
Gaussian Process Belief Propagation

Matthias Seeger

Max Planck Institute for Biological Cybernetics

P.O. Box: 21 69

72012 Tübingen, Germany

seeger@tuebingen.mpg.de

July 6, 2006

Abstract

The framework of graphical models is a cornerstone of applied Statistics, allowing
for an intuitive graphical specification of the main features of a model, and providing
a basis for general Bayesian inference computations though belief propagation (BP).
In the latter, messages are passed between marginal beliefs of groups of variables. In
parametric models, where all variables are of fixed finite dimension, these beliefs and
messages can be represented easily in tables or parameters of exponential families,
and BP techniques are widely used in this case. In this paper, we are interested in
nonparametric models, where belief representations do not have a finite dimension, but
grow with the dataset size. In the presence of several dependent domain variables, each
of which is represented as a nonparametric random field, we aim for a synthesis of BP
and nonparametric approximate inference techniques. We highlight the difficulties in
exercising this venture and suggest possible techniques for remedies. We demonstrate
our program using the example of semiparametric latent factor models [15], which can
be used to model conditional dependencies between multiple responses.

1 Introduction

Graphical models provide an intuitive way of specifying assumed conditional independence
relationships between several domain variables. Moreover, they come with unified belief
propagation (BP) algorithms1 to compute Bayesian inference, conditioned on observed data.
If the graphical model is parametric, in that the local conditional distributions are such
that the marginal posterior beliefs of all unobserved variables have a representation of
fixed size, independent of the number of data cases, BP involves passing messages between
neighbouring variables in the graph, where the message representations are of fixed size,
and the scaling is typically linear in the number n of data cases. The distinctive feature
of parametric graphical models is the existence of a mediator variable of fixed finite size,
such that conditioning on this variable renders the observed cases i = 1, . . . , n (together
with associated latent variables) independent for different i. Because the mediator separates

1BP is a variant of the dynamic programming principle, making use of tree structure in the model. If
the model graph is not a tree, variables have to be grouped in cliques until the corresponding hypergraph
becomes a tree.

1

training from test cases, it is clear that all information from the training cases required for
prediction is represented in the posterior belief for the mediator only. Mediator variables
are usually called parameters, but our naming here is more specific.

For nonparametric models, such as Gaussian random field models, there is no mediator
variable of finite size. We can propose such a variable, but it will be an infinite random
object, such as a Gaussian process (GP), and for any practical inference or prediction, we
need to integrate it out, which renders all variables across all cases i mutually dependent
in a way which has to be represented explicitly (say, by storing the covariance matrix). We
may call this problem “curse of dependency”, it leads to the fact that a direct generalization
of BP to random field models is not tractable in practice.

In this paper, we are interested in generalizing BP to Gaussian random field graphical models
in a way which is efficient in practice. A general idea is to apply what we may call bottleneck
approximations. For example, a factorization assumption means that a joint distribution is
approximated by a product of marginal ones. A low rank (or sparsity) assumption means
that we introduce artificial mediator variables in a data-dependent way. The concept of a
mediator variable illustrates what we mean with the term “bottleneck”. Dependence arises
through information flowing between variables. A mediator variable creates a narrow bot-
tleneck for this flow, separating many variables by instantiation (conditioning). A different
kind of bottleneck approximation is used in Section 4 in the context of the m� (c)→� mes-
sages. In the IVM framework [6, 10] these mediators are a subset of the variables we want to
represent beliefs over, and this “active” subset is selected depending on the observed data.
The IVM framework has been proposed and applied to single domain variable Gaussian
process models, but in this paper we show that the representations and inference compu-
tations developed there can be used to obtain an efficient nonparametric variant of BP as
well.

Our study is preliminary, in that we try to develop ideas, point out the major problems, and
suggest remedies which come as bottleneck approximations. Bayesian inference in graphical
models, whether parametric or nonparametric, can be intractable for a great number of
reasons. Since in this paper, we are interested in the “curse of dependency” problem only, we
focus on the example of semiparametric latent factor models [15] for multi-output regression.
While this is a useful nontrivial model, all variables are Gaussian, and domain variables are
related linearly, with the model graph being a tree, so that many of the usual difficulties
with Bayesian inference do not occur. However, we will hint at these additional problems
as we go.

