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ABSTRACT

We consider the problem of distributed classification of multiple ob-
servations of the same object that are collected in an ad-hoc network
of vision sensors. Assuming that each sensor captures a different
observation of the same object, the problem is to classify this ob-
ject by distributed processing from the sensors. We present a graph-
based problem formulation whose objective function captures the
smoothness of candidate labels on the data manifold. We design a
distributed average consensus algorithm for estimating the unknown
object class by computing the value of the above smoothness ob-
jective function for different class hypotheses. It initially estimates
the objective function locally, based on the observation of each sen-
sor. All the observations are then progressively taken into account
in the estimation of the objective function, along the iterations of the
distributed consensus algorithm. We illustrate the performance of
the distributed classification algorithm by simulation of multi-view
face recognition in an ad-hoc network of vision sensors. When the
training set is sufficiently large, the simulation results show that the
consensus classification decision is equivalent to the decision of a
centralized system that would have access to all observations.

1. INTRODUCTION

Over the past few years novel multimedia architectures such as vi-
sion sensor networks have started to emerge. Typically, these net-
works have an ad-hoc organization: there is no central coordinator
node and the topology can be arbitrary and dynamic (e.g., due to
sensor motion). This presents new challenges to the analysis of mul-
timedia data, which has to be done now distributively and efficiently,
while being robust to topology changes. We consider the problem
of classifying an observed object, whose multiple observations are
collected in a distributed fashion (e.g., [1], [2]). Such a scenario is
interesting in the context of (distributed) scene analysis or multiview
recognition.

The problem then is to classify distributively the observed ob-
ject at all sensors such that they reach a consensus decision by ag-
gregating partial information provided by each local observation.
It is important to note that this problem is different from the well-
studied problem of distributed classification in the presence of a fu-
sion center, where the information from all sensors is gathered in
order to reach the final classification decision. The ultimate goal
of distributed classification is to get close to the performance of a
centralized classification solution having all observations in its dis-
posal, despite the fact that the sensors only possess partial informa-
tion about signals.

We first present a graph-based problem formulation that defines
a smoothness criterion of candidate labels on the data manifold.

The value of the smoothness objective function is computed by dis-
tributed average consensus [3]. In general, the main goal of dis-
tributed consensus is to reach a global solution iteratively in ad-hoc
networks using only local computation and communication, while
staying robust to changes in the network topology.

Our algorithm capitalizes on the fact that the multiple observa-
tions belong to the same class. In particular, each sensor captures
an observation of the same object and computes its nearest neigh-
bors among the labelled examples. Under a certain class hypothesis,
those neighbors contribute to the local computation of a portion of
the objective function value.

Those portions are summed distributively by means of average
consensus, so that all observations are progressively taken into ac-
count and the total value of the objective function is eventually com-
puted at all sensors. This process is repeated for all class hypotheses
and eventually the sensors reach a consensus classification decision,
by picking the class resulting in the smoothest label assignment.

We illustrate the performance of the proposed distributed algo-
rithm in multi-view face recognition in a simulated ad-hoc network
of vision sensors. When the training set is sufficiently large, the
simulation results show that the consensus classification decision is
equivalent to the decision of a centralized system that would have
access to all observations.

2. PROBLEM FORMULATION

Let us formally define the problem of distributed classification of
multiple observations in an ad-hoc sensor network. We consider a
network of m sensors and we model the network topology as an
undirected graph Gs = (Vs, Es) with nodes Vs = {1, . . . , m} cor-
responding to sensors. An edge (i, j) ∈ Es is drawn if and only
if sensor i can communicate with sensor j. We associate a weight
W (i, j) with each edge (i, j) ∈ Es. The matrix W that gathers the
edge weights W (i, j) is called the weight matrix. W is a sparse ma-
trix whose sparsity pattern is driven by the network topology. We
denote the set of neighbors for node i as Ni = {j| (i, j) ∈ Es}.

We assume that each sensor j captures a single (unlabelled) ob-
servation x

(u)
j of an object f . Each observation is of the form

x
(u)
j � Oj(f), j = 1, . . . , m. (1)

and it is different from its peers. For instance, it could be a rotation
of the object f . Hence, there are m observations of the object f that
are collected distributively over the sensor network. All observations
share the same class label due to the common dependence on f .

