that this formula can lead to serious instabilities in the presence
of roundoff error. If the system matrix is symmetric positive definite, it is almost always
possible to use a representation based on the Cholesky decomposition which renders the
same results (in exact arithmetic) at the same or less operational cost, but typically is
much more numerically stable. In this note, we show how the Cholesky decomposition
can be updated to incorporate low rank additions or downdated for low rank subtrac-
tions. We also discuss a special case of an indefinite update of rank two. The methods
discussed here are well-known in the numerical mathematics literature, and code for
most of them can be found in the LINPACK suite.

Note: Matlab MEX implementations for most of the techniques described here are
available for download at http://www.kyb.tuebingen.mpg.de/bs/people/seeger/. If you
make use of them (subject to the license), you have to cite this report and the website
for obtaining the code in your publications.

1 The Problem and the Primitives

Let A € R™" be symmetric positive definite (we write A = 0),i.e. z7 Az > 0 for all z # 0.
Then, A = LL” for a lower triangular matrix L with positive diagonal elements, and this
Cholesky decomposition is unique.

Forget about ever inverting A if you don’t have to! Almost everything which you might
want A~! for can be done equally fast or faster using L, and will usually be much more
numerically stable on a computer. The system Az = b is solved as Ly = b, LTz =y
which needs two back-substitutions (the procedure of solving a system with a triangular
matrix).! The operation count for a back-substitution is about half than for a matrix-
vector multiplication, so even if A~! was given exactly there would be no gain in efficiency.
However, the way via the Cholesky factorization in general leads to a much more accurate

! Confusingly (and historically) this procedure is termed differently depending on whether the system
matrix is upper or lower triangular (forward- and back-substitution), although one is obtained from the other
simply by inverting the vector index. We do not follow this nomenclature to avoid unnecessary confusion.

solution for «. In fact, the best general way of inverting A would be to compute L and
then A~! using an algorithm based on repeated back-substitutions.

Frequently occuring terms are computed as x7 A~z = |[L7'z|?, log|A| = 2log|L| =
217 log(diag L). tr A™! can be computed from L in about half the time than A~1.2

Suppose now for a given statistical problem we use a representation based on a Cholesky
decomposition A = LLT. By a “representation” we mean that we store L explicitly in
order to do back-substitutions on demand, or we maintain X = L~ 'B for some fixed
matrix B € R™™, or both. In the following we concentrate on this situation, although it
can easily be extended to incorporate more involved usages of L.

One of the simplest modifications is adding a new row/column to A. The corresponding
update of L and X is fairly obvious and will not be discussed here. In this paper, we are
interested in updating the representation if A is modified by adding a symmetric low rank
matrix. In the simplest case, A’ = A + vv! (positive rank-1, update) or A’ = A — vol
(negative rank-1, downdate). These cases are fundamentally different in that for a positive
update A’ = A, as long as A is well-conditioned, our procedure will not run into trouble
and A’ has larger eigenvalues than A.3 On the other hand, negative updates break down
if A’ is not positive definite and can result in large errors if A’ is close to singularity. Low
rank updates of the form A’ = A + VVT, V € R™ can always be done by applying d
updates/downdates sequentially.

In case of an indefinite low rank update, we do not know of a method which can be recom-
mended in general. However, stable methods are available for special forms of indefinite rank
two updates and may apply in cases of interest. Important examples are given in Section 4
and Section 5.

In the remainder of this note, we assume that the factor L is given explicitly, and is to be
overwritten by the new factor L’. In some applications, one is interested rather in an O(n)
representation of L s.t. LL = L'. We comment on this issue briefly in each case, the reader
will have not problem filling in the details.

2 Rank One Update

Several methods for updating or downdating a Cholesky factor after a modification of rank
one have been proposed. A review is given in [2]. Note that the same techniques can be
used to update a QR decomposition. Maybe the most stable techniques have been proposed
by Stewart, and code for them can be found* in LINPACK [1]. Here, we discuss the dchud
routine for A’ = A + voT.

In this section we make use of matrices and vectors of size n 4+ 1 which are indexed as
0,...,n for convenience. A Givens (or plane) rotation applied to & € R"! rotates two
components of & by some angle 6 and leaves all other components the same. Namely,

2It can also be approximated using the randomized trace technique which uses tr A~ = E[wTAflm], x ~
N(0,I) together with the law of large numbers.