The structure of the paper is as follows. In Section 2, we point out the main differences
between parametric and nonparametric graphical models, using the concepts of data and
model dimension. In Section 3, SLFMs are introduced as our working example. GP be-
lief propagation for conditional inference in SLFMs is developed in Section 4. Finally, we
comment on how to learn hyperparameters in Section 5. Conclusions are given in Section 6.

The notation in this paper is as follows. Vectors a = (ai)i and matrices A = (ai,j)i,j are bold
face. We use subindex notation, in that aI = (ai)i∈I , “·” being the full index. For matrices,
AI is short for AI,I . I denotes the identity matrix. Note that aI = II,·a. Some vectors
y will have two indices: yi,c, the index i over cases (data dimension), and c over variable
components (part of model dimension), and the standard ordering (if nothing else said)
is y = (y1,1, y2,1, . . . , yn,1, y1,2, . . .)

T . We write yi = (yi,c)c, y(c) = (yi,c)i. The Kronecker

product is A ⊗ B = (ai,jB)i,j . Our subscript notation for such “double index” vectors is
applied to the case index i only: yI = (yi,c)i∈I,c ∈ R

C|I|. N(·|µ,Σ) denotes the Gaussian
distribution, we also use an unnormalized form of the density:

NU (z |b,B) = exp

(

bT z −
1

2
zT Bz

)

.

2 Data and Model Dimension

Statistical models may be divided into parametric and nonparametric ones. If P (z|θ) is a
model for the observed variable z, indexed by parameters θ, and we observe some data
z1, . . . ,zn, a parametric model is characterized by the existence of sufficient statistics
φ(z1, . . . ,zn) ∈ R

s of fixed size s, in that the likelihood of the data can be written solely
in terms of the statistics: P (z1, . . . ,zn|θ) = f(φ(z1, . . . ,zn),θ). For example, if we model
z ∼ N(·|θ , σ2I) with known variance σ2, where N(·|µ,Σ) denotes the Gaussian distribu-
tion with mean µ and covariance matrix Σ, then the sample mean n−1

∑n
i=1 zi is a sufficient

statistics, so the Gaussian model is parametric.

The existence of finite sufficient statistics has important implications in practice. Estima-
tors of θ or posterior beliefs for θ can typically be represented in O(s), independent of the
dataset size n. If there are several domain variables, we may devise a parametric graphi-
cal model to describe their relationships. Here, conditional independence relationships are
captured in a graphical manner, in that the variables are nodes in a graph, and roughly
speaking, conditional independence is represented in terms of separation in this graph. Fi-
nally, conditional distribution between neighbouring nodes are represented by parametric
local models. In order to do inference on the global model, namely to compute marginal
posterior beliefs of unobserved variables given data, belief propagation (BP) techiques can be
employed, which essentially pass messages (local conditional distributions) between nodes
and update the node marginals accordingly until convergence. For an introduction to para-
metric graphical models, see [3, 5, 8, 4]. Note that one important factor to make this work
is that messages and node marginals can actually be represented finitely.

The situation is different for nonparametric models, where dependencies between the cases
in a dataset are represented directly, and are not mediated through some finite number of
parameters θ . We can still employ a model of the form P (z |θ), but θ does not have a
finite representation anymore. It is often easier to work with nonparametric models after
the “parameters” θ have been integrated out2. To this end, a prior distribution P (θ) is
chosen, and the joint distribution for variables zi of interest is obtained as P (z1, . . . ,zn) =
∫

P (z1, . . . ,zn|θ)P (θ) dθ . To give an example, we may associate each case zi with a real
variable ui, then assume that the ui are a priori jointly distributed as a Gaussian with a
covariance matrix depending on parts (say xi) of the observations zi. It is useful to regard
the relationship xi → ui as a random field (or random function). Certain properties, such
as the ui changing smoothly on average w.r.t. xi, can be encoded directly into this setup,
by assuming a correlation coefficient between ui, uj which grows with shrinking distance
between xi,xj . In this example, a convenient θ would be a Gaussian process (GP), and

2In fact, any practical application of nonparametric models has to work on such an integrated out repre-
sentation, because

�
cannot be represented on a machine.

the prior P (θ) would be a GP distribution. Note that we need at least countably infinitely
many variables to describe a GP.

