
Sparse Gaussian Process Classification With Multiple Classes

Matthias Seeger

Division of Computer Science

University of California at Berkeley

Soda Hall, Berkeley, CA

mseeger@cs.berkeley.edu

Michael I. Jordan

Division of Computer Science and Department of Statistics

University of California at Berkeley

Soda Hall, Berkeley, CA

jordan@cs.berkeley.edu

June 16, 2004

Abstract

Sparse approximations to Bayesian inference for nonparametric Gaussian Process
models scale linearly in the number of training points, allowing for the application of
these powerful kernel-based models to large datasets. We show how to generalize the bi-
nary classification informative vector machine (IVM) [6] to multiple classes. In contrast
to earlier efficient approaches to kernel-based non-binary classification, our method is a
principled approximation to Bayesian inference which yields valid uncertainty estimates
and allows for hyperparameter adaption via marginal likelihood maximization. While
most earlier proposals suggest fitting independent binary discriminants to heuristically
chosen partitions of the data and combining these in a heuristic manner, our method
operates jointly on the data for all classes. Crucially, we still achieve a linear scaling in
both the number of classes and the number of training points.

1 Introduction

The informative vector machine (IVM) [6, 12] is a sparse approximation to Bayesian in-
ference for binary Gaussian process (GP) classification models which combines assumed
density filtering (ADF) (or Bayesian on-line) projection updates with greedy forward se-
lection of an active subset of the training sample using information-theoretic criteria from
active learning. In this paper we show how this framework can be extended to GP models
for C classes.

Our approach can be compared to multi-class extensions of the binary support vector ma-
chine (SVM) classifier which is not based on a probabilistic model, but rather employs a
maximum margin discriminant. Most of these extensions attempt a posthoc combination
of a sequence of binary maximum margin discriminants trained on different binary splits of
the training sample consistent with the targets. The advantage of these approaches is that

1

optimized software for the binary case can be used directly. However, the binary partitions
(“output codings”) and the posthoc combination scheme have to be chosen in a heuris-
tic and rather arbitrary way. Even if a good “code” is given, the separate training of the
discriminants is suboptimal, because pattern provide joint information about all classes,
which couples the discriminants in general. We note that both Lee et.al. [7] and Weston
and Watkins [15] use C independent discriminants jointly like we do here, however gener-
alizing the concept of margin to C classes in different ways. In fact, there is no canonical
(or “optimal”) generalization and different choices can lead to very different behaviour sta-
tistically although this is far from obvious. For example, while the margin generalization
of Weston and Watkins seems more directly related to the binary setup, Lee et.al. show
that it does not in general lead to a universally consistent method because the minimizer
of the true expected loss (no RKHS restriction) does not give the same classification as
the Bayes optimal rule for some data distributions. The generalization of Lee et.al. has this
consistency property, however it is certainly possible to come up with different consistent
generalizations which will all behave quite differently for a finite sample size (and C > 2).
With these SVM extensions, it is even less clear how valid estimates of predictive class
probabilities can be obtained and how free hyperparameters should be chosen.1

Our method addresses all of these problems by operating jointly on the data for all classes
without requiring artificial “codes”. Being a direct approximation to Bayesian inference,
predictive probabilities can be estimated and hyperparameters can be adjusted by empirical
Bayesian techniques. As is often the case with Bayesian methods, the main challenge is
to find an efficient inference methodology. If n is the training set size, C the number of
classes, and d � n the (adjustable) “active set” size, our scheme requires O(nC d) memory
and O(nC d2) time to compute a representation of size O(C d3) from which predictive
probabilities can be computed in O(C d2). This scaling is linear in both training set size
and number of classes, which allows for applications to large real-world problems.2 The case
of C > 2 classes is significantly more difficult to handle than the binary one, and we have
to face a number of new representational and algorithmic challenges.

The structure of the paper is as follows. In Section 2 the GP multi-class model is introduced.
Our basic idea is motivated in Section 3. The posterior representation is developed in
Section 4.1, and we show how to update it after an inclusion in Section 4.2. The problem of
constrained ADF projection is treated in Section 4.3. We introduce our criterion for forward
selection in Section 4.4. Results of some preliminary experiments are given in Section 7.
We conclude in Section 8 with suggestions for further work. The appendix contains some
detailed derivations, together with some concrete ideas for algorithmic extensions of the
myopic forward selection scheme in Section D.

Note that the scheme to be described here requires a number of novel concepts together with
a very elaborate representation, and many complicated details have to be stated to allow a
full and self-contained understanding. Our approach is to begin each section with a short

1Traditional methods such as cross-validation are not useful, because different covariance functions (ker-
nels) should be used for every class leading to at least O(C) hyperparameters.

2In the light of a confused anonymous referee, it seems necessary to clarify our scaling statements. Under
the assumption that C < d � n the dominant contribution to the scaling is O(n C d2). As with any other
method in this domain, there are additional O(d3), O(d C3) and other contributions which are subdominant
under these assumptions. Especially, our method cannot be used in a large C domain without further
modifications not discussed here. Unless otherwise said, claims about the scaling behaviour concentrate on
the dominant term (under these assumptions) which is linear in the training set size n.

high-level description, followed by all the details we feel are necessary for full understanding.

2 Multi-Class Gaussian Process Classification

In this section we briefly introduce GP models for C-class classification. Denote a case by
(x, y), x ∈ X , y ∈ {1, . . . , C}. x is called input point (or pattern), y target (or label),
distributed according to an unknown data distribution P (x, y). Our goal is to predict y
or even P (y|x) at points x of interest, thus inference conditional on typical input points.3

Functions into a finite set are hard to parameterize directly. In the binary case C = 2, a
standard way of constructing a model is to introduce a latent variable u ∈ R to represent
the (unobserved) log odds ratio log(P (y = 1|x)/P (y = 2|x)) − β, thus

P (y = 1|u) = σ(u + β) =
1

1 + e−(u+β)

(β ∈ R is a intercept parameter which can be interpreted as prior for the log ratio). Note
that P (y|u) is a binomial distribution with (unconstrained) natural parameter u. In a GP
model, x 7→ u is given a Gaussian process prior with zero mean and covariance function
K(x,x′). For an introduction to GPs in the context of machine learning applications, see
[14]. In the context of this paper, a (zero-mean) GP is simply a consistent way of assigning
covariance matrices K (X) ∈ R

m,m (or zero-mean Gaussian distributions) to (ordered) point
sets X ∈ Xm by means of the covariance function K: K = (K(x,x′))x,x′∈X . Note that
the covariance function may have free parameters, and one of the appealing aspects of the
Bayesian framework is that such hyperparameters can be adjusted in an automatic fashion
(via marginal likelihood maximization). The generalization to C classes is straightforward:
let

P (y|u) = exp
(

vy − log 1T exp(v)
)

, v = u + β (1)

be the multinomial distibution with natural parameters v ∈ R
C (here, 1 = (1)c). β =

(βc)c is a vector of intercept parameters. Given C covariance functions K (c), we employ
independent zero-mean GP priors with kernels K (c) on the component functions u(c) : X →
u(c). Note that our parameterization of the multinomial P (y|u) is overcomplete in the sense
that P (y|u) = P (y|u + α1) for all y, α ∈ R which will create some minor complications
downstream. However, the usual procedure of pegging one of the u components to a fixed
value in combination with the independence of the u(c) priors leads to a prior imbalance in
the class probabilities which is (in general) not motivated by the task, while the symmetric
overcomplete parameterization renders uninformative class priors (for β ∝ 1). The mapping
u → (P (y|u))y is called (overcomplete) softmax function. It is important to note that the
negative logarithm of each component function is convex and strictly so on affine spaces
orthogonal to 1.

Given a training sample D = {(xi, yi) | i = 1, . . . , n} drawn independently and identically
distributed (i.i.d.) from the data distribution, the goal of first level inference is to obtain
approximations to predictive distributions P (y∗|x∗, D) at test points x∗ ∈ X . Conditioned
on hyperparameters, these can be obtained from an (approximate) representation of the

posterior P (u|D) where u = (u
(c)
i)i,c ∈ R

nC i = 1, . . . , n, c = 1, . . . , C with u
(c)
i = u(c)(xi).

3We are not interested in modelling P (x), and as a consequence our model cannot be used to infer any
useful properties of this marginal distribution.

Note that the processes u(c) are coupled a posteriori due to the coupling in the likelihood.
A wide range of approximate GP methods represent this posterior by a Gaussian, as we will
do here. Note that the true posterior is log-concave (a consequence of the log-concavity of
the likelihood) with tails dominated by the Gaussian prior, so the Gaussian approximation
can be well-motivated.

3 The Basic Idea

A straightforward extension of the binary IVM [6] is possible, but would scale at least as
O(nC2 d2). The problem is that the inverse posterior covariance matrix is the sum of two
matrices (the kernel matrix from the GP prior and a matrix coming from the likelihood
approximation) which are principally block-diagonal, but w.r.t. different groupings of the
latent variables. While both matrices have exploitable structure, the sum does not, which
leads to the unfavourable scaling. We give a principled method for finding an approximation
to the blocks in the likelihood approximation matrix which leads to an efficient representa-
tion by making use of the block-diagonal structure of the kernel matrix.

We make use of a matrix and vector notation which may be unfamiliar to the reader, but
is essential to manage the involved representation developed below. Note that our notation
is fairly standard.4 Vectors and matrices are set in bold face. Subset indexing is defined
as AI,J := (αi,j)i∈I,j∈J , I, J ordered index sets. · denotes the full index, i the singleton
{i}, and AI := AI,I . I denotes the identity matrix, I = (δi,j)i,j, its columns are denoted
as δi = I ·,i. The vector of all ones is 1 = (1)i. Note that AI,J = II,·AI ·,J , we will make
frequent use of II,· as “selection operator” and I ·,I as “distribution operator”.

The subset indexing notation may be familiar from our work on the binary IVM [12, 6],
but in the multi-class context (and more general in C-process models, see [14], Sect. 3.2)
an additional complexity arises: in both vectors and matrices, we need indexing w.r.t. dat-
apoints i ∈ {1, . . . , n} and w.r.t. classes c ∈ {1, . . . , C}. We write u = (ui)i = (u(c))c =

(u
(c)
i)i,c ∈ R

nC , ui ∈ R
C , u(c) ∈ R

n. By “inner grouping” over c (resp. i) we mean that

the index c (resp. i) changes faster. For example, u = (u
(1)
1 , . . . , u

(1)
n , . . . , u

(C)
1 , . . . , u

(C)
n)

uses inner grouping over i and outer grouping over c. Crucially, we will need both group-
ings in this paper.5 Let the permutation matrix P̂ ↔ convert between the groupings, i.e.
P̂ ↔(u(c))c = (ui)i (the r.h.s. vector has inner grouping over c). For conciseness it is es-
sential to “overload” our subscript notation to these groupings. For inner grouping over
c we have II,J := II,J ⊗ I , I, J ⊂ {1, . . . , n}, where the left hand matrix is ∈ R

C|I|,C|J |

and II,J ∈ R
|I|,|J |, I ∈ R

C,C on the right hand side. For outer grouping over c we have

II,J := P̂
T
↔(II,J ⊗ I)P̂ ↔. Here, (αi,j)i,j ⊗ B := (αi,jB)i,j is the Kronecker product.

For vectors x, y, x � y (x � y resp.) means that xi > yi (xi ≥ yi) for all i. For matrices
A, B , A � B (A � B resp.) means that A−B is positive definite (positive semidefinite).
See [1] for a detailed account of such generalized inequalities.

When trying to generalize the IVM to C classes, we run into the following problem. Recall
from [6] that the IVM approximation amounts to replacing the likelihood factors (sites) by

4See for example [5], Sect. 0.7 where AI,J is denoted as A(I, J).
5It is easiest to view matrices and vectors with inner grouping over c as “blocked objects”, i.e. n-

dimensional matrices and vectors with elements in R
C,C (inner grouping w.r.t. i accordingly).

Gaussian site approximations with precision matrix Πi. We use the notation NU (ui|bi,Πi)
for these factors, meaning an unnormalized Gaussian with precision (inverse covariance)
matrix Πi and a mean v satisfying Πiv = bi. bi, Πi are called site parameters, and we
generally assume that Πi � 0 (although it might be singular).6 For a sparse approximation
with current active set I ⊂ {1, . . . , n}, d = |I|, we have Πi = 0 for i 6∈ I. Thus, the
covariance matrix of the Gaussian posterior approximation is

A =
(

K−1 + Π
)−1

, (2)

where K = diag(K (c))c (outer grouping over c) due to the independence of the priors,
and Π = diag(Πi)i (inner grouping over c) due to the (conditional) independence of the
datapoints. But the block-diagonal structure is revealed under different groupings only, and
A does not have a simple structure. Therefore, a straightforward extension of IVM to C
classes scales at least quadratically in dC which is not acceptable.

An idea to make progress would be to constrain all Πi to be diagonal. This is equivalent
to assuming posterior independence of the processes u(c), c = 1, . . . , C. We could then
use a variational mean field approximation to determine coefficients of Π and other site
parameters. While the prior independence of the u(c) seems a sensible assumption (and is
absolutely necessary to obtain a feasible scheme), we think that a posterior independence
assumption is too strong in that there is no direct mechanism for the approximation scheme
to represent the coupling between the u(c) introduced by the likelihood factors. It can
either disregard the couplings or represent them indirectly via a “distorted” choice7 of the
only O(Cn) variational parameters. Interestingly, it is possible to represent the likelihood
couplings exactly up to second order and end up with a scheme which is essentially of the
same complexity as the factorized mean field scheme. Thus, while an approximation based
on a diagonal Π may be simpler to develop or implement, it will not be (significantly) more
efficient than our scheme and is of no further interest to us here.