3See the interlacing theorems in [4].

4LINPACK is superseded by the much more efficient LAPACK suite today, but the Cholesky updat-
ing/downdating routines are not yet in there, although their addition is planned (pers. comm.).

Jp =TI+ (Ck — 1)(505(7; + 6;45{) + Sk(éoag - 5k55), where ¢, = cos by, s, = sin 0. Stewarts
ansatz is

Jn...Jiw, LT =[0,L]", (1)
leading to L'L'T = LLY + vo™.

The algorithm proceeds £k = 1,...,n. Jj is chosen based on the k-th column, namely
Ji[vg, L/ﬁk]T = [0, L§€7k]T. The BLAS routine drotg can be used to compute ¢y, i in a stable
way. If this results in Lj , < 0, we simply flip ¢y « —cg, sp < —sy, and Ly ; < —Lj .
v and Ly are updated by applying the rotation Jy, the latter forms L’>k7k. The BLAS
routine drot can be used for this plane rotation.

The update factor L is given implicitly by {(c,sx)}, in that Lz = y iff [0,y7] =
[k, 2l)Ty ... Ty

We can also “drag along” solutions, by which we mean updating Z — Z’ s.t. LZ + vy’ =
L'Z'. To see how this works, append [y, ZT]T to the Lh.s., [¢, Z'T]T to the r.h.s. in Eq. 1.
We initialize ¢ = y, then iterate k¥ = 1,...,n. In the k-th step, [C,Z§€7,T] — [C,fo]J;{,
which can be done by drot.

Note that the LINPACK routine dchud does not make good use of BLAS, but rather contains
explicit O(n?) loops. Our implementation uses drot whenever possible, which can be much
faster, but we require a scratch vector of size max{n,r} if Z € R™". Another slight problem
with dchud is that it can result with negative elements on diag L’. This is not contrary to
its specification, but somewhat non-standard. In our implementation, diag L’ = 0.

3 Rank One Downdate

As noted above, a Cholesky downdate, namely L — L' if A’ = A — v, is more difficult
to do in a numerically stable manner. Stewart provides dchdd in LINPACK, which we discuss
here. Again, our implementation uses BLAS routines whenever possible, while dchdd contains
explicit O(n?) loops.

Again, we extend objects to size n + 1 with an index 0, and use Givens rotations Jy. Here,
the ansatz is
Ji.. I, 0,0 =[v,L']", (2)

leading to L'L'T = LLT — vv™. By left-multiplication with 6, we obtain that if

Lp=v, p’=1-p'p, q=[pp"]"

Y

then J;...J,q = & (we use the fact that ||g|| = 1 as a rotation of § in order to determine
p). Note that LLT —vv” is positive definite iff the expression for p? is positive. The method
breaks down if this is not the case. We now iterate k = n,...,1. Ji is chosen to annulate
the k-th element of q. ci, sy can be computed by BLAS drotg. Note that in this process,
the value of go is nondecreasing (if drotg flips it to a negative value, we compensate for
that by flipping signs of ¢, s), and should eventually attain 1 (up to roundoff). Since (in

exact arithmetic) ¢y = go/4/¢3 + ¢} in iteration k, we know that ¢ > (1 + (g/p)?)~1/2, so

is bounded away from zero. This will be important in a moment.

Given the ¢y, si, we can update L — L’ in a similar way as in Section 2. However, in this
case we do not see how one could compensate for L%,k < 0 by simply flipping the values
¢k, Sk- In order to obtain diag L’ = 0, we write

Here, L’[chda 18 the factor which we obtained without consideration of diag L', which is what
dchdd does.

“Dragging along”, i.e. L'Z' = LZ — vy”, works by appending [C,ZT]T to the lh.s.,

[y, Z'T]T to the r.h.s. of Eq. 2. We initialize ¢ = y, then iterate ¥ = 1,...,n. In the k-th

iteration, cx Z}, . = Zy,. — sp¢T, and ¢ — ¢t — s1Zy... We need to divide through c

here, which is stable since they are bounded away from zero. As opposed to the situation

for an update, we cannot simply use drot here, but need several BLAS calls. We end up with
’[chdd]Z’ = LZ — vy’ therefore need to replace Z' « (diagd)Z’ still.