Now, suppose we have several domain variables, whose dependencies we would like to cap-
ture with a graphical model. However, we would also like to represent the individual variables
by nonparametric random fields. In this paper, we investigate the feasibility of applying the
parametric BP technique to such a nonparametric graphical model. In this case, marginal
beliefs and messages are random fields themselves. In simple cases, these can be represented
as joint distributions over cases of interest, namely after the parameters (GPs in our case)
have been integrated out. However, the representations for node marginals and messages
grows superlinearly in the number n of cases, as does the cost for message propagations, and
a straightforward BP extension along these lines would hardly be of more than academic
interest. We propose to use the recently developed IVM technique for sparse approxima-
tions for single domain variable GP models [6], in order to represent marginal beliefs and
to propagate messages. The central idea is that the BP message passing operations can be
expressed in terms of common primitives of Bayesian inference, such as combining informa-
tion from multiple sources by multiplication of beliefs, or marginalization of variables, and
the IVM framework provides efficient approximate solutions for these primitives.

A central problem when trying to deal with nonparametric structured graphical models, is
the “curse of dependency” effect. In a parametric model, the cases zi are independent given
the parameters (mediator) θ, but in a nonparametric model, our only option is to integrate
out θ , introducing dependencies between the zi which cannot be represented by a finite
mediator variable. This problem becomes worse with several domain variables.

We can think of a model dimension (along different domain variables) and a data dimension
(along cases zi we are interested in). For a parametric model, the mediator separates vari-
ables along the data dimension, although they still may have some complicated dependence
structure along the model dimension. Figure 1 illustrates the situation. We see that if the
mediator θ is conditioned upon, paths between the different replicas of the model along the
data dimension are blocked, which means that these blocks are conditionally independent.
BP may be run on each block independently, and the relevant messages are represented in
a way which does not depend on n.

In a nonparametric model, the infinite mediator must be integrated out, which leads to all
variables along model and data dimension becoming dependent in a way which has to be
represented explicitly. This fact is illustrated in Figure 2. The bidirectional edges are not
part of the usual directed graphical models semantics3, they simply state that the repli-
cas of x, y, z along the data dimension are all fully dependent, in that they constitute
a nonparametric random field. There is no useful conditional factorization in this model,
and belief representations and their manipulations are formidably expensive. Bottleneck ap-
proximations through artificial mediators are required in order to obtain practically efficient
inference.

3The correct way of drawing these models would be to contract the data dimension and use single nodes
for x, y, z, representing the whole random fields.

y

zx

y

zx

y

zx

θ

M
odel

Dim
en

sio
n

Data Dimension

Figure 1: Model and data dimension for a parametric graphical model.

3 Semiparametric Latent Factor Models

In this Section, we introduce the model for which we will demonstrate our GP belief prop-
agation ideas. We are interested in predicting multiple responses yc ∈ R c = 1, . . . , C from
covariates x ∈ X , and we would like to model the responses as conditionally dependent.
In statistical terminology, we would like to “share statistical strength” between the yc; in
machine learning parlance this is often referred to as “transfer of learning.” Such sharing
can be especially powerful if the data for the responses is partially unobserved.

Models related to the one proposed here are used in geostatistics and spatial prediction
under the name of co-kringing [1], where a typical problem can be described as follows.
After an accidental uranium spill, a spatial map of uranium concentration is sought. We
can take soil samples at selected locations and interpolate from these measurements using
GP prediction. However, carbon concentration is easier to measure than uranium, and the
two responses are often significantly correlated. In co-kriging, we set up a joint spatial model
for several responses with the aim of improving our prediction of one of them. The model to
be introduced here can be used for co-kriging, in which the nature of dependence between
the responses is conditional, in that it depends on the covariates x (spatial location in our
example).

Writing y = (yc)c and introducing a latent variable v ∈ R
C , our model has a factorizing

likelihood P (y |v) =
∏

c P (yc|vc), P (yc|vc) = N(yc|vc, σ
2
c), i.e. the signal v is obscured by

Gaussian noise, independent for each c. We intend to model the prior P (v|x) using Gaussian
processes. The simplest possibility is to assume that the vc are independent given x, i.e.
P (v|x) =

∏

c P (vc|x). In this case we can represent P (vc|x) as a Gaussian process (GP)
with mean function 0 and covariance function K̃(c):

E
[

vc(x)vc′(x
′)
]

= δc,c′K̃
(c)(x,x′).