We assume further that there is a training set; hence, the whole
data set can be organized in two parts X = {X(l), X(u)}, with
X(l) = {x1, x2, . . . , xl} = {x(l)

1 , x
(l)
2 , . . . , x

(l)
l } ⊂ R

d and
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Fig. 1. Conceptual distinction between the two graphs of the prob-
lem. Gs (resp. Gd) denotes the graph of the sensor network topology
(resp. the data graph). In Gd, the filled (resp. empty) circles corre-
spond to labelled (resp. unlabelled) examples.

X(u) = {xl+1, . . . , xn} = {x
(u)
1 , . . . , x

(u)
m } ⊂ R

d, where
n = l + m. Let also L = {1, . . . , c} denote the label set. The
l examples in X(l) are labelled {y1, y2, . . . , yl}, yi ∈ L and com-
mon to all sensors. The m examples in X(u) are associated to the set
of multiple observations in (1), which are unlabelled and distributed.
When each sensor knows its neighbors and the weights of its links
to them, the problem of distributed classification can be formulated
as follows.

Problem 1. Each node seeks to predict the correct class c∗ of the
object of interest f , by aggregating information from all available
observations over the network and own observations x

(u)
j , such that

all sensors reach a consensus classification decision.

3. DISTRIBUTED CLASSIFICATION WITH CONSENSUS

We present a graph-based formulation of Problem 1, which is in-
spired by Label Propagation [4]. We solve it in distributed settings
by consensus.

We make use of the smoothness assumption, which states that if
data samples x1 and x2 are similar, then their corresponding labels
y1 and y2 should be close. We represent the data labels with a 1-
of-c encoding, which allows to form a binary label matrix of size
n × c, whose ith row encodes the class label of the ith example.
The class label is basically encoded in the position of the nonzero
element. Denote by M the set of matrices with nonnegative entries,
of size n×c. Notice that any matrix M ∈ M provides a labelling of
the data set by applying the following rule: yi = maxj=1,...,c Mij .
We denote the initial label matrix as Y ∈ M where Yij = 1 if xi

belongs to class j and 0 otherwise.
We further form the k nearest neighbor (k-NN) graph denoted

as Gd = (Vd, Ed), where the vertices Vd correspond to the data sam-
ples X. Typically, an edge eij ∈ Ed is drawn if and only if xj is
among the k nearest neighbors of xi. However, due to the distributed
settings, the nearest neighbors of each example can be chosen only
among the labelled ones (as each sensor does not have access to the
unlabelled examples, apart from its own observation). It is common
practice to assign weights on the edge set of Gd, gathered in a weight

matrix H ∈ Rn×n. The similarity matrix S ∈ Rn×n is further de-
fined as S = D−1/2HD−1/2, where D is a diagonal matrix with
entries Dii =

Pn
j=1 Hij . Our framework is illustrated in Figure 1

that represents both the sensor graph and the data graph.
We now exploit the special structure of the problem, namely that

the multiple observations belong to the same class. If we define
a binary class label vector λ = [λ1, . . . , λc] ∈ R

c, the optimal
classification of Problem 1 should have only one non-zero entry, with
the form λ = [0, . . . , 1|{z}

c∗

, . . . , 0]. Intuitively, we seek for one of

the c vectors λ with only one non-zero entry, which best reflects
our smoothness assumption. This optimal vector results in similar
class label assignments for pairs that are similar. For each candidate
vector λ, each sensor j locally computes a smoothness criterion as a
weighted summation over the labelled examples that reads

r(j) =
lX

i=1

Sji‖Yi − λ‖2 (2)

where Yi denotes the ith row of the label matrix Y . The global
smoothness function Qd then aggregates the local criteria as

Qd(λ) =

nX
j=l+1

r(j) (3)

where the index j runs over the unlabelled examples (observations).
Notice that when an unlabelled example xj (j > l) is similar to a la-
belled example xi (i.e., the weight Sji is large), then minimizing the
above objective function will result in λ being smooth across sim-
ilar examples. Hence, we need to solve the following optimization
problem.

Optimization problem: OPT
min[λ1,...,λc] Qd([λ1, . . . , λc])
subject to

λp ∈ {0, 1}, p = 1, . . . , c,Pc
p=1 λp = 1.

We now describe how one can compute distributively the sum of
local functions with consensus algorithms. Distributed consensus [3]
has recently become an important computational tool for multimedia
data analysis (see e.g., distributed pose estimation applied to face
recognition in [2]) and various aggregation tasks in ad-hoc sensor
networks. We consider distributed linear iterations of the following
form

zt+1 = Wzt. (4)

where zt represents the values computed by sensors at iteration t.
When the weight matrix W is properly designed, these distributed
iterations can be shown to converge to the average of the values ini-
tially measured at all sensors [5].