Why does this work? For k € {1,...,n}, let [¢*D MT)T = g7 ... JT[y, Z'"|" (here
and elsewhere, empty matrix products equate to I). Since J; operates on dimensions 0
and j only, we have that M, . = Zﬁc Multiplying the equation for C(k) by 82, we obtain
¢OT = §TJT1¢ED MT)T = [eg, —sp] [¢FD, ZL’,T]T. The Lh.s. of this equation can also
be written as Jgy1...Jp [C("), ZT}T, whose k-th row is just Zj, .. Multiplying the equation
by 5%, we obtain Zj. = [sg,c) [C(kfl),Zga,T]T. These are the update equations above,
where ¢ contains the successive ¢ (k).

We also need to compute p, which can be done by LAPACK dtrsv. We require a scratch
vector of size max{n,r} if Z € R™".

The update factor L is given implicitly by {(c, sx)} and d, in that La = y iff [0, (doz)”] =
[k, yT)JL . JT.

4 Indefinite Rank Two Update: An Examples

Attention: As for this moment, we do not have a working implementation of Goldfarb’s
method [3], our code does not work for reasons unclear to us. We have not found this
method being implemented in LINPACK. Therefore, we cannot recommend the method to be
described in this section from our own experiences. If the reader manages to obtain a correct
implementation, or spots a mistake in our description here, we would be very grateful for a
note.

Suppose A’ = A + B where A’ is known to be positive definite in exact arithmetic, and
B is symmetric low rank. We have discussed special cases where B is positive or negative
semidefinite, but we do not known of a method which can be recommended in general if
B is indefinite (i.e. has positive and negative eigenvalues). A general idea would be to
apply rank one updates (as described above) sequentially, but the ordering becomes very
important (due to the presence of updates and downdates), and it is not clear how to select
one which leads to a stable update.

In this section we concentrate on the case rk B = 2. Stable methods for indefinite rank
two updates of special form have been suggested. Faced with a particular B (of rank two),

we recommend trying to reduce it to a sequence of stable rank two and positive rank one
updates. In this section we give a concrete example.

Let A = LL". Goldfarb [3] gives a stable method for indefinite rank two updates of the
form
A= (I+UUT) A(I+ uvT) .

The method is based on an orthonormal triangularization of the matrix I 4+ zw?, i.e.

(I+zwT)Q = L, where Q is orthonormal and L is lower triangular. Now, if Lz = v, w =
L7, then

A =L([T+20")(I+wz")L" =LLQ"QL'L" =L'L'", L'=LL,
because QT Q = I. Furthermore, L has a special form

L = diag\ + ['w,@T + z'yT] [
where [B]rr = (bil{>jsy)i.- Thus, L is given in terms of O(n) parameters A €
R”, B, v, w1, 2-1 € R" 1. The computation of these parameters is O(n) once w, z are
given. The explicit update L — L’ can be done in place in O(n?), as shown in Algorithm 1.
Back-substitution with L is O(n) and is given in Algorithm 2.

Algorithm 1 Update of Cholesky Factor, Indefinite Rank-2 Update.
fori=1,...,ndo
p = lm‘. l;,i = li,i>\i' Op =0y = 0.
for j=i—1,i—2,...,1do
08 <= 08+ pWjt1, Oy <= O + PZjt1.
p=lijli;=lijhj +0op0j + oy
end for
end for

Algorithm 2 Back-substitution = i)ilb, Indefinite Rank-2 Update.
xTrl = bl/)\la 0 = 0y = 0.
fori=2,...,ndo
08 < 08 + Bi-1Ti—1, Oy < Oy + Vi-1Ti—1.
€Tr; =)\Z-_l (bz — Ugwi — a,yzi).
end for

Note that in this context, the following modification of X may be equally useful. Recall
that LX = B. Suppose X' is required s.t. L’X’ = (I + vu’)B. Note that Goldfarb’s
method determines a orthonormal @ s.t. (I +vu?)LQ = L'. Therefore, if X' = QTX,
then

L'X = (I +vu"LQQ"X = (I +vu")B,

as desired. Since Q7 is a product of Givens rotations, all we need to do is to apply these to
X.