M
odel

Dim
en

sio
n

x

yy

x z

y

x zz

Data Dimension

Figure 2: Model and data dimension for a nonparametric graphical model.

Details on GPs for Machine Learning may be found in [11]. The factorizing model will
be called the baseline model in the sequel. The components vc are independent a poste-
riori under the baseline model, so statistical strength is not shared among the different
components.

On the other end of the spectrum, we can model P (v|x) as a set of dependent Gaussian
processes with C(C + 1)/2 cross-covariance functions. Tasks such as inference, hyperpa-
rameter learning and prediction can be performed in much the same way as in a single
process model, by simply extending the covariate x to (x, c). This model will be called the
naive model. Due to the “curse of dependency”, approximate inference in the naive model
scales superlinearly in C n, which is acceptable only for rather small datasets and number
of outputs C.

The semiparametric latent factor model (SLFM) [15, 13] lies in between, in that v|x are
dependent in a flexible way, yet inference and learning is more tractable than for the naive
model. The key is to restrict the dependencies in a way which can be exploited in inference.
We introduce a second latent variable u ∈ R

P . Here and in the following it is understood
that for typical applications of our model we will have P � C. For a mixing matrix Φ ∈ R

C,P

we set
v = Φu + v(0)

where u and v(0) are independent. The components v
(0)
c have independent GP priors with

mean 0 and covariance function K̃(c), and the components up have independent zero-mean
GP priors with kernel K(p). Our model is a conditional nonparametric version of factor
analysis. P independent factors up are mixed through Φ, and further independent factors

v
(0)
c are added to the result. The factors have different roles. The v

(0)
c represent parts in the

signal v which behave independently, while the up parameterize conditional dependencies
(or correlations in this Gaussian case). The baseline model is a special case (P = 0), but for
P > 0 the components vc will be dependent a posteriori. The model combines nonparametric

(processes up, v
(0)
c) and parametric elements (the mixing matrix Φ). Note that the defition

here extends on the model of [15], where they had v(0) ≡ 0.

Note that by integrating out the u processes, we obtain induced cross-covariance functions
for x 7→ v:

E[vc(x)vc′(x
′)] = δc,c′K̃

(c)(x,x′) +
∑

p

φc,pφc′,pK
(p)(x,x′).

We could therefore perform inference and prediction the naive way. However, the relation-
ship between the domain variables u and v is structured, and in this paper we are interested
in exploiting this structure in order to obtain a more efficient method for representing the
posterior Q(v) = P (v|D) for data D, and to do predictions on unseen points. In the sequel,
the posterior over v is denoted4 by Q(v).

4 Gaussian Process Belief Propagation

In this Section, we derive GP belief propagation (BP) for the SLFM introduced in Sec-
tion 3. As noted above, a naive approach would treat all O(n C) variables as dependent and
represent their covariance explicitly, which is not feasible in interesting practical situations.
To repeat our motivation, we first make use of the tree structure of SLFM (see below) by
applying BP for marginal inference, leading to a representation which is factorized along the
model dimension. Dependencies along the data dimension are not structured, and additional
bottleneck approximations, such as introduction of artificial mediator variables, have to be
applied in order to represent and update the posterior marginals P (vi,c|D) efficiently. The
details of these representations are formidable even in the case of SLFMs, and for simplicity
we will skip over many of them. Our aim here is to point out typical problems that arise as
“curse of dependency”, and to suggest general remedies. All details for the SLFM case can
be found in [13].

We noted in Section 2 that the dependencies along the data dimension are unstructured (in
the sense of structure through a sparse graphical model) and have to be represented explic-
itly. This is a problem, because we would like to use BP techniques to exploit conditional
independencies along the model dimension. This involves passing messages between node
marginal beliefs, and either has to be represented in a way which scales superlinearly in
n. We propose to use low rank bottleneck approximations in order to represent and work
with these entities. The informative vector machine (IVM) [6, 10] is a general framework
for finding such low rank bottlenecks in a data-dependent way, and for performing inference
based on them. We will not go into details here, but merely state what will be required later
on. For a single domain variable GP model (C = 1) with n cases xi, yi and latent variables
vi ∈ R, the prior at the datapoints is P (v) = N(0,K), where K = (K(xi,xj))i,j is the
covariance matrix over the input datapoints xi. The bottleneck variables are vI = (vi)i∈I ,
a part of the variables v whose posterior belief is to be represented. Here, I ⊂ {1, . . . , n} is
the active set of size d � n. In the case of SLFMs, the likelihood P (yi|vi) is Gaussian, but
if it is not, the expectation propagation (EP) technique [7] can be used to replace them by
a Gaussian function NU (vi|bi, πi), πi ≥ 0, so the approximate posterior Q(v) is Gaussian.
If P (yi|vi) = N(yi|vi, σ