Our principal idea is to exploit an analogy to a different way of approximating the poste-
rior P (u|D), namely by a Laplace approximation [16]. There, the concave log posterior is
expanded to second order at its mode û, giving rise to a Gaussian distribution with a covari-
ance of the form (2), but with Πi = −∇∇ui log P (yi|ûi). In other words, the non-Gaussian
log likelihood terms are replaced by their second order expansions. Crucially, these “preci-
sion blocks”8 are of a simple form: Πi = diag pi − pip

T
i , pi = (P (y|ûi))y . Note that this

form captures the coupling due to the likelihood factor for the i-th datapoint up to second
order. This constraint on Πi can be exploited to run the Laplace approximation scheme
in time and memory linear in C. However, this scheme is not a sparse approximation and
scales cubically in n, furthermore there is some evidence that GP approximations based on
ADF projections (or expectation propagation (EP) projections [10], aka. ADATAP [11]) out-
perform the Laplace approximation. Our scheme tries to combine the best of both worlds:
we propose to use ADF/EP projections onto a family of Gaussian site approximations with
constrained precision blocks Πi which must have the form

Πi = diag πi − α−1
i πiπ

T
i , αi = 1T πi, πi � 0. (3)

6In the binary IVM, Πi is a nonnegative scalar.
7In the sense that there are no parameters for a coupling, so the ones of the decoupled representation

have to make up for it somehow. The same problem arises in variational mean field approximations.
8A precision matrix is the inverse of a covariance matrix.

Note that Πi has a single eigenvalue 0 with eigenvector 1 and is positive definite on the
orthogonal complement of 1.

In the remainder of this paper we address the issues of turning this idea into an efficient
algorithm. The main challenges are finding a representation of the posterior which can be
stored and updated in O(C) and solving the constrained ADF projection problem. Further-
more, it turns out that the simple myopic “on-line”approach used for the binary IVM is not
sufficient for the C > 2 case, and we describe extensions involving joint EP iterations over
a subset of the active set.

4 Conditional Inference

In this section we describe an representation for a sparse Gaussian approximation Q to
the posterior P (u|D,θ), where θ collects all hyperparameters (kernel parameters and β),
together with an efficient scheme for selecting the active set I and updating the represen-
tation.

4.1 The Representation

In this section, we develop the representation which is used to approximate the posterior
over u ∈ R

nC and allows to compute predictive probabilities for test points. The key is
to exploit the block-diagonal structure of the prior covariance matrix K together with the
restricted form (3) for the precision blocks Πi as motivated in Section 3. The presentation
is technical and offers no useful intuition, it can be skipped by readers not interested in
details.

It turns out to be crucial to exploit the block-diagonal structure of K , thus in the re-
mainder of this section we work with outer grouping over c, the site precision matrix is

Π = P̂
T
↔ diag(Πi)iP̂ ↔. The posterior covariance matrix A from (2) can be written as

A = K − KΦK , Φ = (I + ΠK)−1Π.

Denote R = 1C ⊗ I ∈ R
Cd,d, i.e. a vertical stack of C I ∈ R

d,d matrices. Note that

RT v =
∑

c

r(c), RT diag(B(c))cR =
∑

c

B(c),

so RT acts as “summation operator”. Also, let D = diag(D(c))c with D(c) = diag π(c) =

diag(pi
(c)
i)i ∈ R

n,n, thus DI = diag(D
(c)
I)c ∈ R

Cd,Cd. Furthermore, Γ = diag(αi)i ∈ R
n,n.9

Note that RT DIR = ΓI .

The intuition behind our representation is that Π is the difference of a diagonal matrix
and a matrix of rank d (this is easy to see in outer grouping over i, thus must hold as
well in outer grouping over c). If Π was just diagonal we could use more or less the same
representation as for the binary IVM (see [12] for details), which motivates the definition of

9We set αi = 0 for i 6∈ I.

E below. Dealing with the additional rank d introduces some complications but importantly
does not worsen the scaling behaviour. We have

Π = P̂
T
↔ diag(Πi)iP̂ ↔ = I ·,I

(

DI − DIRΓ−1
I RT DI

)

II,·

=
(

δc,c′D
(c)
I − D

(c)
I Γ−1

I D
(c′)
I

)

c,c′
.

Define

E = I + D
1/2
I KID

1/2
I = diag(E(c))c,

P = D
1/2
I E−1D

1/2
I = diag(P (c))c,

H = RT P R =
∑

c

P (c).

Note how the block-diagonal O(C) structure of the kernel matrix K is inherited by E , P ,
they can be stored in O(C). We show that

Φ = (I + ΠK)−1Π = I ·,I

(

P − P RH−1RT P
)

II,·. (4)

Namely,

ΠKI ·,IP = I ·,I

(

I − DIRΓ−1
I RT

)

DIKID
1/2
I E−1D

1/2
I

= I ·,I(. . .)D
1/2
I (E − I)E−1D

1/2
I = I ·,I(. . .) (DI − P) .

If F = I − RH−1RT P , then

ΠKI ·,IP F II,· = I ·,I

(

I − DIRΓ−1
I RT

)

(DI − P)F II,· = −I ·,IP F II,· + Π,

where we have used RT DIR = ΓI , RT P R = H . This proves the claim.

We choose the following posterior representation which makes use of the block-diagonal
structure of E , P .

E(c) = L(c)L(c)T , L(c) lower triangular,

P (c) = B(c)T B(c), B(c) = L(c)−1D
(c)1/2
I lower triangular,

H = LLT , L lower triangular.

(5)

For a test point x∗, the predictive covariance for u∗ ∈ R
C is given by

A∗ = K∗ − KT
I,∗ΦIKI,∗

with K∗ = diag(K(c)(x∗,x∗))c ∈ R
C,C and KI,∗ = diag((K(c)(xi,x∗))i∈I)c ∈ R

Cd,C . Let

m
(c)
∗ = B(c)K

(c)
I,∗, q

(c)
∗ = L−1B(c)T m

(c)
∗ . Then,

A∗ = diag
(

K
(c)
∗ − ‖m(c)

∗ ‖2
)

c
+ QT

∗ Q∗, Q∗ =
(

q
(1)
∗ . . . q

(C)
∗

)

(6)

which is O(C2 d), while m
(c)
∗ , q

(c)
∗ cost O(C d2) given the representation (more detailed

running time and memory requirement details are given below). Note that since ΦI � 0,
we have K∗ � A∗. It is interesting to note that in the special case of all K (c) being the

same, K∗ = K(1)(x∗,x∗)I and the largest eigenvalue of A∗ is K(1)(x∗,x∗) attained by the

eigenvector ∝ 1. Namely, if v = K
(1)
I,∗1 then RT P KI,∗1 =

∑

c P (c)v = Hv, therefore

1T KT
I,∗

(

P − P RH−1RT P
)

KI,∗1 = vT Hv − vT Hv = 0.

This makes sense: if all K (c) are the same, then the variance along directions in latent vari-
able space with the same components for each of the u(c) cannot be reduced by conditioning
on data because the likelihood is invariant to adding ∝ 1 to ui and the covariance functions
which transfer information between the ui and to u∗ for test points do not depend on c
either. This observation no longer holds if the K (c) are different.

We define the stub vectors

m
(c)
j = B(c)K

(c)
I,j, q

(c)
j = L−1B(c)T m

(c)
j , j = 1, . . . , n (7)

which are required to compute marginal means and covariances at training points in order to
drive the active set selection. It is tempting to store only one kind of stubs and compute the
other on demand, but the computation on demand costs O(C d2) for each stub which would
drive the overall cost to O(nC d3). One of the most important features of the representation
described here is that the stub vectors for a large number of points j can be updated
efficiently when the active set I is expanded. Apart from that, the particular form of the
representation is motivated by numerical stability issues, for example the matrices E (c) are
positive definite with all eigenvalues ≥ 1, thus are very well-conditioned.

Recall from [6, 12] that the posterior approximation is

Q(u) = N(u|h,A), h = Ab,

where b = (bi)i are site parameters (bi = 0 for i 6∈ I) and the covariance matrix A is
given by (2). The computation of h (and of predictive means in general) is complicated by
the fact that ΠI does not have full rank dC, but rather d(C − 1) due to the overcomplete
parameterization of the multinomial noise model. It is easy to see that

ranΠI =

{

u ∈ R
Cd
∣

∣

∣
RT u =

∑

c

u(c) = 0

}

,

kerΠI =
{

u ∈ R
Cd
∣

∣

∣
u(c) = u(c′) for all c, c′

}

.

If s ∈ ranΠ, then ΠID
−1
I sI = sI because ΠI = (I − DIRΓ−1

I RT)DI and RT sI = 0.
Thus, if bI = w + (v)c with w = (I − RRT)bI ∈ ranΠI and v = RT bI ∈ R

d (i.e.
(v)c ∈ kerΠI), then bI = ΠID

−1
I w + (v)c. Since

A = K − KΦK = K (I + ΠK)−1 , b = I ·,IbI , Π = I ·,IΠIII,·,

we see that
h = Ab = KΦI ·,ID

−1
I w +

(

K
(c)
·,I v

)

c
− KΦK (I ·,Iv)c .

Define

β(1,c) = L(c)−1D
(c)−1/2
I w(c),

w(c) = b
(c)
I − v, v =

∑

c

b
(c)
I ,

β(2) = L−1
∑

c

B(c)T β(1,c),

β(3,c) = B(c)K
(c)
I v =

d
∑

k=1

vkm
(c)
Ik

,

β(4) = L−1
∑

c

B(c)T β(3,c) =

d
∑

k=1

vk

∑

c

q
(c)
Ik

.

(8)

Then,

h(1) := K ·,I

(

P − P RH−1RT P
)

D−1
I w =

(

m
(c)T
i β(1,c) − q

(c)T
i β(2)

)

i,c
. (9)

Next, recalling (6) for the predictive covariance, we have

h(2) := −KΦK (I ·,Iv)c =
(

−m
(c)T
i β(3,c) + q

(c)T
i β(4)

)

i,c
. (10)

Altogether,

h = h(1) + h(2) +
(

K
(c)
·,I v

)

c
.

Therefore, the predictive mean h∗ ∈ R
C of Q(u∗) at a test point x∗ is computed as

h∗ =
(

m
(c)T
∗

(

β(1,c) − β(3,c)
)

− q
(c)T
∗

(

β(2) − β(4)
)

+ K
(c)
∗,Iv

)

c

where the test stub vectors m∗, q∗ are defined prior to (6). The predictive covariance A∗

of Q(ui) is given by (6). Now, the (approximate) predictive distribution is given by

Q(y∗|x∗, D) = Eu∗∼Q [P (y∗|u∗)] .

Since the likelihood is not Gaussian, we have to fall back to numerical quadrature for this
C-dimensional “almost-Gaussian” integral, we give some comments in Section 4.3 of how
to proceed.

This completes the description of the belief representation which consists of L(c), B(c), L

defined in (5), the β vectors defined in (8) and K
(c)
·,I v, v =

∑

c b
(c)
I . Furthermore, the

stub vectors (7) are maintained for a large number of patterns j in order to drive forward
selection of I.

4.2 Update Of The Representation After Inclusion

One of the most important features of the representation described in Section 4.1 is that we
can update the set of all n stub vectors (7) in O(nC d) for the inclusion of a new point into
the active set I. The stub vectors are required to compute marginal posterior moments for
the training points which will drive the forward selection to find good inclusion candidates.

In this section, we show how the representation and the stub vectors can be updated in an
efficient and numerically stable manner. Again, a reader not interested in details can skip
this section, but may want to note our recommendations for the chollrup primitive.

Suppose that i 6∈ I is to be included into the active set I = {I1, . . . , Id} (thus Id+1 = i) and
that its site parameters bi, πi ∈ R

C have already been determined (we show how this is
done in Section 4.3). We need a few primitives for updating Cholesky factorizations.10 Let
B = LLT ∈ R

d,d be a Cholesky decomposition and suppose that B is extended by a last
row/column (bT b)T . The new lower triangular Cholesky factor L′ is given by appending
(lT l) as bottom row to L, where

l = L−1b, l =

√

b − lT l.

Denote this procedure by (l, l) := cholext(L, b, b). If L ∈ R
d,d, the complexity is O(d2) for

the backsubstitution11. Note that the procedure breaks down iff the extended matrix B ′ is
not (numerically) positive definite.

Next, let B = LLT be a Cholesky decomposition and suppose that B ′ = B + bbT . Then,
L′ = LL̃ where L̃ can be maintained in O(d) and computed in O(d) given L−1b (which
itself is O(d2)). Backsubstitution with L̃ costs O(d) only. Thus, if X ∈ R

d,m with LX = C ,
we can compute X ′ for which L′X ′ = C in O(dm) (we do not need C for this update). We
say that the columns of X are “dragged along” the update of L. Denote this procedure by
(L′,X ′) := chollrup(L, b,X) and extend it to rank-k updates chollrup(L, b1, . . . , bk,X)
by concatenation. Note that chollrup can also be used for negative updates B − bbT if the
resulting matrix is still positive definite. While positive updates are numerically stable (if
B is well-conditioned), negative updates are more suspectible to breakdown due to roundoff
error.