In the first example, suppose we have A = LL”, and we want to downdate L — L/
according to the removal of column and row ¢ in A. If ¢ = n, all we have to do is to

remove the last row and column of L. If i # n, let A’ by obtained from A by exchanging
rows/columns i and n. We can write

A =PAP, P=1-(8—38,)(;—38,)7".

This means that we can use the method of Goldfarb with w = d; — d,, and v = —u. We
then obtain L’ by removing the last row and column.

For the second example, suppose we have the following problem. Let
A=A+1 Al

which depends on I C {1,...,n}. Here, A = 0 and A > 0. Let I' = TU{j}, j & I, and we
need to do a stable update of the Cholesky decomposition A = LL”. We have

A'=A+2symI.jA; ;6] + A;;6].

In order to employ Goldfarb’s method, let Au = I.,IAIJ and v = 0; (i.e. w = LTy =
L'I.;A;;). Then,
’LLTAU = AjJIL.AilI.,]A[,j.

If
o = A] — Aj,III,~A_1I-,IAI,j7

we have
A = (I+ vuT) A(I+ uvT) + avv?l.

Thus, if & > 0, we can do a Goldfarb update followed by a positive rank one update. We
give a proof in the following.

Note that - is a shortcut for {1,...,n}. To make that specific, let J = {1,...,n} and
J'=1{1,...,n+ 1}. Extend the matrix A to J’ by imagining it being a kernel matrix over n
points and duplicating point j as point n+1. In other words, Ai,j = Ai’nﬂ, 1=1,...,n,and
A,i1n11 = Aj,. The extended matrix is positive semidefinite as well. Let I” = TU{n+1}.
Now consider .)

M =1, A1+ 1y ApIpm g

which is positive semidefinite as a sum of two positive semidefinite matrices. In fact, M ; =
A is positive definite, furthermore M j,41 = IJJA[’n_;'_l = I.,IALJ’, and M1 41 =
An+1,n+1 = Aj,j' Then, we have a > 0 by looking at the Schur complement of n 4 1 versus
{1,...,n} and the positive semidefiniteness of M.

5 LINPACK DCHEX

In the context of specific low rank updates of a Cholesky factor, the LINPACK routine dchex
is useful. Just as in LAPACK, the leading “d” stands for real double precision. LINPACK
supports upper triangular Cholesky factors only, so we will follow this convention here.

Suppose that A = RTR, and that A’ = E'AE for a special permutation matrix E. In
fact, E is determined by 1 < k <! <n and job € {1,2}. Depending on job, the columns in
AFE are permuted as follows. If job = 1, they have the new ordering 1,..., k— 1,01, k,...,[—

1,l4+1,...,n. If job =1, the new ordering is 1,...,k— 1,k+1,...,,k, I+ 1,...,n. Note
that this is what ET is doing to the coordinates of a vector.

Note that dchex solves a special case of Goldfarb’s update, however it is faster and less
prone to numerical problems. It does not require backsubstitutions with R” in order to
work. The method determines an orthonormal U s.t. URE = R'. Here, U is the product
of [— k Givens rotations. Optionally, for a given X the routine computes X’ = U X . This
is useful in the context of our requirements, because if R’ X = B, then

RT"X' = ETR"UTUX = E'B.

The problem of downdating a Cholesky factor after removal of row and column ¢ of A has
been mentioned above. We can use dchex with job = 2, k =i, [= n. After that, we simply
drop the last row and column of R.

Note: There is a bug in dchex. Namely, in some cases it returns R’ with R;; < 0, in fact the
whole row RL_ has to be multiplied by —1 in order to obtain the correct factor. In this case,
the I-th row of X’ also has to be multiplied by —1. LINPACK is not officially maintained
anymore, so one probably has to cope with own bug fixes. It is of course easy to wrap dchex
in order to remove this problem, which is what our implementation does.

References

[1] J. Dongarra, C. Moler, J. Bunch, and G. Stewart. LINPACK User’s Guide. Society for
Industrial and Applied Mathematics, 1979.

[2] P. Gill, G. Golub, W. Murray, and M. Saunders. Methods for modifying matrix factor-
izations. Mathematics of Computation, 126(28):505-535, 1974.

[3] D. Goldfarb. Factorized variable metric methods for unconstrained optimization. Math-
ematics of Computation, 30:796-811, 1976.

[4] R. Horn and C. Johnson. Matriz Analysis. Cambridge University Press, 1st edition,
1985.