2), then πi = σ−2, bi = σ−2yi. The approximate IVM representation

4This convention comes from approximate inference, where the true intractable posterior P (� |D) is ap-
proximated by a feasible Q(�). We use Q(�) in the same sense, because due to several bottleneck approxi-
mations, our final posterior marginals are approximate as well.

is obtained by constraining bi = πi = 0 for i 6∈ I. If Q(u) = N(h,A), we see that

A =
(

K−1 + I ·,IΠII,·

)−1
= K − M MT , h = M β,

M = K ·,IΠ
1/2L−T , LLT = B = I + Π1/2KIΠ

1/2, β = L−1Π−1/2b,
(1)

where Π = diag(πi)i∈I and b = (bi)i∈I are called site parameters. This representation can
be derived using the Sherman-Morrison-Woodbury formula [9]. L is lower triangular, and
M is called stub matrix. The IVM method convolves updates of this IVM representation
(i.e. inclusions of a new i into I) with greedy selections of the best point to include next.
To this end, the marginal posterior moments h,a = diag A are kept up-to-date at any
time, and the forward selection score is based on those. Patterns are scored highly if their
inclusion into I leads to a large information gain, or reduction of posterior entropy. Details
about the IVM framework are given in [10].

More generally, an IVM representation is determined by a prior P (u) = N(h(0),A(0)), an
active set I (determining the bottleneck variables) of size d, and 2d site parameters b, Π,
and consists of the variables M , β, h, and a. These are defined as in Eq. 1, with K being
replaced by A(0) and the modifications

β = L−1
(

Π−1/2b − Π1/2h
(0)
I

)

, h = h(0) + Mβ.

This general tool for representing a single Gaussian random field belief efficiently through
a data-dependent bottleneck will be applied below in several contexts.

Recall the SLFM from Section 3. v ∈ R
nC are the latent variables directly associated with

the responses y, and u ∈ R
nP are the latent variables representing conditional dependencies.

What is the graphical structure in the model dimension? If we group v into v(c) = (vi,c)i, we
see that the v(c) are conditionally independent given u ∈ R

nP . In other words, the graphical
model along the model dimension is tree-structured, as shown in Figure 3.

v1 vC

u

yC1y

Figure 3: SLFM as a tree-structured graphical model

The belief propagation (BP) algorithm performs inference in tree-structured graphical mod-
els5 by designating an arbitrary root, passing messages outwards from this root to the leafs,
then collecting messages back to the root. This sweep has to be done at any time new
evidence (observations) become available (and are conditioned on). In our case, all observed
data is known at once, but recall that we would like to use IVM bottlenecks for efficiency.
The iterative procedure of selecting variables to become mediators one at a time, then in-
cluding them into the representation, is very similar to observations becoming available in
a sequential manner. We therefore employ the following “sequential” scheme. In each iter-
ation, we select new variables to become active. As we will see, this can be interpreted as
new evidence in the graphical model, and the posterior representation is updated by a BP
sweep.

The local conditional distributions in a graphical model are also called potentials6, for our
purposes they are positive functions sitting on nodes joined by an edge, or on single nodes.

Since vi = Φui + v
(0)
i , the edge potentials are

Ψu→v(v
(c),u) = P (v(c)|u) = N

(

(φT
c ⊗ I)u, K̃

(c)
)

where φc = ΦT
c,· is the c-th row of Φ. The single node potentials are Ψu(u) = N(0,K)

with K = diag(K(p))p and

Ψv(v
(c)) = NU

(

I ·,Icb
(c), I ·,IcΠ

(c)IIc,·

)

,

where Ic, b(c), Π(c) are active set and site parameters for an IVM representation. Since we
will use IVM forward selection in order to determine good active sets Ic for each marginal
belief Q(v(c)), we see that the SLFM representation to be developed has to be able to keep
the marginal posterior beliefs Q(vi,c) = N(hi,c, ai,c) up-to-date at all times. Furthermore,
by the form of Ψv, including a new entry into Ic can be interpreted as introducing new
evidence into the model, as has been noted above. Note that this setup does not allow us
to access joint information about Q spanning different v(c) blocks (in general, BP delivers
marginal posterior distributions only).