We finally have all the ingredients to present the distributed al-
gorithm. First, each sensor j computes the nearest neighbors of its
observation x

(u)
j among the labelled examples as well as the asso-

ciated similarity weights Sji. Next, it computes the value of the
objective function Qd(λ) (see eq. (3)) for each candidate class p.
This involves first a local computation step and then a distributed
computation step. In particular, for a certain class p, the neighbors
of x

(u)
j contribute to the calculation of a portion r(j) of the objective

function value, which involves only local computation. Next, those
portions are averaged distributively, by means of average consensus,
so that all observations are taken into account. The total value of the
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Algorithm 1 The distributed MASC algorithm
1: Input to each sensor:

l: number of labelled data.
X(l) ∈ R

d×l, Y (l): labelled examples.
x(u) ∈ R

d×1: unlabelled example (observation).
2: Output at each sensor:

p̂: estimated unknown class.
3: Initialization at each sensor:
4: Form the k-NN graph Gd of the data set {X(l) S

x(u)}.
5: Compute the weight matrix H ∈ R

(l+1)×(l+1) of Gd.
6: Compute the diagonal matrix D, where Di,i =

Pl+1
j=1 Hij .

7: Compute S = D−1/2HD−1/2.
8: for p = 1 : c do
9: Each sensor sets λ = [0, . . . , 1|{z}

p

, . . . , 0].

10: Each sensor j computes r(j) =
Pl

i=1 Sl+1,i‖Yi − λ‖2.
11: q(p) =

Pm
j=1 r(j) :=average consensus(r).

12: end for
13: p̂ = arg minp q(p)

objective function is thus computed at all sensors, according to eq.
(3). The evaluation of Qd(λ) is repeated for all candidate classes and
eventually the sensors reach a consensus classification decision, by
picking the class that results in the minimum value of the objective
function.

We call the proposed distributed algorithm MASC i.e., MAni-
fold Smoothing under Constraints, and we discuss it below in de-
tails. For notational ease, we drop the subscript j from x

(u)
j when it

is clear from the context that we refer to sensor j. The main steps are
shown in Algorithm 1. First, each sensor computes the k-NN graph
of its own data set {X(l) S

x(u)} and forms the corresponding S
matrix of size (l+1)× (l+1) (Lines 4-7). Next, each class hypoth-
esis is tested (loop 8-12). For each class hypothesis p, each sensor j
first computes a scalar number r(j) that involves local computation
only; namely a weighted sum of the nonzero entries of the last row
of S (i.e., (l + 1)th row). This corresponds to a portion of the value
of the objective function, which captures the smoothness of the label
assignment under the current class hypothesis. In order to compute
the value of the objective function q(p), the partial sums r(j) need to
be added up together and this involves distributed computation. This
step is performed by distributed average consensus (Line 11), where
the summation of all r’s is computed at each sensor. Note that this
results in a scaled version of q(p), due to presence of 1/m in the av-
erage. However, this has no influence on the classification decision,
which is taken in Line 13 by all sensors, after all hypotheses have
been tested.

Finally, notice that all observations contribute to the final classi-
fication decision, thanks to the use of average consensus. At the end
of the algorithm, all sensors reach a consensus decision.

4. SIMULATION RESULTS

We show the feasibility of the distributed MASC algorithm in the
context of distributed multi-view face recognition. We consider the
case of a vision sensor network, where the face of a subject is cap-
tured by different cameras organized in an ad-hoc network. Each
observation in this case represents a facial image captured under dif-
ferent viewing angles. Observe again that all observations belong
to the same class and that the problem resides in estimating the un-

known class i.e., recognizing the subject.
We compare our distributed algorithm with two centralized al-

gorithms for the classification of multiple observations, namely, a
centralized version of the distributed MASC algorithm [6] and a La-
bel Propagation method [4]. In the centralized scenario, each algo-
rithm has access to all observations X(u) and can further form a full
similarity matrix S ∈ R

n×n. We use the UMIST database [7] in our
simulations. The UMIST database contains 20 people under differ-
ent poses. The number of different views per subject varies from 19
to 48. We used a cropped version of the UMIST database that is pub-
licly available1. Then, the sensor network is constructed with a ran-
dom geographic graph model [8]. According to this model, we ran-
domly distribute m nodes on a 2-dimensional unit area. Two nodes

are adjacent if their Euclidean distance is smaller than ε =
q

log m
m

,
which ensures connectedness with high probability. Finally, in all
algorithms we use Gaussian weights in the data graph. which are
defined as