Now, Di = diag πi, i.e. d
(c)
i = π

(c)
i . We update L(c) as

(l
(c)
i , l

(c)
i) = cholext

(

L(c), d
(c)1/2
i D

(c)1/2
I K

(c)
I,i , 1 + d

(c)
i K

(c)
i

)

,

then B(c) by adding the row (b
(c)T
i b

(c)
i) with b

(c)
i = −l

(c)−1
i B(c)T l

(c)
i , b

(c)
i = d

(c)1/2
i /l

(c)
i . The

factor L for H is updated in two stages. First, H has to be replaced by H +
∑

c b
(c)
i b

(c)T
i ,

then extended by the row (qT q) with q =
∑

c b
(c)
i b

(c)
i , q =

∑

c b
(c)2
i . During the first stage,

we drag along the columns of XQ (to be specified below). Thus,

(L′
1,...,d,X

′
Q) = chollrup

(

L, b
(1)
i , . . . , b

(C)
i ,XQ

)

, (l, l) = cholext
(

L′
1,...,d, q , q

)

.

The stub vector m
(c)
j is updated by appending the component

m
(c)
j = −l

(c)−1
i l

(c)T
i m

(c)
j + b

(c)
i K

(c)
i,j .

10Our representation is based on Cholesky decompositions which are the most numerically stable and
efficient way to deal with symmetric positive definite matrices. The primitives cholext and chollrup can be seen
as numerically sound equivalents of formulas such as Sherman-Morrison-Woodbury and partitioned inverse
which are known to be unstable, and their widespread use in machine learning applications is recommended.
Efficient Matlab code (MEX function) for chollrup can be obtained from us on request.

11In the literature, solving linear systems with a triangular system matrix is called backsubstitution and
forward substitution, depending on whether an upper or lower triangular matrix is used. We do not follow
this rather confusing nomenclature, but denote both procedures as backsubstitution.

If r
(c)
j = B(c)T m

(c)
j , then Lq

(c)
j = r

(c)
j . r

(c)
j is updated by adding m

(c)
j b

(c)
i , then appending

the new component m
(c)
j b

(c)
i . Overwrite q

(c)
j by

a
(c)
j = L−1

(

r
(c)
j + m

(c)
j b

(c)
i

)

= q
(c)
j + m

(c)
j

(

L−1b
(c)
i

)

(note that the O(d2) backsubstitution has to be done only once) and append the a
(c)
j to

XQ to be dragged along when L is updated, then the first d components of q
(c)
j

′ are given

by a
(c)
j

′. The last component is

q
(c)
j = l−1

(

−lT a
(c)
j

′ + m
(c)
j b

(c)
i

)

.

Finally, we need to update the β vectors from (8). β(1,c) receives the new component

l
(c)−1
i

(

d
(c)−1/2
i w

(c)
d+1 − l

(c)T
i β(1,c)

)

.

We append
∑d

k=1 vk(m
(c)
Ik

′)d+1 to β(3,c), then add vd+1m
(c)
i

′. The update of β(2) parallels

the q stubs update, since Lβ(2) = r with r =
∑

c B(c)T β(1,c). First,

a = L−1r′
1...d = β(2) +

∑

c

β
(1,c)
d+1

′
(

L−1b
(c)
i

)

.

Appending a to XQ to be dragged along, we obtain the first d components of β(2)′ as a′,
and

β
(2)
d+1

′ = l−1

(

∑

c

β
(1,c)
d+1

′b
(c)
i − lT a′

)

.

There does not seem to be a simple incremental update rule for β(4) so we recompute

β(4) ′ =

d+1
∑

k=1

vk

∑

c

q
(c)
Ik

′.

The update of K
(c)
·,I v is obvious. This completes the description of the update of the rep-

resentation after inclusion of i. The cost is O(C d2) for the core representation. Each stub
update is O(C d). In a simple implementation, we maintain and update stubs for all n pat-

terns and the update is O(nC d). The update of K
(c)
·,I v is O(nC) in this case, but in general

we need only those components j for which we maintain stub vectors. It is important to
note that the stub vectors can be computed incrementally in a delayed fashion, so a more
sophisticated implementation would maintain a cache of partially complete stubs for a sub-
set of all patterns and update stubs on demand, as a multi-class variant of what is called
randomized greedy selection in [6, 12]. Such an implementation is subject to future work.

4.3 ADF Projection Onto Restricted Gaussian Family

Recall from Section 3 that the key idea for achieving a complexity linear in C is to restrict
the form of the precision matrices Πi in the site approximations NU (ui|bi,Πi) which replace

the true likelihood terms P (yi|ui) in the IVM approximation. Their structure has to comply
with (3). In this section we show how ADF projections12 can be done onto this restricted
family of site approximations. Note that these projections are required not only prior to
inclusion of a new pattern i into the active set I, but also in order to be able to score a
pattern j as candidate for inclusion, using one of the information-theoretic criteria described
in Section 4.4. It is therefore important that the projections can be computed very efficiently.
It turns out that the projections require the solution of a non-convex optimization problem
in R

C which can be addressed using a double-loop scheme with convex optimization in the
inner loop. A reader not interested in details may skip this section.

Let j 6∈ I and Q(uj) = N(uj|hj ,Aj) be the marginal of the current posterior approxi-
mation. As shown in Section 4.1, the marginal moments can be computed from the stub
vectors as follows:

Aj = diag
(

K
(c)
j − ‖m(c)

j ‖2
)

c
+ QT

j Qj , Qj =
(

q
(1)
j . . . q

(C)
j

)

,

hj = h
(1)
j + h

(2)
j +

(

K
(c)
j,Iv

)

c
,

where h(1), h(2) are given by (9) and (10). The cost is O(C2 d) for each marginal. Note that
in order to guarantee an overall complexity of O(C d2 n), we can afford to compute O(n/C)
marginals prior to each inclusion into I, thus to score about n/C inclusion candidates. This
is in contrast to the binary case where we can afford to score all remaining points, the reason
being that in the binary case the marginal moments itself can be updated incrementally,
while in the general case they have to be computed from the stub vectors on demand.

For the ADF projection, we form the “tilted” distribution

P̂ (uj) ∝ P (yj|uj)Q(uj)

and project it onto the family induced by the site approximations using moment matching:

(bj,Πj) = argmin
b,Π

D
[

P̂ (uj)
∥

∥

∥
∝ NU (uj |b,Π)Q(uj)

]

where Π = diag π − α−1ππT , α = 1T π , π � 0. The relative entropy satisfies a
Pythagorean-like equation, which means that P̂ can be replaced by a Gaussian with the
same mean and covariance matrix. To be concrete, let Q̃ denote this Gaussian and Qnew

the new marginal to be determined, then

D
[

P̂
∥

∥

∥
Qnew

]

= D
[

P̂
∥

∥

∥
Q̃
]

+ EP̂

[

log Q̃ − log Qnew
]

.

The integrand of the right hand side term is a quadratic in uj , so the expectation can as
well be done w.r.t. Q̃ (which has the same moments as P̂ up to second order). Since P̂ is not
Gaussian, we have to resort to numerical quadrature to compute its mean and covariance
matrix, some comments are given in Section 4.3.1. Denote the moments by ĥj , Âj . We can
match the mean exactly by setting

bj = A−1
j

(

ĥj − hj

)

+ Πjĥj , (11)

12An ADF projection (or Bayesian on-line update) is required if an unseen pattern is to be included into
the belief representation. We do not treat EP projections here which are used to iterate ADF projections
for previously included patterns to refine the belief representation. Needless to say, our framework applies
to this more general case just as well.

leaving the computation of π = πj. The remaining relative entropy is up to constants

− log
∣

∣

∣
MÂj

∣

∣

∣
+ trMÂj , M = A−1

j + Π.

Thus, the problem is to minimize

f = − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+ tr ÂjΠ, Π = diag π − α−1ππT , α = 1T π ,

subject to π � 0. Here, Aj � 0 and Âj � 0. There is no analytic solution, but we can use
ideas from convex optimization [1] to solve this problem efficiently. First,

f = − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+
(

diag Âj

)T
π − α−1πT Âjπ .

We show that − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
is convex in π . First, Π 7→ − log

∣

∣

∣
A−1

j + Π

∣

∣

∣
is convex and

non-increasing w.r.t. the partial ordering � over symmetric matrices given by the positive
semidefinite cone. Next, we show that π 7→ Π is matrix-concave for π � 0, and the
composition rules in [1], Sect. 3.6.2 imply the convexity of the composition w.r.t. π � 0.
We have to show that yTΠy is concave in π � 0 for every y ∈ R

d. Now,

yTΠy = −
(

(1T π)−1(yT π)2 − πT (diag yyT)
)

.

The expression within the parantheses is the sum of a quadratic-over-linear function (see
[1], Sect. 3.1.5) and a linear one, thus convex in π if 1T π > 0.

However, since Âj � 0, πT Âjπ is convex, so that f is the difference of convex functions
and in general not convex. Still, f has a very simple structure, the concave part is purely
quadratic. We use a standard double-loop scheme to minimize f . The idea is to upper
bound the negative quadratic by a hyperplane (i.e. making use of its Legendre-Fenchel
transform), in the inner loop to minimize this convex upper bound subject to the convex
constraint π � 0, in the outer loop to reset the hyperplane upper bound to make contact
at the new π. The very same idea is used all over in machine learning and statistics,
for example in the expectation maximization (EM) algorithm, the variational mean-field
Bayesian approximation, convergent double loop variants of loopy belief propagation, etc.
If π = αx, α = 1T π, the Fenchel inequality states that

−xT Âjx ≤ −2qT x + qT Â
−1
j q for all q ∈ R

d.

Thus,

f ≤ fq := − log
∣

∣

∣
A−1

j + Π

∣

∣

∣
+ bT π , b = diag Âj − 2q +

(

qT Â
−1
j q

)

1,

where we use that α = 1T π. For fixed x, the Fenchel inequality is an equality for q = Âjx =

Âjπ/α which shows that the outer loop update is analytic. Note also that qT Â
−1
j q = qT x

at that point, so Â
−1
j never has to be computed. In the inner loop, we minimize fq (for

fixed q) w.r.t. π � 0. As a convex problem, it has a global minimum13 which can be found

13The minimum might be attained at a boundary point of the open feasible set only, in which case we opt
for an ε-optimal feasible point for some small ε > 0.

very efficiently by a number of gradient-based optimizers. We parameterize the feasible set
directly using π = exp(t) and use a Quasi-Newton optimizer14 to find a minimum point
t∗. Details about the inner optimization loop are given in Section C of the appendix. In
addition, our implementation allows to run the inner loop optimization in either a “sloppy”
or an “accurate” mode: the former is used initially, requiring convergence to low accuracy
only (and thus very few steps), until the changes in q in the outer loop become small, after
which the accurate mode is used to obtain convergence to higher accuracy.

In our practical experience so far, the double-loop optimization converges very quickly to
a local minimum of the criterion f . Since f is not convex, this might not be the global
minimum.15 It turns out that a good initialization of πj is important. Again, we use the
analogy to the Laplace approximation (see Section 3) where πj would be the likelihood
evaluated at the posterior mode ûj. If the final classifier performs well, this is close to the
delta distribution δyj = I ·,yj for most points. In our scheme, we initialize πj to a convex
combination of δyj and the current predictive distribution Q(yj |xj, D) obtained from Q(uj)
using quadrature.

4.3.1 Numerical Quadrature

Our scheme relies strongly on the availability of a “black box” for doing C-dimensional
Gaussian expectations over the likelihood and log likelihood, in order to compute the tilted
moments ĥi, Âi, the predictive probability estimates and also the hyperparameter learning
criterion and its gradient (see Section 5).

At present, we have experimented with two different rules: a product rule based on the
Gauss-Hermite 3 point rule and an exact monomials method of degree 5. The former is
usually more accurate and better behaved in general, but also requires more evaluations of
the integrand. The field of numerical quadrature is large and an important point for future
work is to explore rules more suitable for our particular problem.

For general details about quadrature we refer to [3]. Here we only note that while the exact
monomials rule is faster to evaluate, it has a very undesirable property described as follows.
In our context, a quadrature rule has the format

Es∼N(0,I) [f(s)] ≈
∑

j

wjf(sj). (12)

A general idea is to choose wj , sj such that the rule is exact for all polynomials below a
certain total degree p: the rule is called of degree p in this case. A simple way to generate
a C-dimensional rule is to take the product of C one-dimensional ones. In our case, we use
the 3 point Gauss-Hermite rule

Es∼N(0,1) [f(s)] ≈ 2

3
f(0) +

1

6

(

f(
√

3) + f(−
√

3)
)

(13)

14Evaluating the Hessian proves very messy, and in our practical experience the purely gradient-based
inner loop optimization converges extremely quickly and reliably.

15f attains its global minimum over the closure of the feasible set because it is continuous on the compact
intersection of this closure with a sufficiently large compact ball, and is unbounded above for any sequence
‖πn‖ → ∞ (the term tr ÂjΠ = α tr Âj(diag x−xxT), x = α−1π dominates for large α and tr Âj(diag x−
xxT) ≥ 0 because diag x − xxT � 0).

which has degree 5. A product rule from a one-dimensional rule of degree p is exact for all
polynomials whose degree in each single variable is ≤ p, so at least of degree p. Even if the
degree is p, the rule is exact for a larger class of polynomials, e.g. for xp

1 · · · x
p
C with total

degree C p. The major drawback of product rules is the growth of the number of evaluation
points which is exponential in C.