In the belief propagation method, nodes pass messages to their neighbours. A message can
be seen as belief of a node in what the neighbouring node should be, based on information
the node receives from its other neighbours excluding the receiver of the message7. Now
suppose that new evidence is introduced into our SLFM clustered graphical model, in the
sense that j is included into Ic with site parameters bj,c, πj,c. This will change the message
v(c) sends to u which is

m� (c)→� (u) ∝

∫

Ψv(v
(c))Ψu→v(v

(c),u) dv(c), (2)

5If the graphical model is not tree-structured, BP is often used anyway, known as “loopy BP” in this
case. There is no guarantee of convergence in general, and even if BP converges, the result is usually just an
approximation to the true posterior marginals. Still, loopy BP often works well in practice. Loopy GP BP
is not in the scope of this paper.

6We are dealing with directed graphical models here. In undirected models (Markov random fields),
potentials can be arbitrary positive functions.

7Given this idea, the exact definition of messages is straightforward to derive, and consists of standard
Bayesian computations involving sums (marginalization) and products. However, the fact that this intuitive
procedure results in correct marginals after a single sweep, is less obvious.

which in turn modifies the messages u sends to v(c′), c′ 6= c:

m�→�(c′)(v
(c′)) ∝

∫

∏

c′′ 6=c′

m� (c′′)→� (u)Ψu(u)Ψu→v(v
(c′),u) du. (3)

The message m�→�(c) remains the same. Finally, all marginals have to be updated:

Q(v(c′)) ∝ Ψv(v
(c′))m�→�(c′)(v

(c′)),

Q(v(c)) because Ψv(v
(c)) changed, and Q(v(c′)) because m�→�(c′) changed, c′ 6= c.

In the remainder of this Section, we show how this program can be executed using a sequence
of IVM representations, such that after each inclusion into one of the Ic, the marginals
Q(vi,c) can be updated efficiently. The development is very technical, and some details are
omitted here and given in [13]. Our aim here is merely to highlight specific difficulties in the
nonparametric BP extension, and these do not depend on specific details, but will rather
universally appear for other models as well.

Recall our notation and the standard ordering of variables depending on double indexes

(i, c) or (i, p) from Section 1. The kernel matrices K and K̃
(c)

are block-diagonal in the

standard ordering, because the processes up, v
(0)
c are all independent a priori. However, for

uI it turns out to be simpler to use the opposite ordering uI = (ui1,1, ui1,2, . . .)
T , where

I = {i1, i2, . . . }. Let Ψ be the permutation matrix8 such that ΨuI is in standard ordering.
We use the superscript ˆ to denote vectors and matrices in the uI ordering, for example
K̂ I = ΨT KIΨ. Note that ΨT (φc ⊗ I) = (I ⊗ φc), so that (φc ⊗ I) in the standard
ordering becomes (I ⊗ φc) in the uI ordering. We begin with the message m�(c)→� (u).

We require an IVM representation R1(c) (Eq. 1) based on the prior N(v(c)|0, K̃
(c)

) and
Ic, b(c), Π(c). Let µ = (φT

c ⊗ I)u. Some algebra gives

m� (c)→� ∝ exp

(

β(1,c)T γ −
1

2
γT γ

)

, γ = L(1,c)−1Π(c)1/2µIc
= L(1,c)−1Π(c)1/2(φT

c ⊗I)uIc .

We do not require the stub matrix M (1,c) in R1(c), because this representation is not
used to maintain marginal beliefs (but see R3(c) below), however we maintain E(c) =
Π(c)1/2L(1,c)−T with R1(c). If P (c) = (φc ⊗ I)E(c), we have that γ = P (c)T uIc , so that
m� (c)→� depends on uIc only.