Hij =

(
exp(−

‖xi−xj‖
2

2σ2 ) when (i, j) ∈ E ,

0 otherwise.
(5)

We investigate the classification performance of distributed
MASC with respect to that of centralized MASC and centralized
Label Propagation (LP). We assume that the distributed average con-
sensus in Line 11 of Algorithm 1 has converged to the asymptotic
solution. In other words, we assume that the distributed summation
is exact. The purpose of this experiment is to investigate whether the
distributed algorithm suffers any loss in performance due to partial
information. We set the number of nearest neighbors k to 3 in all
methods, and the regularization parameter in LP is set to μ = 0.1.
We investigate the behavior of all methods, when the number of
multiple observations m varies. For each particular value of m, we
measure the classification error rate for different sizes of training set.
In particular, we increase gradually the number of training examples
per class and measure the average classification error rate over 100
random experiments (i.e., 100 random splits of the data into training
(labelled) and test (unlabelled) sets).

Figs 2(a) and 2(b) show the obtained results for different num-
ber m of observations, when the number of training examples per
class increases from 4 to 8 with step 1. Notice that there is a small
loss in performance of distributed MASC with respect to its central-
ized counterpart. To see why this happens, it is important to ob-
serve that the k-NN graph in the distributed case is different than
that in the centralized case. This is due to the fact that the multi-
ple observations are collected distributively. Hence, the neighbors
of an observation x(u) can only be selected among the labelled ex-
amples, whereas in the centralized case they may be selected among
all labelled and unlabelled examples. When the training set becomes
larger, this phenomenon decays and the difference between MASC
and its distributed variant becomes negligent. Notice finally, that
even with this small loss in performance, distributed MASC is still
superior to (centralized) LP, which does not exploit the fact that all
observations belong to the same class. Note however that it is exactly
this difference in the construction of the k-NN graph that allows the
distributed MASC algorithm have much lower computational cost
(O(l + c)) than that of centralized MASC (O((l + m)2 + c)). Es-
sentially, this is the main characteristic that makes it efficient and
feasible in distributed settings. However, this comes at the cost of a
small performance loss, which becomes even smaller when the train-
ing set is sufficiently large.

1http://www.cs.toronto.edu/∼roweis/data.html
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(b) m = 10

Fig. 2. Difference in performance between MASC and its distributed version versus the number of training samples (per class).

In the previous experiment, we assumed that the distributed sum-
mation in Line 11 of Algorithm 1 is exact, for the sake of simplic-
ity. In this experiment we drop this assumption and we investigate
the effect of employing distributed consensus for the computation
of this sum. Note that our goal in this particular experiment is to
study the effect of consensus on the classification performances. For
this reason, we use the same k-NN graph of distributed MASC in
its centralized counterpart. This way, the performance difference of
the two algorithms will only be due to the summation part. First,
we split randomly the data set into training and test set, by includ-
ing two examples per class in the labelled set X(l) and the rest is
assigned to the test set. We form m = 10 multiple observations,
which are drawn randomly from the test set, and we use k = 1 in the
construction of the k-NN graph.

Fig. 3 shows the average classification error rate (over 500 ran-
dom experiments) measured on a certain sensor, say the first one,
when the number of iterations in distributed consensus varies from
1 to 100 with step 5. We use the Metropolis weight matrices [5],
which are known to lead iteration zt+1 = Wzt to asymptotic con-
vergence to the average z̄0 = 1

m

Pm
i=1 z0(i). Observe that fairly

few iterations, namely between 30 and 40, provide sufficient accu-
racy in the computation of the distributed sum, such that it reaches
similar performance as the centralized MASC algorithm.
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Fig. 3. Average classification error rate vs consensus iterations, for
the Metropolis weight matrices.

5. CONCLUSIONS

We studied the problem of classification of multiple observations in
the scenario where the observations are collected distributively. We
showed that distributed classification in ad-hoc sensor networks can
be effectively performed using distributed consensus. In particular,
we proposed a distributed graph-based algorithm that aggregates in-
formation from all observations across the network and results in
a consensus classification decision among the sensors. We have
illustrated its performance in the context of distributed multi-view
face recognition. The simulation results have shown that, when the
training set is sufficiently large, the classification decision of the dis-
tributed algorithm is equivalent to that of the centralized algorithm.
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