Exact monomials rules use a property of the weight function (N(0, I) in our case) called
fully symmetric: they are invariant under permutations and sign flips in s. Thus, every
rule which together with sj has all these transformations as evaluation points will auto-
matically integrate all polynomials exactly in which any single variable degree is odd. This
drastically reduces the degree of freedom and therefore the number of evaluation points: the
McNamee/Stenger rule of degree 5 we use has 2C2 +1 evaluation points, as opposed to the
Gauss-Hermite product rule with 3C . The major drawback of exact monomials rules is that
they typically have some negative weights wj. For example, the McNamee/Stenger rule has
negative weights for C ≥ 5. This leads to numerical cancellations errors, and in our case
to a particularly nasty phenomenon. A quadrature rule with nonnegative weights basically
replaces the probability distribution N(0, I) by another one concentrated on finitely many
points.16 This guarantees that moment estimates behave essentially like the true moments,
for example estimated covariance matrices like Âi are nonnegative definite. This is not true
in general for rules with negative weights. In our experiments, we indeed had problems
with negative eigenvalues of Âi for the McNamee/Stenger rule which is why we prefer the
product rule. Note that for moderate C the time requirements even for a product rule based
on 5 point Gauss-Hermite (with 5C evaluations) does not dominate the overall costs.

Finally we note that some significant speedups can be obtained by exploting structure.
First, the predictive probability vectors

(EQ [P (y|ui)])y ∈ R
C

should be computed jointly rather than evaluating the rule for each component separately.
This is because the log integrands log P (y|ui) for different y share the same dominant part
log 1T exp(vi). Next, for the computation of ĥi, Âi we can make use of the particular
symmetry in wj, sj . In both cases, these are fully symmetric in that for each j and each
permutation/sign flip of sj → s̃j there is a j ′ such that wj′ = wj and sj′ = s̃j . For
Q(ui) = N(hi,Ai) we write ui = Ls + h where Ai = LLT . In the following, E[·] is over
s ∼ N(0, I). Also, let f(s) = log P (yi|ui = Ls + h). Now,

ĥi = E [exp(f(s) − log Z)(Ls + h)] = LE [exp(f(s) − log Z)s] + h,

Âi = E
[

exp(f(s) − log Z)(Ls + h)(Ls + h)T
]

= LE
[

exp(f(s) − log Z)ssT
]

LT

+ 2 sym hĥ
T
i − hhT .

Our implementation computes and stores in a first round the values (f(sj)+ log |wj |)j from
which the quadrature approximation to log Z can be obtained easily. In a second round, the
approximations to E[exp(f(s)−log Z)s] and E[exp(f(s)−log Z)ssT] are accumulated using
the particular structure of the evaluation points sj: each component is either 0, a, −a for a
fixed a. Occurences of 0 components lead to obvious savings in computations. In the Gauss-
Hermite product rule, all combinations have to be visited, while in the McNamee/Stenger

16Note that
P

wj = 1 because the rule integrates the constant 1 exactly.

rule, at most two components in sj can be non-zero. Note that given the precomputed vector
from the first round, the second round does not need further evaluations of the integrand
at all.

It is important to note that the present version of our scheme is fundamentally limited by the
requirement of a fairly accurate and efficient quadrature rule in C dimensions. The precise
problem is to integrate P (y|ui) and log P (y|ui) against arbitrary Gaussians. The Gauss-
Hermite product rule certainly does not scale up to large C, and the McNamee/Stenger
rule will be likely be too inaccurate for such (and the problem of negative weights grows
with the dimensionality). Thus for even moderately large C additional ideas will have to be
used to approximate these Gaussian integrals. It might be possible to reduce the effective
dimensionality of the integrals by projecting into the eigenspace of largest eigenvalues of the
covariance matrix Ai. Even Monte Carlo methods may be useful in this context, although
the large relative errors would lead to very “noisy” gradient and criterion approximations
for hyperparameter learning (see Section 5).

4.4 Scoring Criteria For Active Set Selection

In the context of classification, individual patterns can carry a very different amount of
“information” about the shape of the final predictor, however “information” is defined in
this context. For example, we can ask by how much the decision boundary of the final
predictor changes if we remove individual patterns, or by how much our uncertainty in the
boundary position decreases if we add in a pattern. In this picture, patterns close to the
decision boundary or even more so misclassified patterns carry most information. Since our
goal is to extract a very small active set I from among the training sample D (i.e. d � n),
it is essential that we manage to identify highly informative patterns in D. Of course, we
cannot hope for an optimal selection of I due to our tight constraints of O(C d2 n) run-
ning time, O(C dn) memory, but experiments with the binary IVM show that good active
sets can be found in practice using simple greedy forward selection driven by information-
theoretic scoring criteria originating in active learning (sequential design). In this section
we show how to generalize these criteria to the multi-class case. Note that they are espe-
cially attractive in the case of GP models because they can be computed exactly given the
Gaussian approximations, in marked contrast to complex parametric architectures such as
multi-layer perceptrons where Gaussian approximations can be very poor and information
criteria based on these can give misleading results.

Here, we focus on the (instantaneous) information gain score (see [12] for other scores which
can be generalized to the multi-class case in the same way). In order to score j 6∈ I, let
Q(uj) = N(uj |hj,Aj) be the marginal before inclusion of j, Qnew(uj) = N(uj|ĥj , (A

−1
j +

Πj)
−1) the marginal after inclusion of j (see Section 4.3). The score is defined as

∆info
j := −D [Qnew(uj) ‖Q(uj)] .

Using the well-known formula for the relative entropy between Gaussians we have

∆info
j = −1

2

(

log |M | + tr
(

M−1 − I
)

+ (ĥj − hj)
T A−1

j (ĥj − hj)
)

, M = I + ΠjAj .

(14)
In order to score inclusion candidate j, we have to compute its marginal moments hj , Aj

in O(dC2), determine ĥj , Πj by ADF projection (each gradient costs O(C3)) and compute

Algorithm 1 Multi-way IVM conditional inference scheme

I = ∅. Representation and stub buffers are empty.
repeat

for j ∈ J do

Compute ∆info
j (14) from stubs. This needs quadrature for the tilted moments

ĥi, Âi.
end for

i = argmaxj∈J ∆info
j

Compute bi, πi by restricted ADF projection (see Section 4.3).
Include i into I and update the representation (see Section 4.2). The dominating cost
O(nC d) is in updating the stub buffers.
Re-select J from {1, . . . , n} \ I.

until |I| = d

∆info
j which can be done in O(C3) using the LU decomposition of M . In order to keep

within the overall O(nC d2) limits, we can afford to score about n/C candidates prior to
each inclusion. These figures assume that C is small to moderate, especially C < d. For
large C, additional techniques would have to be used to remove the cubic scaling in C, but
in this case our use of numerical quadrature rules would also be very questionnable. An
extension to a large number of classes is subject to future work.

A slightly cheaper variant avoids the ADF projection by using the true covariance matrix
Âj of the tilted distribution P̂ for Qnew. The score has the same form as (14), but with

M−1 = A−1
j Âj (the Cholesky factor of A is available from the computation of the tilted

moments). In the experiments reported here, we make use of this simpler variant, but an
experimental comparison between the two variants will be done in future work.

4.5 Overview over Conditional Inference

We can now combine the details from previous sections to state the algorithm for approxi-
mate conditional inference. A schematic overview is given in Algorithm 1.

The stub buffers can be discarded at the end, but have to be retained if hyperparameters
are to be learned (see Section 5). As in the binary IVM, the first 2 or 3 inclusion candidates
are selected at random. The selection index J of size O(n/C) in Algorithm 1 is updated
by retaining a fraction of top-scorers and completion at random. As in the binary IVM,
a strong point about the method is that only a small part of the complete kernel matrix

K has to be evaluated at all, namely the K
(c)
·,I . Thus, the IVM is particularly attractive if

kernel computations are expensive.

5 Hyperparameter Learning

The scheme described so far shows how to approximate Bayesian inference for the latent u

conditioned on fixed hyperparameters, such as the parameters of the covariance functions
K(c) for each u(c) and the intercept parameters β ∈ R

C . Recall that the dominating cost
for an inference step is O(nC d2). One of the major advantages of adopting a full Bayesian

strategy in practice is that normally hyperparameter learning, i.e. the task of assigning
appropriate hyperparameter values given the data, is easy to do given a valid inference
approximation. Our development here is a direct generalization of the learning strategy in
the binary case, as detailed in [13], Sect. 4.5.2.

It is well known that the correct way of dealing with hyperparameters in Bayesian analysis
is to place hyperpriors on them and integrate them out. A model consisting of hyperpa-
rameters and “primary parameters” (the latent processes u(c) in our case) is referred to
as hierarchical model, the hyperparameters are higher up the hierarchy (“away from the
observed data”) than the primary ones. Strictly speaking there is no reason to treat hyper-
parameters differently from primary ones, but in practice integrating out the former (even
approximately) is often much harder, and a crude but often very effective approximation is
to replace the marginalization by a maximization. This is justified by the fact that if the
hyperparameters are chosen properly, the hyperposterior tend to approach a sharp peak
and can eventually be replaced by a Delta distribution at a mode without losing too much
in terms of prediction accuracy.

Let θ collect all hyperparameters in our model. The empirical Bayesian technique of
marginal likelihood maximization advocates choosing hyperparameter values by maximizing
the marginal likelihood

P (y |θ) =

∫

P (y|u,θ)P (u|θ) du

of the observed data. Importantly, this criterion does not depend on primary parameters
which are integrated out. Intractability of inference, i.e. computing P (u|y ,θ) typically
translates into intractability of computing this score, but interestingly there is a generic
way of obtaining a lower bound using any approximate inference scheme. If Q(u) is some
approximation to P (u|y,θ), then a simple application of Legendre-Fenchel duality gives

log P (y |θ) ≥ EQ [log P (y ,u|θ)] + H[Q(u)] = EQ [log P (y |u,θ)] − D[Q(u) ‖P (u|θ)].

The slack in this inequality is D[Q(u) ‖P (u|y ,θ)] which measures closeness of Q to the
posterior.

In our case, Q(u) is given by the representation learned as described above. The marginal
likelihood as well as lower bound approximations are typically not convex, so non-convex
gradient-based optimization has to be employed. Our optimization strategy is similar to
the one detailed in [13]. For fixed active set I and site parameters b, π the criterion and
its gradient w.r.t. θ can be computed from the representation and the stub vectors as
shown below. Since a good choice of I depends on the hyperparameters in a way which is
hard to specify, the overall criterion may even be nondifferentiable which precludes simply
sticking it into a standard optimizer. We use a Quasi Newton optimizer which is modified
as follows. The criterion and gradient computation to drive the computation of search
directions is done in “major mode” which means that active set I and site parameters b, π

are determined from scratch as detailed above. On the other hand, during line searches along
directions we run conditional inference in “minor mode”, keeping I, b, π fixed. Since the
dependence of the latter on θ is ignored when computing gradients, this seems necessary to
achieve a consistent line search. Note that while “minor mode” and “major mode” inference
have the same dominating complexity, the former runs much faster because the dominating
operations can be done in large blocks.

There are variations of the theme which save running time. For example, I could be fixed
over longer periods avoiding the need of the complicated re-selection. It is tempting to fix I
very early during optimization and stick with it, but given the assumption that the choice
of I is significant for prediction accuracy it does not seem sensible to do so. Note that the
algorithm is not strictly a descent method,17 because the criterion can increase when I, b, π

are recomputed for a new search direction. Especially, due to the discrete nature of I and
its forward selection, we cannot except to observe convergence to high accuracy, rather the
terminal behaviour of the method will be to oscillate around a local minimum point.

It is important to note that we deviate from the conventional method of doing variational
Bayesian learning in several ways. First, we do not choose our inference approximation Q in
order to minimize the slack in the bound, as variational Bayesian inference approximation
would require. The drawback is that we do not always descend on the criterion and have
to employ non-standard optimization code. On the other hand, our posterior approxima-
tions may well be much better than any tractable variational Bayesian choice. In fact, the
insistence on bounds seems often more of a hindrance and is weakened by the fact that
one cannot judge the tightness of the bounds.18 Second, we do not fix the entire posterior
approximation Q(u) during gradient computation and line search, but only the parameters
whose analytical dependence on θ would be unreasonably hard to specify. In our opinion,
this is of central importance in Gaussian process models where the dependence of Q(u) on
the prior is very strong. Recall that the covariance matrix of Q (which is Gaussian) has
the form A = (K−1 + Π)−1. Only Π depends on I and the site parameters and can be
written in terms of O(Cd) parameters. Arguably the strongest dependence on θ is direct
through the kernel matrices K (c). We argue that freezing A during line searches can hinder
performance significantly.

Finally, the reader may wonder why we do not choose a hyperparameter learning criterion
more “compatible” with the fact that site parameters are chosen using EP (or ADF) pro-
jections. In fact, the ADATAP variational free energy would probably fit in better and has
been used for learning in single process models in [2]. The problem is that even in the binary
case, the ADATAP criterion is much more complicated to derive than the simple variational
bound we use here. Furthermore, its gradient w.r.t. θ is the same as ours if we fix I, b Π.