At this point, we encounter a “curse of dependency” problem. Even if m�(c)→� depends on
uIc only, these messages have to combined for all c′ 6= c in order to form the reverse message
m�→�(c) . If the Ic are to be selected independently of size dc (say), their union can be of size
∑

c dc, this size governing the representation for the reverse messages. The problem is that
we have bottlenecks Ic associated with the nodes v(c), but by combining these we obtain an
implied bottleneck for u of size

∑

c dc, which is too large. This problem is especially severe
in the SLFM case, because u has all other nodes v(c) as neighbours, but similar problems
will occur in other examples as well. We deal with it by imposing an explicit bottleneck I
on u as well. Such “internal bottlenecks” on variables not directly related to observations
have to be chosen depending specifics of the model. In the SLFM case the following seems

8In Matlab, Ψ is implemented by reshaping the vector into a matrix, transposing it, and reshaping back
into a vector.

sensible. We restrict all Ic to have the common prefix I of size d. Inclusions are therefore
done in two phases. In the common inclusion phase, patterns are included into I, therefore
into all Ic at the same time. In the subsequent separate inclusion phase, the Ic are extended
independently. However, the messages m� (c)→� are always restricted to depend on uI only.
Namely,

m�(c)→� (uI) = NU
(

P̂
(c)

β(1,c), P̂
(c)

P̂
(c)T
)

, P̂
(c)

= (I ⊗ φc)E
(c)
1...d,·,

which simply drops the dependence on uIc\I .
9 Since the bottlenecks are the same for each

m� (c)→� , the implied bottleneck for u is I as well (of size P d). Again, while the generic
IVM bottleneck technique of selecting mediator variables is suitable if the variables in ques-
tion are closely linked to observations, we have just described a second class of bottleneck
approximations for “inner messages”, namely to limit the dependence of incoming messages
to a common set I.

The representation R2(c) is needed to form the message m�→�(c) , it basically represents
the distribution

Rc(u) ∝ P (u)
∏

c′ 6=c

m�
c′→� (uI).

Because all m�
c′→� are functions of uI we have Rc(u) = Rc(uI)P (u \ uI |uI), thus R2(c)

needs to be of size P d only, and its size grows only during the common inclusion phase. In
order to motivate the form of R2(c), we need to look ahead to determine the requirements
for maintaining the Q(v(c)) marginals. Here, Q(v(c)) is obtained by combining the evidence
potential Ψv(v

(c)) with the reverse message m�→�(c) in an IVM representation R3(c) of size
dc, where now the message m�→� (c) plays the role of the prior distribution. The representa-
tions R1(c), R3(c) differ in their prior distributions only. Denote the message m�→�(c) by

N(v(c)|µ(c),Σ(c)). A glance at Eq. 3 reveals that we have

Σ(c) = K̃
(c)

+ (φT
c ⊗ I)VarRc [u](φc ⊗ I). (4)

Next, let d\c =
∑

c′ 6=c dc and

P̂
(\c)

=
(

P̂
(1)

. . . P̂
(c−1)

P̂
(c+1)

. . . P̂
(C)
)

∈ R
Pd,d\c,

β̂
(\c)

=
(

β(1,1)T . . . β(1,c−1)T β(1,c+1)T . . . β(1,C)T
)T

∈ R
d\c .

The order of the columns of P̂
(\c)

is not important as long as β̂
(\c)

follows the same ordering.
These variables represent the combination

∏

c′ 6=c m� (c′)→� in the definition of m�→�(c) (see

Eq. 3). Some tedious algebra [13] reveals that the following IVM-like representation R2(c)
is required in order to maintain µ(c), Σ(c), the central parameters of Rc:

R2(c) : L(2,c)L(2,c)T = B(2,c) = K̂ I + K̂ IP̂
(\c)

P̂
(\c)T

K̂ I ,

β(2,c) = L(2,c)−1K̂ IP̂
(\c)

β̂
(\c)

,

M (2,c) = (φT
c ⊗ I)K ·,IΨL(2,c)−T ∈ R

n,Pd

(5)

9Note that
�̂ (c)

= Ψ
T � (c)

1...d,·, because �I is not in standard ordering.

This representation is of size O(n P d). It is not an IVM representation in the strict sense,
but is updated in a very similar manner. We now have µ(c) = M (2,c)β(2,c) and

Σ(c) = K̃
(c)

+ (φT
c ⊗ I)K (φc ⊗ I) − (φT

c ⊗ I)M (4)M (4)T (φc ⊗ I) + M (2,c)M (2,c)T ,

where
R4 : L(4)L(4)T = KI , M (4) = K ·,IL

(4)−T (6)

is another simple representation, which is block-diagonal and therefore of size O(n P d) only.