5.1 The Criterion and the Gradient

We minimize an upper bound to the negative log marginal likelihood given by

G = EQ [− log P (y|u,θ)] + D [Q(uI) ‖P (uI |θ)] . (15)

Here, the hyperparameter vector θ decomposes into vectors θ(c) for each covariance function
K(c) and the intercept vector β ∈ R

C .

It is possible to compute G and its gradient w.r.t. θ using a procedure which requires
O(nC d2) for precomputation (in addition to the conditional inference step), then O(nd |θ|)
for the gradient. The procedure does not need additional memory, but will overwrite the

17As shown below, we will minimize the negative log marginal likelihood.
18Slacks between corresponding upper and lower bounds are typically huge in high dimensions. Intuitively

it seems clear that approximating a complicated function in high dimensions is much easier than bounding
it.

buffer for the m
(c)
j stubs. Again, C-dimensional Gaussian expectations have to be approxi-

mated by numerical quadrature (see Section 4.3) which renders both criterion and gradient
approximate. The details are quite involved and are given in Section A of the appendix.

Experiments with this learning criterion are work in progress. The dominant computation
for a criterion and gradient in “major mode” is the conditional inference step which runs
much faster in “minor mode”. Note that even though line searches tend to convergence
quickly on average, most of the gradient computations are done using “minor mode”. There
are obvious ideas how to speed up the optimization, such as relying on the fact that the
active set should not change very much over time. A simple idea we will explore in our
experiments is to fix the active set and site parameters for several line searches used by the
Quasi-Newton optimizer to build up an inverse Hessian approximation. A “major mode”
step is done only once the optimizer i restarted. Furthermore one could make local changes
rather than a complete re-selection in most “major mode” iterations. For example, the
technique of exchange moves (see [12]) could be useful for this purpose. Exploring such
possibilities is subject to future work.

6 A Baseline Method

In this section we introduce a simpler baseline method which differs from the one developed
so far in that it employs a posterior approximation Q under which the processes u(c) are
independent. While this is certainly less expressive than the representation above, it allows
for a much simpler conditional inference and learning method which basically requires to run
C independent binary IVM schemes, one for each process u(c). The scheme is still different
from training C binary schemes independently, because information is shared when site
parameters are chosen by ADF projection. While the latter is analytic now, we still require
a C-dimensional quadrature ”black box”. The major advantage of the baseline method is
that we can choose different active sets for each class, and the union of these can be of size
C d within our scaling restrictions stated above.

We have C active sets I (c) now, |I(c)| = dc. To stay compatible with the notation so far, we
write

AI := AI(1)×{1}∪···∪I(C)×{C}.

We also write K
(c)
I instead of (more accurately) K

(c)

I(c) . The diagonal matrices introduced
above in Section 4.1 now have diagonal blocks of different sizes dc. In the baseline method
we have Π = diag π with π\I = 0 (and b\I = 0). It follows that ΦI = P , and for a test
point x∗ the marginal posterior is Q(u∗) = N(h∗,A∗) with

A∗ = diag

(

K
(c)
∗ −

∥

∥

∥
m

(c)
∗

∥

∥

∥

2
)

c

, h∗ =
(

m
(c)T
∗ β(c)

)

c
, β(c) = L(c)−1Π

−1/2
I b

(c)
I . (16)

We only need m stubs now: M (c) = K
(c)
·,I B(c)T ∈ R

n,dc. In fact, these are just C independent
representations for the binary IVM, one for each c, so maintenance and update of these can
be done as specified in [12] (we give a condensed version in Section B of the appendix).

As for ADF projection, let Q(uj) = N(hj ,Aj) with hj = (hc)c, Aj = diag(ac)c. Mean

and covariance matrix ĥj , Âj of the tilted marginal P̂ (uj) are computed as before using

quadrature (see Section 4.3). Note that Âj is not diagonal due to the likelihood coupling,

but it turns out we only require diag Âj = (âc)c. Namely, D[P̂ ‖Qnew] is minimized (for
diagonal Πj) by setting

πc = π
(c)
j =

(

â−1
c − a−1

c

)

+
, x+ := xI{x>0}.

The mean is matched exactly by using (11) which decouples into a set of C scalar equations
for bj = (bc)c. However, if πc = 0, we set bc = 0 and agree to not include19 j into I(c).

The information gain criterion now scores the inclusion of j w.r.t. a particular class c, i.e.

∆info
(j,c) = −1

2

(

log mc + m−1
c − 1 +

(ĥc − hc)
2

ac

)

, mc = 1 + πcac = max{ac/âc, 1}.

If πc = 0, we set ∆info
(j,c) = 0 in order to score such points as least informative.20

The hyperparameter learning procedure again minimizes the upper bound (15). If G =

G1 +G2 with G1 =
∑

i EQ[− log P (yi|ui)], then G2 decouples as G2 =
∑

c G
(c)
2 where the com-

ponents are equivalent parts in the criterion for the binary IVM scheme which is computed
together with its gradient as shown in [12]. The first part G1 does not decouple w.r.t. c,
so the overall optimization does not decouple either. Details about G1 and its gradient are
given in Section B of the appendix. Apart from these details, the comments in Section 5
apply to the optimization here just as well.

If we compare the baseline method against running C independent binary IVM schemes
in parallel, they essentially have the same complexity while the former provides a genuine
multi-class solution and predictive probability estimates. In practice, the joint optimization
for the former is harder and will probably require more steps than the C independent runs.
However, the main disadvantage of the baseline method in practice is the requirement of
C-dimensional quadrature. We have seen in Section 4.3.1 that standard product rules scale
exponentially in C, while other more economic rules have nasty side effects due to negative
weights. It is important to note that much can be saved by exploiting the fact that the
covariance Aj of Q(uj) is diagonal. If Aj = LLT , then L is diagonal as well. For the rules
discussed in Section 4.3.1, the evaluation points have the form v = hj + β + σLs where
σ > 0 and si ∈ {0,+1,−1}. We see that vi depends on si only and can be precomputed for
the different signs. Let φ(v) = − log 1T exp(v) be defined for v ∈ R

c, 0 ≤ c ≤ C (constant
0 for c = 0). Let v≤c := (v1, . . . , vc)

T where v ∈ R
C . We have

φ (v≤c) = φ (v≤c−1) − log (1 + exp (vc − φ (v≤c−1)))

for c ≥ 1 which means that the computation of φ(v≤c) is O(1) given φ(v≤c−1). Thus, a
clever implementation of a rule requiring E evaluations of the log likelihood to compute
log EQ[P (yj |uj)] or EQ[log P (yj |uj)] runs in O(E) rather than O(C E) required by a naive
implementation which regards uj 7→ log P (yj|uj) as a “black box”. The second round
required to compute the tilted moments (see Section 4.3.1) is O(E) given the values at the
evaluation points for the first round. Code for the second round can make use of diagonal
L in an obvious way. Details are omitted here.

19Such points would normally be scored least informative anyway.
20We have ∆info

(j,c) > 0 merely through the shift of the mean from hc to ĥc, the variance (or entropy) of the

marginal is actually increased. Alternatively, we could include such a point into I (c), but because of πc = 0
one of the parameters would not be used and this might also introduce problems of numerical stability.

7 Experiments

We present preliminary experiments on a dataset of C = 5 classes and n = 800 patterns.
We extracted 200 patterns at random for each even-digit class from the training set of the
MNIST handwritten digits database21. From these, we pick 200 at random as test set. All
experiments below use the same training/test set split.

In these preliminary experiments, we did not address the hyperparameter learning problem
of adjusting the covariance function parameters or the intercept parameters β. The latter
were fixed to 0 since our dataset is fairly balanced. While we should (and will) use indepen-
dent kernels K (c) for the different processes u(c), in these first runs we used a shared Radial
Basis Functions (RBF) covariance function

K(c)(x,x′) = v exp

(

− w

2p
‖x − x′‖2

)

, x,x′ ∈ R
p.

We then ran our algorithm for a range of (w, v) parameters, fixing dfinal = 150 (active set
size) and L = 25 (liquid set size). In each EP phase, we cycle 2–3 times over the liquid
patterns.

v w err lh minent maxent

0.5 40 0.03 0.250980 1.577508 1.608262
2 40 0.03 0.329869 1.465741 1.603344
3 50 0.03 0.318090 1.475719 1.605220
5 40 0.03 0.378992 1.362901 1.598936
5 50 0.03 0.334296 1.439076 1.603916

0.5 50 0.035 0.234370 1.596795 1.608964
0.5 75 0.035 0.214800 1.604509 1.609399
1 50 0.035 0.259384 1.572066 1.608069
1 75 0.035 0.225446 1.594087 1.609345
2 30 0.035 0.366623 1.403297 1.597981
2 50 0.035 0.297387 1.493768 1.606813
3 30 0.035 0.402858 1.227390 1.595801
3 75 0.035 0.248621 1.573701 1.609153
5 25 0.035 0.458838 1.013761 1.586853
5 30 0.035 0.434059 1.194334 1.591372
5 75 0.035 0.254237 1.555642 1.608953
1 30 0.04 0.312231 1.497278 1.603975
1 40 0.04 0.284071 1.541226 1.607647
2 75 0.04 0.237900 1.574186 1.609215
3 25 0.04 0.427809 1.252592 1.589746
5 20 0.04 0.477860 1.069909 1.591897

Table 1: Results on 5-class toy dataset. err: Error on test set. lh: Avg. likelihood test set.
minent: Smallest entropy pred. distribution. maxent: Largest entropy pred. distribution.

21Available online at http://www.research.att.com/ ∼yann/exdb/mnist/index.html.

Table 1 gives test set results for the final predictor (|I| = dfinal). The figures are the test set
error err and the predictive probability of the true label lh, we also provide the maximum
and minimum entropy of the predictive distributions over the test set. While err is often of
principal interest, lh shows the uncertainty for the true class. maxent and minent are less
important, but give an idea about the range of uncertainties in the predictive distributions.
The performance is satisfying and quite stable over a range of different (w, v) (worse results
of err around 0.10 were obtained for much smaller w values).

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Active Set Size

T
es

t
E

rr
o

r

v=5, w=50
v=5, w=25

Figure 1: Active set size vs. error on test set, 5-class toy dataset.

0 50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Active Set Size

T
es

t
S

et
 L

ik
el

ih
o

o
d

v=5, w=50
v=5, w=25

Figure 2: Active set size vs. average test set likelihood, 5-class toy dataset.

Figures 1 and 2 show learning curves (growing active set size) for test set error and average
test set likelihood for v = 5, w = 50 vs. v = 5, w = 25, Figures 3 and 4 show the same
for v = 1, w = 40 vs. v = 5, w = 20. We observe that larger likelihoods are obtained for

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Active Set Size

T
es

t
E

rr
o

r

v=1, w=40
v=5, w=20

Figure 3: Active set size vs. error on test set, 5-class toy dataset.

0 50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Active Set Size

T
es

t
S

et
 L

ik
el

ih
o

o
d

v=1, w=40
v=5, w=20

Figure 4: Active set size vs. average test set likelihood, 5-class toy dataset.

smaller values of w (which translates to larger length scales, i.e. processes whose paths
are varying less rapidly). More interestingly, the likelihood is much more variable between
different configurations than the test error which further motivates using marginal likelihood
maximization techniques for hyperparameter learning.

It is also interesting to observe that while test error decays rapidly with growing active set
size d, the growth of the test set likelihood is almost linear in d, giving empirical evidence
what recent theoretical analyses suggest: the value of including more training points is not
so much in decreasing test error ever further (if the selection of I is done appropriately),
but in reducing the uncertainty in the predictions. However, more extensive experiments
are required to support any such claims.

8 Conclusions. Future Work

We have described a sparse approximation to Bayesian inference for multi-class Gaussian
process models which achieves a scaling linear in the number of training points and the
number of classes. The central idea is to use an analogy to the Laplace approximation
framework of [16] which allows for a O(C) representation given independent priors, even
though the posterior processes are strongly coupled. Note that this idea could be applied
to other C-process likelihoods as well: namely, if the log likelihood is concave, its Hessian
provides the value for Πi under the Laplace approximation, and if this Hessian has a simple
structure (implied by a “simple” coupling up to second order through the likelihood) an
efficient O(C) representation may arise.

Compared to previous kernel-based large margin multi-class algorithms, our scheme is some-
what harder to implement and may run slower on particular problems. It is also not the
solution to a well-understood convex problem, but rather approximates a hard combinato-
rial one. However, it offers a number of strong advantages. Being a Bayesian approximation,
valid predictive probability (“error bars”) estimates can be obtained and hyperparameters
can be adjusted by empirical Bayesian methods. Our method operates jointly on the data
from all classes and does not require imposing artificial binary partitions or combining
binary discriminants in a posthoc heuristic fashion. The linear scaling in the number of
training points is guaranteed a priori, as opposed to the degree of sparsity in SVM which
depends in an unknown way on the data distribution and the kernel parameters. Previous
work on Bayesian GP multi-class problems include [16, 4], but we are not aware of previous
sparse approximations.

We have described in Section 5 how hyperparameters can be learned automatically via
marginal likelihood maximization. Implementing this suggestion along the lines of the binary
case (see [12] for details) is work in progress. The cost of evaluating the criterion and
its gradient in “major mode” will be dominated by the conditional inference procedure
described here. We have mentioned above that in order to cope with very large training
sets, a randomized selection strategy together with intelligent cacheing of the stub vectors
would be required.22

The present scheme does not generalize to a large number C of classes, namely there is
a O(d (C L)3) scaling component and the numerical quadrature routines cannot be used
anymore to perform ADF projections, compute predictive probabilities and evaluate the
hyperparameter learning criterion. We are also interested in using our methodology to
address generalizations of larger structured graphical models (such as sequence models and
conditional random fields) using nonparametric Gaussian process priors, which can be seen
as classification problems with a very large but highly structured label space. However, such
generalizations certainly require a satisfying probabilistic solution for the C-class model with
moderate C.

22Recall that we are already forced to use some randomization in the selection, because no more than
min{n/C, n/L} patterns can be scored for each iteration.

A Derivation of Learning Criterion and Gradient

In this section we show how the hyperparameter learning criterion (15) and its gradient can
be computed based on the representation obtained by our conditional inference algorithm.
As discussed in Section 5 our approach is to fix the active set I and the site parameters
b, Π in order to compute the gradient, but in contrast to earlier work we do not fix the
entire posterior approximation Q (which depends strongly on the prior P and therefore on
the hyperparameters). Let G = G1 + G2 with

G1 = EQ [− log P (y|u,θ)] , G2 = D [Q(uI) ‖P (uI |θ)] .

The relative entropy between Gaussian distributions is well known (e.g., [12], Sect. A.4.3):

G2 =
1

2

(

log |N | + trN−1 − Cd + hT
I K−1

I hI

)

, N = A−1
I KI ,

since Q(uI) = N(hI ,AI), P (uI) = N(0,KI).

We begin with G2 and drop the subscript I except in AI ,KI ,hI . Recall the representation
variables from Section 4.1. The ansatz is to use (4) in order to write

AI = Ã + F T F , Ã := KI − KID
1/2E−1D1/2KI , F := L−1RT P KI .

Note that Ã = (K−1
I + D)−1 by the Sherman-Morrison-Woodbury formula. This and

related formulae will be used from now on without special notice, they can be found in [12],
Sect. A.2. Since D is invertible and diagonal, we can proceed as in the binary case but have
to consider the rank d addition F T F . We have

N = Ã
−1

KI − Ã
−1

F T W−1F Ã
−1

KI , W = I + F Ã
−1

F T

and Ã
−1

KI = D1/2ED−1/2. Therefore,

log |N | = log |E | − log |W |.

We use

P KIP = P − D1/2E−2D1/2,

P KIDKIP = D − 2P + D1/2E−2D1/2.
(17)

Alongside P , H we define

P̃ := D1/2E−2D1/2 = diag
(

P̃
(c)
)

, H̃ := RT P̃ R.

Some algebra and (17) gives

log |W | = log
∣

∣I + L−1 (Γ − H) L−T
∣

∣ ,

so
log |N | =

∑

c

log
∣

∣

∣
E(c)

∣

∣

∣
− log |Γ| + log |H |. (18)

Let X
.
= Y iff trX = trY . Using Ã

−1
KI = D1/2ED−1/2, we have

N
.
= E

(

I − D−1/2K−1
I F T W−1F Ã

−1
KID

1/2
)

.

Sherman-Morrison and some algebra gives

N−1 .
=
(

I + D−1/2K−1
I F T F

(

K−1
I + D

)

KID
1/2
)

E−1

=
(

I + D−1/2K−1
I F T F D1/2E

)

E−1

= E−1 + D−1/2P RH−1RT P KID
1/2.

Using (17) and some algebra, we end up with

trN−1 =
∑

c

trE(c)−1 + d − trH−1H̃ . (19)

Recall that

h(c) = K
(c)
·,I

(

v + B(c)T β1−3,c − P (c)H−1
∑

c′

B(c′)T β1−3,c′

)

where β1−3,c = β1,c − β3,c. Next,

B(c)T β1−3,c = e
(c)
2 − v, e

(c)
2 := D(c)1/2E(c)−1D(c)−1/2b(c).

If
e1 :=

∑

c

e
(c)
2 − Cv,

then
h(c) = K

(c)
·,I γ(c), γ(c) := e

(c)
2 − P (c)H−1e1 (20)

and
hT

I K−1
I hI =

∑

c

γ(c)T h
(c)
I . (21)

G2 is obtained by summing (18), (19) and (21).

In order to derive the gradient, we make use of matrix calculus rules assembled in a
formidable paper by Minka [9] (who draws on the book by Magnus and Neudecker [8]).
For the gradient, observe that

dE(c) = D(c)1/2
(

dK
(c)
I

)

D(c)1/2, dP (c) = −P (c)
(

dK
(c)
I

)

P (c),

dH = −RT P (dKI)P R.

Matrix calculus and some algebra gives

d tr N−1 =
∑

c

tr
(

−P̃
(c)

+ 2P (c)H−1P̃
(c) − P (c)H−1H̃

−1
H−1P (c)

)(

dK
(c)
I

)

. (22)

Also,

d log |N | =
∑

c

tr
(

P (c) − P (c)H−1P (c)
)(

dK
(c)
I

)

. (23)

These expressions should be computed in terms of L−1P (c). Define the stub matrices to be

M (c) = (m
(c)
i)Ti , Q(c) = (q

(c)
i)Ti ,

both are in R
n,d and have been computed during conditional inference. From (20) we see

that

dh(c) =
(

dK
(c)
·,I

)

γ(c) + K
(c)
·,I

(

−P (c)
(

dK
(c)
I

)

e
(c)
2 + P (c)

(

dK
(c)
I

)

P (c)H−1e1

− P (c)H−1RT P (dKI)P RH−1e1 + P (c)H−1
∑

c′

P (c′)
(

dK
(c′)
I

)

e
(c′)
2

)

=
(

dK
(c)
·,I

)

γ(c) − Q(c)

(

LT
(

dK
(c)
I

)

γ(c) − L−1
∑

c′

P (c′)
(

dK
(c′)
I

)

γ(c′)

)

(24)

Now,

d
(

h
(c)T
I K

(c)
I h

(c)
I

)

=
∑

c

(

−γ(c)T
(

dK
(c)
I

)

γ(c) + 2γ(c)T dh
(c)
I

)

,

and (24) together with some algebra gives

d
(

h
(c)T
I K

(c)
I h

(c)
I

)

=
∑

c

tr
(

γ(c)γ(c)T + 2γ(c)e
(c)
4

)(

dK
(c)
I

)

(25)

with

e
(c)
4 = P (c)

(

H−1
∑

c′

P (c′)h
(c′)
I − h

(c)
I

)

.

Collecting terms we have

dG2 =
1

2

∑

c

tr
(

P (c) − P (c)H−1P (c) − P̃
(c)

+ 2P (c)H−1P̃
(c) − P (c)H−1H̃

−1
H−1P (c)

+ γ(c)γ(c)T + 2γ(c)e
(c)T
4

)(

dK
(c)
I

)

.

(26)

Next, Q(ui) = N(hi,Ai) with

Ai = diag
(

K
(c)
i − ‖m(c)

i ‖2
)

+ QT
i Qi, Qi =

(

q
(c)
i

)

c

(see Section 4.1). Let

M̃
(c)

= M (c)B(c) =
(

m̃
(c)
i

)T

i
∈ R

n,d.

These can overwrite the M (c), we give some detailed comments below. Then,

dAi =diag
(

dK
(c)
i

)

c
− 2 diag

(

m̃
(c)T
i dK

(c)
I,i

)

c
+ 2 symQT

i

(

L−1P (c)dK
(c)
I,i

)

c

+ diag
(

m̃
(c)T
i

(

dK
(c)
I

)

m̃
(c)
i

)

c
− 2 symQT

i

(

L−1P (c)
(

dK
(c)
I

)

m̃
(c)
i

)

c

+ QT
i L−1RT P (dKI)P RL−T Qi.

(27)

Now,
dEQ [− log P (yi|ui)] = −EQ [log P (yi|ui)d log Q(ui)]

with

d log Q(ui) = d

(

− log |Ai| −
1

2
(ui − hi)

T A−1
i (ui − hi)

)

= − tr

(

1

2
A−1

i − 1

2
viv

T
i

)

(dAi) + vT
i (dhi), vi = A−1

i (ui − hi).

Define

zi = EQ [log P (yi|ui)] , ci = −EQ [(log P (yi|ui))vi] ,

Gi = EQ

[

(log P (yi|ui))viv
T
i

]

, G̃i =
1

2

(

ziA
−1
i − Gi

)

.
(28)

These C-dimensional Gaussian integrals are approximated using numerical quadrature, we
give some comments below. Then,

G1 = −zT1, dG1 =
∑

i

tr G̃i(dAi) + cT (dh)

with c = (ci)i ∈ R
nC . Also, let g̃i = diag G̃i, g̃ = (g̃)i. To make progress, we replace

m̃
(c)
i = M̃

(c)T
δi, dK

(c)
I,i = dK

(c)T
·,I δi, q

(c)
i = Q(c)T δi in (27) and pull the sum over i inside.

Define

D̃
(c,c′)

= diag

(

(

G̃i

)

c,c′

)

i

,

and note that D̃
(c,c)

= diag g̃(c). Furthermore, let

R(c) =
∑

c′

D̃
(c,c′)

Q(c), S =
∑

c

Q(c)T R(c).

Computing all R(c) costs O(C2 dn), the accumulation of S given the R(c) is O(C d2 n), so
we remain within our resource limits. A fair bit of algebra gives

∑

i

tr G̃i(dAi) = g̃T (ddiag K) − 2
∑

c

tr D̃
(c,c)

M̃
(c)
(

dK
(c)
I,·

)

+ 2
∑

c

trR(c)L−1P (c)
(

dK
(c)
I,·

)

+
∑

c

tr M̃
(c)T

D̃
(c,c)

M̃
(c)
(

dK
(c)
I

)

− 2
∑

c

tr M̃
(c)T

R(c)L−1P (c)
(

dK
(c)
I

)

+
∑

c

trP (c)L−T SL−1P (c)
(

dK
(c)
I

)

.

If we define
e5 =

∑

c

Q(c)T c(c), e
(c)
6 = −LQ(c)T c(c) + P (c)L−T e5,

then (24) and some algebra gives

cT (dh) =
∑

c

tr c(c)γ(c)T
(

dK
(c)
I,·

)

+
∑

c

trγ(c)e
(c)T
6

(

dK
(c)
I

)

.

In summary we obtain the gradient as

dG =
∑

c

(

trE
(c)T
1

(

dK
(c)
·,I

)

+ trE
(c)
2

(

dK
(c)
I

))

+ g̃T (ddiag K),

E
(c)
1 = −2D̃

(c,c)
M̃

(c)
+ 2R(c)L−1P (c) + c(c)γ(c)T ,

E
(c)
2 =

1

2
P (c) − 1

2

(

L−1P (c)
)T

L−1P (c) − 1

2
P̃

(c)
+ sym

(

L−1P (c)
)T

L−1P̃
(c)

− 1

2
P (c)H−1H̃

−1
H−1P (c) +

1

2
γ(c)γ(c)T + symγ(c)

(

e
(c)
4 + e

(c)
6

)T

− 2 sym M̃
(c)T

R(c)L−1P (c) + M̃
(c)T

D̃
(c,c)

M̃
(c)

+
(

L−1P (c)
)T

SL−1P (c).

(29)

In order to compute E
(c)
1 , E

(c)
2 , we first overwrite M (c) by M̃

(c)
. In a main accumulation

loop over c, we first compute all parts of E
(c)
2 depending on M̃

(c)
, compute R(c) and accu-

mulate S . We then overwrite M̃
(c)

by E
(c)
1 . The part of E

(c)
2 depending on S is added at

the end. The gradient components are now computed by replacing the covariance matrix
differentials above by the corresponding derivative matrices. Apart from the computation

of the latter, each gradient component costs O(nd) once E
(c)
1 , E

(c)
2 is given, and the pre-

computation of the latter costs O(C d2 n) (as observed above).

The gradient w.r.t. the intercept parameters β is simpler to derive. We have

dG = −
∑

i

EQ [d log P (yi|ui)] .

Recall the form of log P (yi|ui) from (1). We have

d log P (yi|ui) = (δyi − (P (y|ui))y)
T dβ,

therefore

dG =

(

∑

i

EQ [(P (y|ui))y] − (nc)c

)T

dβ , nc =
∑

i

I{yi=c}. (30)

Note that both the criterion and gradient expressions can only be computed approximately
due to the C-dimensional Gaussian integrals which require numerical quadrature. While the
rule we are using in the moment is fairly accurate,23 errors are introduced especially via the
G̃i terms. We will explore the use of more accurate rules in the future, but we are limited to
use fairly simple symmetric rules due to the large number of integrals required.24 A drawback
in practice of the derivation above together with the limited accuracy of the quadrature rules
is that the gradient approximation is not consistent with the criterion approximation in the
sense that finite differences of the latter will not converge to the former. Comparing gradient
with finite differences in our experiments, we found that there are quite significant relative
errors. While the gradient is still useful to direct the optimization, care has to be taken to
use optimization code which is robust against such errors.

23For small C rules based on exact monomials (or even better, but also more expensive, product rules
based on one-dimensional Gaussian quadrature) are much more accurate than a Monte Carlo approximation
based on a Gaussian sample of moderate size.

24An idea would be to use more expensive rules for the terms corresponding to active patterns i ∈ I.

Note that we could circumvent these difficulties by simply taking the gradient of the criterion
approximation (with the EQi replaced by the quadrature rule at hand). There are several
reasons why we prefer our derivation. First and most importantly, the former approach
would be significantly more costly. Next, while a quadrature rule is designed to give a good
approximation to an integral, there is no reason why the derivative of the rule w.r.t. some
inner parameters should be a good approximation to the integral derivative. Finally, the
former approach would be even harder to implement.

This inaccuracy limits the size of C we can effectively deal with in our scheme. New ideas
are required for the case of large C, we leave this issue for future work.

B Details for the Baseline Method

In this section we provide some details for the baseline method discussed in Section 6. Recall
that this scheme is much simpler as the coupled one, due to the fact that Π is diagonal
now. Also recall that we have different active sets I (c) of sizes dc now, one for each class c.

The representation is simply C versions of the one for the binary IVM scheme (see [12]).
We concentrate on a particular c and describe the corresponding representation and com-
putations after inclusion of (j, c) into I (c). For the moment, we drop the superscript (c).
The representation is given by

E = I + Π
1/2
I KIΠ

1/2
I = LLT , M = K ·,IΠ

1/2
I L−T , β = L−1Π

−1/2
I bI .

We also maintain the vector h of posterior means and diag A of posterior variances (both
in R

n). As opposed to the coupled scheme, we can update these means efficiently which
will allow us to score all remaining candidates for each inclusion. Recall the update after

inclusion of (j, c) from [12], Sect. C.3.1. The new row (lT l) of L is given by l = π
1/2
j MT

j,·, l =

(1 + πjAj,j)
1/2. The new column µ of M is µ = l−1(π

1/2
j K ·,j − Ml). Note that this

O(nd) operation dominates the update cost (here, d = dc). Finally, we subtract µ ◦µ from
diag A and add βd+1µ to h. The new component βd+1 of β is determined as follows. First,

µ = l−1π
1/2
j A·,j, thus if hnew

j = ĥj = hj+σAj,j, then βd+1 = lπ
−1/2
j σ. Recall that we agreed

not to include patterns for which πj = 0. From (11) we see that σ = A−1
j,j (ĥj−hj) = bj−πjĥj ,

therefore
βd+1 = l

(

π
−1/2
j bj − π

1/2
j ĥj

)

.

Next we derive the gradient of the learning criterion part

G1 =
∑

i

EQ[− log P (yi|ui)]

Since this runs over all classes, we need the (c) superscript again. We require the m stub

matrix M (c) = K
(c)
·,I B(c)T which is overwritten by M̃

(c)
as in Section A. Again, G1 = −1T z ,

but the gradient is much simpler now. The form of h(c), Ai is clear from (16). Therefore,

dh(c) =
(

dK
(c)
·,I

)

γ(c) − M̃
(c)
(

dK
(c)
I

)

γ(c), γ(c) = B(c)T β(c),

and

dAi = diag
(

dK
(c)
i

)

c
− 2 diag

(

m̃
(c)T
i dK

(c)
I,i

)

c
+ diag

(

m̃
(c)T
i

(

dK
(c)
I

)

m̃
(c)
i

)

c
.

We only need D̃
(c,c)

= diag g̃(c), therefore only have to compute diag G̃i. Following the lines
of Section A we have

dG1 =
∑

c

(

tr
(

−2D̃
(c,c)

M̃
(c)

+ c(c)γ(c)T
)T (

dK
(c)
·,I

)

+ tr
(

M̃
(c)T

D̃
(c,c)

M̃
(c)

− symγ(c)
(

M̃
(c)T

c(c)
)T)(

dK
(c)
I

)

)

+ g̃T (ddiag K) .

For the sake of completeness, we state the criterion and gradient formulae for G2 as given

in [12], Sect. C.3.3. Recall that G2 =
∑

c G
(c)
2 with

G(c)
2 = D

[

Q(u
(c)
I) ‖P (u

(c)
I)
]

since Q(uI) =
∏

c Q(u
(c)
I) and P (uI) =

∏

c P (u
(c)
I). Then,

G(c)
2 =

1

2

(

log
∣

∣

∣
E(c)

∣

∣

∣
+ trE(c)−1 − dc +

∥

∥

∥
β(c)

∥

∥

∥

2
− ‖v‖2

)

, v = L(c)−T β(c)

and

dG(c)
2 = tr

(

1

2
P (c) − 1

2
P̃

(c)
+ sym e

(c)
7 γ(c)T − 1

2
γ(c)γ(c)T

)

(

dK
(c)
I

)

,

e
(c)
7 = Π

(c)1/2
I E(c)−1v.

The gradient w.r.t. the intercept parameters β is the same as (30).

C Details for Constrained ADF Projection

In this section we give details for the inner optimization loop of the constrained ADF
projection discussed in Section 4.3. While this problem is very small and could be solved by
a number of simple methods, our scheme is particularly reliable and efficient. Recall that
the inner loop consists of minimizing

fq = log
∣

∣M−1
∣

∣− log |Aj | + bT π, M = A−1
j + Π.

Note that in contrast to Section 4.3 we have subtracted the constant − log |Aj| for conve-
nience. By using the upper bound character of fq and the fact that a relative entropy is
bounded below by 0, we have that

fq ≥ log
∣

∣

∣
Âj

∣

∣

∣
− log |Aj | + C − trA−1

j Âj

for all q, π, so the criterion is lower bounded. Recall that π = exp(t) = αx, α = 1T π .
For maximal stability, it is best to represent π by (α,x) which is computed from t by

κ = log 1T exp(t), α = exp(κ), x = exp(t − κ1).25 Once more, notation is meant to be
local. Let D = (diag π)1/2, then

M−1 =
(

Q−1 − αxxT
)−1

, Q−1 := A−1
j + D2.

By Sherman-Morrison,

Q = Aj − RT R, R := L−1DAj , LLT := I + DAjD.

Let

v := Qx = Ajx − RT Rx, µ := xT v = xT Ajx − ‖Rx‖2 , s := 1 − αµ.

Since Q and M are positive definite, one can see that s ∈ (0, 1). Also, M−1 = Q+αs−1vvT .
Thus,

diag M−1 = diag Aj − diag RT R + αs−1v ◦ v.

Here, (αi)i ◦ (βi)i := (αiβi)i denotes the Hadamard (or Schur) product. Also, some algebra
gives

log
∣

∣M−1
∣

∣− log |Aj| = −2 log |L| − log s

which allows to compute fq . Standard matrix analysis reveals the gradient:

∇tfq =
(

−diag M−1 − s−1µ + 2s−1v + b
)

◦ π .

The computation of criterion and gradient is O(C 3).

D Extensions of the Myopic Scheme

In this section, we propose two modifications of the myopic scheme described in the main
body of the paper. These add substantial new complications and new computational cost
(while subdominant to the overall scaling) and their practical significance is yet unclear.

The first modification is the introduction of likelihood reweighting factors. Eventually we
would like each pattern in the active set to determine the belief significantly, but we might
have to downweight this influence initially when the active set I is still small. To this end,
we introduce reweighting factors γi ∈ (0, 1] into the likelihood terms:

P (yi|ui) ∝ exp
(

γiu
(yi)
i + βyi

)

.

The γi should be regarded as parameters of the approximation or the algorithm (akin to a
temperature parameter in annealing schemes), not as parameters of the model. In fact, we
will have γi = 1 for all i in the end. Any schedule of updating the γi is a heuristic: a simple
one is suggested in Section D.5. Suffice to say that γi = 1 for all patterns i which have been
in I more than a fixed number of inclusions. This is important to ensure the feasibility of
the whole scheme.

Second, a joint optimization of the site parameters for at least a subset of the active pat-
terns (in I) is required. A possible explanation for the simple approach to fail is that site

25κ is computed in a stable way as κ = m + log 1
T exp(t − m1), m = max{ti}.

parameters are determined once and never changed later on. The myopic scheme restricts
itself to the behaviour of an on-line algorithm, while this is not required by the problem
setting (the training data can be accessed in arbitrary batches). The parameters are never
modified jointly (and iteratively) with others. It can happen that patterns which are in-
cluded early obtain unreasonable site parameter values, simply because their computation is
based on the current belief only. If these values remain fixed, the errors cannot be corrected
later on,26 in fact may lead to unreasonable subsequent decisions. The opportunity of joint
optimization is especially attractive in combination with the reweighting of the likelihood
factors. For example, factors of points included into I early can be raised gradually, their
site parameters modified in conjunction with later patterns.

However, to remain feasible as a sparse method which makes use of the block-diagonal
structure of K (in the sense of Section 4.1) it is necessary to freeze the site parameters
of points in I eventually (and to set their γi = 1). This is because we still need to be
able to score a large number of candidates for every inclusion, which requires some form of
stub vectors. Since these depend in a complicated way on all site parameters, we can only
maintain and update them for patterns whose parameters do not change in the future. In the
sequel, we describe a scheme which includes all these modifications. It features expectation
propagation (EP) iterations on a “liquid” subset of I. Patterns are removed gradually from
this subset and their site parameters are frozen. The representation described above is
maintained w.r.t. the “solid” (or “frozen”) subset of I only.

D.1 General Description

At any time, the active set I = {I1, . . . , Id} is partitioned into the solid (or frozen) subset
If = {I1, . . . , Id−L} and the liquid subset I l = {Id−L+1, . . . , Id} of size no larger than L.
Note that If contains the patterns included earlier. Both sets can be empty, but if I f 6= ∅,
then |I l| = L. Site parameters of patterns in the solid subset are fixed (“frozen”) while
parameters of patterns in I l can be changed arbitrarily. We allow for likelihood reweighting
factors γi ∈ (0, 1] for all i ∈ I l, while γi = 1 for all other patterns. These factors may change
(for i ∈ I l) in an arbitrary way between inclusions.

The representation described in Section 4.1 is used here as well, but it is based on the solid
active set only (as are the stub buffers). In the descriptions above, replace I by I f , d by
d−L. We will call it solid representation in order to distinguish it from the EP representation
to be introduced shortly. The algorithm cycles through different phases for each inclusion.
For the moment, we ignore “edge effects” (empty I, empty I f , etc.) which occur at the
beginning and the end. In the selection phase, a large number of candidate patterns outside
of I are scored to determine which to include next. This phase is described in Section D.2.
In the inclusion phase, the new pattern is included into I, the first pattern in I l is frozen
(moved into If) and the representation is updated. Also, the γi factors are modified. This
phase is described in Section D.3. Finally, in the EP phase, the site parameters for liquid
patterns are updated jointly using EP iterations. This requires a different representation
which cannot exploit block-diagonal matrix structure and scales cubically in LC. The EP
phase is described in Section D.4. In Section D.5, we discuss further details such as what

26“Deletion” and “exchange” moves are possible in the binary IVM, but typically lead to numerical
instabilities in the updates of the representation.

happens at the beginning and the end, and how the γi likelihood reweighting factors can
be chosen.

D.2 The Selection Phase

In the selection phase, a large number of candidates from {1, . . . , n} \ I are scored to
selection a suitable pattern for the next inclusion. As precondition, the (solid) representation
described in Section 4.1 (replace I by If , d by d−L) is given for the solid active set I f . We
are given a selection index J disjoint from I whose patterns are to be scored (the size of J
can be roughly O(n), more below). In order to compute the score described in Section 4.4
we need the marginal moments, thus the stub vectors (7) for j ∈ J w.r.t. the full active set
I. Recall that we have stubs available (for all j) for the solid representation.

In the selection phase, we build an extended representation and extended stub buffers start-
ing from the solid representation. Extended stubs are required for all j ∈ I ∪ J . We do this
by “including” the patterns I l = {Id−L+1, . . . , Id} as described in Section 4.2. Note that the
solid representation is not overwritten, in particular the extended q stubs must not over-
write the normal ones. It is most efficient to allocate separate buffers for the extended stubs,
although this is redundant in case of the m stubs. Once the extended stubs are completed,
the marginal moments for all j ∈ J can be computed, the patterns can be scored and the
winner selected as before.

Note that our description of the selection phase may require redundant evaluations of rows
of the covariance matrices K (c) (the same pattern i will be in I l for up to L inclusions) if L
subsequent selection indexes J do overlap. If additional memory is available, a n-by-L-by-C

buffer should be maintained storing27 K
(c)

·,Il, c = 1, . . . , C (since L � d, this is typically not

a dominating buffer).

Since each stub update is O(C d), we need O((|J |+d)C dL) to extend all stubs j ∈ J∪I. To
stay within our resource limitations of O(nC d2), we require |J | ≤ min{n/L, n/C}. Recall
that C is moderate and L can be chosen fairly small.28

D.3 The Inclusion Phase

In this phase, pattern i 6∈ I is to be included into I. Typically, i is the winner from the
selection phase. As precondition, we require the marginal moments hi, Ai for i, which we
can compute from the EP phase representation. If |I l| = L, the first pattern Id−L+1 in
I l is moved to If , i.e. its site parameters are frozen. Note that it is sensible to require
that γId−L+1

= 1, otherwise these parameters are computed based on a wrong likelihood
factor). Freezing means that the solid representation and the stubs are updated as described
in Section 4.2. Finally, we require initial site parameters for i which are determined as
described in Section 4.3. Furthermore the reweighting factors γj are updated following a
schedule to be described below. We require that γId−L+1

= 1 and will typically have γi < 1.
It is not necessary to update the representation used in the EP phase, since it has to be

27One of the advantages of the IVM is that redundant covariance function evaluations are typically not
required, which is especially important if the kernel evaluations are expensive.

28The simple myopic scheme has L = 1, and already a small L > 1 can make a significant improvement.

recomputed at the beginning of this phase anyway. The inclusion phase ends by including
i into I.

As shown in Section 4.2, the cost for including a new point into I f is O(ndC) (for updating
all stub vectors).

D.4 The EP Phase

In the EP phase, the site parameters for all liquid active patterns in I l are jointly optimized
using EP updates. As precondition, we require the solid representation to be given for I f

(which may be empty), furthermore all patterns in I l must have initial site parameter values.
The EP phase can only be run if |I l| ≥ 2 (see Section D.5).

Before we describe the phase, let us remark that we actually have two different options
for designing an EP phase. Option I (which we do not choose here) is to iterate using the
full representation w.r.t. I, but to only ever choose i ∈ I l for site updates. It is not hard
to see that each EP step would require O(C d2), i.e. an EP iteration over all i ∈ I l would
be O(LC d2). Option II chosen here is to iterate EP only on the marginal distribution
Q(uIl). As we see shortly, this means that we cannot exploit the block-diagonal structure
of the prior covariance matrix anymore, thus have to deal with unstructured (CL)-by-(CL)
matrices. We will see that each EP step takes O(C 3 L2), thus an EP iteration is O((C L)3).
This is roughly no slower than option I if d ≥ C L (which will typically be the case). The
drawback of option II is that a separate representation has to be used which complicates
the implementation. Also, a O(dC2 L2) computation is required initially (which is again
cheaper than option I if d ≥ C L).

In order to make progress, the following argument is required. We would like to run EP
iterations on the approximating distribution

Q(uI) ∝ P (uI)N
U (uIf |bIf ,ΠIf)NU (uIl |bIl ,ΠIl),

but will only ever change site parameters for i ∈ I l. If we define

Qf (uI) ∝ P (uI)N
U (uIf |bIf ,ΠIf),

we have
Q(uI) ∝ Qf (uI)N

U (uIl |bIl ,ΠIl).

But this is just about the same situation as the original setup if uI replaces u, uIl replaces
uI , and the prior P (u) is replaced by the “prior” Qf (uI). If we do these replacements, I
will be the set of “all” points, I l will be the “active set”. The only difference to the original
setup is that the marginal “prior” Qf (uIl) is not zero-mean anymore, and that its covariance
matrix does not have a block-diagonal structure. We cannot use the same representation as
above, but have to work with unstructured (CL)-by-(CL) matrices.

We will denote the moments of Qf using the superscript f , these are the moments we obtain
from the solid representation (with If as active set). As for Qf (uIl) = N(hf ,G) we have

G = A
f
Il = KIl − KIl,If ΦIf KIf ,Il = diag

(

K
(c)

Il − M
(c)

Il M
(c)T

Il

)

c
+ QIlQT

Il (31)

with

M
(c)

Il =
(

m
(c)
j

)T

j∈Il
, Q

(c)
Il

=
(

q
(c)
j

)T

j∈Il
, QIl

=
(

Q
(c)T
Il

)T

c
∈ R

CL,d−L,

the computation is O(dC2 L2) given the stubs. The computation of hf is described in
Section 4.1.

The following description is very technical. Readers not interested in the details may skip
the remainder of the section in which we show how a suitable representation of size O(C 2 L2)
can be maintained which allows EP updates of the site parameters in O(C 3 L2), so that a
complete iteration over all sites is O(C3 L3). While our main concern here is numerical sta-
bility, the deletion/inclusion nature of EP combined with frequent use of rank-one updates
may cause problems. We give some comments how to deal with these.

We work with inner grouping w.r.t. c in the rest of this section. Recall our notation from

Section 3. We convert G from (31) to P̂ ↔GP̂
T
↔, hf to P̂ ↔hf , etc. This grouping is more

natural in the context here, because there is no block structure for the inner grouping w.r.t.
datapoints anymore (as opposed to K , the covariance matrix G has no block structure
if If 6= ∅), while we still have ΠIl = diag(Πi)i (inner grouping w.r.t. c). In the sequel,
we drop the subscript I l and use an absolute indexing of this subset, i.e. assume29 that
I l = {1, . . . , L}. Matrices will be (CL)-by-(CL) and follow the inner grouping w.r.t. c
unless said otherwise. We also have to use namings which may conflict with other sections,
so definitions made here are meant to be local and override definitions elsewhere.

Let Π = V V T . We can choose V = diag(V i)i with Πi = V iV
T
i .30 The posterior covariance

matrix is

A =
(

G−1 + Π
)−1

= G − MT M , M = L−1V T G, B = I + V T GV = LLT . (32)

Note that B is positive definite with all eigenvalues ≥ 1, thus very well-conditioned. The
posterior mean is

h = b̃ − MT β, b̃ = Gb + hf , β = L−1V T b̃. (33)

The EP representation consists of L, M , β. We also require L−1 explicitly, maintaining
P (i) = (L−1)·,i.

In order to do an EP step, we require the marginal Q(ui) = N(hi,Ai), where hi, Ai

are computed via (32) and (33). Before dealing with the EP projection, we describe how
the representation is updated afterwards. Suppose the parameters of pattern i are to be
updated. Let ∆V i = V ′

i−V i. We reject i for update if Π′
i−Πi is too small in some matrix

norm. Let Gi = QiQ
T
i (the factors should be precomputed). Since V ′ = V + I ·,i∆V iIi,·,

we have

B′ = B +
(

I ·,i∆V T
i Qi + Ṽ

)(

I ·,i∆V T
i Qi + Ṽ

)T
− Ṽ Ṽ

T
, Ṽ = V T G·,iQ

−T
i .

Therefore, we can update L using L positive followed by L negative applications of chollrup
described in Section 4.2. We drag along the columns of M and all P (j) which are re-
quired to update these variables, but can also conveniently be used as follows. chollrup
requires subsequent columns of L−1Ṽ and L−1I ·,i∆V T

i Qi with L being up-to-date. Note
that L−1Ṽ = M ·,iQ

−T
i and L−1I ·,i∆V T

i Qi = P (i)(∆V T
i Qi). Since we drag along the

columns of M and all P (j), columns of the latter expressions are available based on the

29I l may be smaller than L in the beginning, the modifications to the description are obvious though.
30Use the spectral decomposition Πi = U DUT , then V i = U D1/2.

correct L just when they are required. Our implementation precomputes and stores Qi and
Q−T

i .

Recall that chollrup results in L′ = LL̃ with L̃ having an O(C L2) representation.31 The
P (j) are updated simply by dragging along their columns. The update of M is

M ′ = L̃
−1

M + P (i)′∆V T
i Gi,·.

Next, b̃
′
= b̃ + G·,i∆bi (where ∆bi = b′i − bi). Finally,

β′ = L̃
−1

β + M ′
·,i∆bi + P (i)′∆V T

i b̃i,

so β has to be dragged along as well. The complete update is O(C 3 L2) (the “dragging
along” dominates the cost). Numerical stability should be ensured by the fact that B is
always well-conditioned. Still, our implementation allows a roll-back together with rejecting
i for update should any of the negative chollrup break down.

It remains to describe the EP update itself. Let Q(ui) = N(hi,Ai) be the marginal. As
opposed to the ADF update described in Section 4.3 we cannot assume that Πi = 0, thus
have to remove the site approximation i from Q. Let

Q\i(ui) = N
(

h
\i
i ,Λ

)

, Λ = (I − AiΠi)
−1 Ai, h

\i
i = (I − AiΠi)

−1 (hi + Aibi)

the “cavity” distribution. Note that Q\i = Q if Πi = 0, bi = 0 which is the ADF case.
An EP update is done in the same way as an ADF update (see Section 4.3) with the only
difference that the marginal Q(ui) is replaced by the cavity marginal Q\i(ui).

32 We cycle
over i ∈ I l in some random ordering. Candidates i are rejected if the change ∆Πi is too
small, or in the unlikely case that an L update breaks down.33 The repeated use of rank-
one updates may introduce numerical errors, so the representation should be refreshed (i.e.
recomputed from scratch) after O(L) updates (which costs O(C 3 L3)). Note that we do not
have to run EP updates until convergence34, but can stop after a fixed number of them.

This completes the description of the EP phase. The representation used here should be
retained until the next EP phase, it is required in inclusion phase to compute the marginal
moments for the new pattern. The latter works as follows. Let i 6∈ I be the new pattern.
We simply have to apply the initial computation of the EP representation above to the case
where I l is replaced by Ĩ = I l ∪ {i}. Denote J = {1, . . . , L} for conciseness. If G̃ = A

f

Ĩ
∈

R
C(L+1),C(L+1), then G̃J = G, so only G̃·,L+1 ∈ R

C(L+1),C has to be computed from the
stubs. After the computation, we permute the components such that the inner grouping is
w.r.t. c. Then,

Ai = G̃L+1 − M̃
T
M̃ , M̃ = L−1V T G̃J,L+1.

and
hi = h

f
i + G̃L+1,Jb − M̃

T
β.

31L̃ is the product of L factors with O(C L) representation.
32For increased stability one can consider “damped” EP updates, but we have not found this necessary in

our case.
33This did not happen in our experiments so far.
34At any rate, convergence is not guaranteed in EP, since it does not descent on a criterion.

Note that the computation is O(C3 L2): it would not be feasible to compute a large number
of marginals that way, the “detour” via the extended representation in the selection phase
is necessary.

An iteration over all liquid patterns in the EP phase costs O((LC)3) which is subdominant
to other costs if d ≥ LC which we assume to be true. As mentioned above, our scheme in
the present form is not suitable for the case of large C. Note that the overall contribution
of all EP phases is O(d (LC)3) which is subdominant if d ≥ LC and n ≥ C L2 (the latter
is given because n � d and L can be chosen small).

D.5 Further Details

What happens in the beginning? First, it does not make sense to run the selection phase if
the active set is still very small. As in the binary IVM scheme, we pick the first two or three
patterns for I at random.35 We note that the selection phase can be run with an empty solid
set, simply by extending an empty representation, but it requires at least one liquid active
pattern. The inclusion phase can be run even if I is empty, as long as marginal moments
for the new pattern are supplied. For the very first pattern, we use the prior moments
hi = 0, Ai = Ki, for later patterns we use the EP representation (see details at the end of
Section D.4).

Finally, once the active set I has the desired final size, we run a final EP phase on the liquid
set, then use the first part of the selection phase in order to complete the representation
(freeze all liquid patterns). The stubs are not required anymore at this point and do not
have to be updated.

We propose the following simple update schedule for the likelihood reweighting factors
γi, i ∈ I l. Suppose I l = {i1, . . . , ik}, k ≤ L. If k = L, we require that γi1 = 1. γij should be

nonincreasing in j, and the factors should scale with d = |I|. Pick L0 < L, γ(0) ∈ (0, 1), α0 ∈
(0, 1) , then

γik = 1 −
(

1 − γ(0)
)

exp (−α0(d − 1)) ,

γij = min {1, γik + (k − j)∆} , ∆ = (1 − γik)/L0.

This means that γi1 = γ(0) if d = 1, then γik is increasing towards 1 with d. For fixed d, the
γij decrease linearly towards γik with at most L0 of them being different from 1.

References

[1] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2002. Available online at www.stanford.edu/~boyd/cvxbook.html.

[2] Lehel Csató. Gaussian Processes — Iterative Sparse Approximations. PhD thesis,
Aston University, Birmingham, UK, March 2002.

[3] P. Davis and P. Rabinovitz. Methods of Numerical Integration. Academic Press, 1984.

35Depending on the task, a more informed “cheap and cheerful” heuristic may be available. We should
certainly ensure that the initial patterns come from different classes.

[4] Mark N. Gibbs. Bayesian Gaussian Processes for Regression and Classification. PhD
thesis, University of Cambridge, 1997.

[5] Roger Horn and Charles Johnson. Matrix Analysis. Cambridge University Press, 1st
edition, 1985.

[6] Neil D. Lawrence, Matthias Seeger, and Ralf Herbrich. Fast sparse Gaussian process
methods: The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages 609–616. MIT
Press, 2002. See www.cs.berkeley.edu/~mseeger.

[7] Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines, theory, and ap-
plications to the classification of microarray data and satellite radiance data. Technical
Report 1064, University of Wisconsin, September 2002.

[8] J. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statis-
tics and Econometrics. John Wiley & Sons, 1988.

[9] Thomas Minka. Old and new matrix algebra useful for statistics. See
www.stat.cmu.edu/~minka/papers/matrix.html, 1997.

[10] Thomas Minka. Expectation propagation for approximate Bayesian inference. In
J. Breese and D. Koller, editors, Uncertainty in Artificial Intelligence 17. Morgan Kauf-
mann, 2001.

[11] Manfred Opper and Ole Winther. Gaussian processes for classification: Mean field
algorithms. Neural Computation, 12(11):2655–2684, 2000.

[12] M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, July 2003.
See www.cs.berkeley.edu/~mseeger.

[13] M. Seeger and M. I. Jordan. Sparse Gaussian process classification with multiple
classes. Technical Report 661, Department of Statistics, University of California at
Berkeley, 2004. See www.cs.berkeley.edu/~mseeger.

[14] Matthias Seeger. Gaussian processes for machine learning. International Journal of
Neural Systems, 14(2):1–38, 2004.

[15] J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Royal Holloway, London, 1998.

[16] Christopher K. I. Williams and David Barber. Bayesian classification with Gaus-
sian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(12):1342–1351, 1998.