Finally, R3(c) is a standard IVM representation based on the prior N(µ(c),Σ(c)) and with
the same Ic and site parameters as R1(c) (see Eq. 1). As opposed to R1(c), we need to
maintain the stub matrix M (3,c) ∈ R

n,dc here, because we want to keep the marginal
moments h(c), a(c) of Q(v(c)) up-to-date at all times.

The size of the combined representation is O(n (
∑

c dc + dC P)). This should be compared
to O(n

∑

c dc) for the baseline method and to O(n C
∑

c dc) for the naive method. It is
shown in [13] how to update the representation after an inclusion in the common and the
separate inclusion phase (the former is more expensive). The details are tedious, but the
idea is to apply a sequence of IVM updates of the corresponding IVM representations, with
some intervening algebra.

The scaling behaviour is enlightening10, in that another problem is revealed. The overall
running time complexity (for both phases) is

O

(

n

(

P C d +
∑

c

dc

)

∑

c

dc

)

.

In large sample situations it makes sense to require P C d to be of the same order of magni-
tude as

∑

c dc. In that case, the memory requirements of our method are the same as for the
baseline up to a constant factor. However, it seems that modelling conditional dependencies
between classes comes at a significant additional price of at least O(n (

∑

c dc)
2) as compared

to O(n
∑

c d2
c) for the independent baseline. On the other hand, our method is faster than

the naive implementation11 by a factor of C. Interestingly, if the active sets Ic and site
parameters b(c), Π(c) are known, then the complete representation can be computed in

O

(

n

(

∑

c

d2
c + P d

(

C P d +
∑

c

dc

)))

which is significantly faster and actually fairly close to what the independent baseline re-
quires. Therefore, in marked contrast to the situation for IVM applied to single process
models, conditional inference with active set selection comes at a significantly higher cost
than without.

The problem is identified easily, and points to another difference between parametric and
nonparametric BP. While R2(c) is of limited size P d, for each of the

∑

c dc inclusions, C−1
of the representations have to be updated by rank 1 (in what amounts to an IVM update).

10We are aware that the reader has to take these scaling figures for granted, if the details in [13] are not
consulted. However, again our purpose is to describe a problem together with an intuitive explanation, whose
appreciation would not be helped, or would even be obscured by challenging details.

11The naive implementation is not feasible due to memory requirements in the first place.

In other words, the matrices P̂
(\c)

P̂
(\c)T

are of size P d, but are in fact updated d\c > P d
times by rank 1. Each such update has to be worked through the whole representation in
order to make sure that the marginals h(c), a(c) are up-to-date all the time, and delaying
these updates does not help either. This is in marked contrast to the situation of parametric
BP. In the latter case, we would essentially maintain a single marginal belief for u in some
representation R2, independent of c, combining all messages m�(c)→� . We would then obtain
the reverse messages m�→� (c) by dividing this belief by the message m� (c)→� , thus deleting
its influence. Since parametric models are typically used with potentials from an exponential
family, such a division operation is cheap, and the cost is independent of how much evidence
has already been included, because evidence is accumulated in the sufficient statistics of the
potentials. However, such a division cannot be done efficiently in the Gaussian process case.
We need to maintain different representations R2(c) in order to form each of the reverse
messages m�→� (c) , and C−1 of them have to be updated separately after each inclusion. At
this time, we do not have a satisfying remedy for this problem, but it is clearly an important
point for future research.

4.1 Prediction

In order to predict on test data, the dominant buffers scaling as O(n) are not required. We
need to compute the marginals of Q on the test point which is done just as above for the

training points: compute M (2,c), Σ
(c)
·,Ic

, M (4), and M (3,c) w.r.t. the test points. The cost
is the same as computing the representation for the training set from scratch (with fixed
active sets and site parameters), but with n replaced by the number of test points m:

O

(

m

(

∑

c

d2
c + P d

(

C P d +
∑

c

dc

)))

.

Again, this is fairly close to the requirements of the baseline method. Predictive distri-
butions can be computed from the marginals using Gaussian quadrature in general (for
non-Gaussian likelihoods in models different from SLFMs).

4.2 Selection of Points. Computing Site Parameters

Recall that if the likelihoods P (yi,c|ui,c) are not Gaussian12, we use EP (or assumed density
filtering, ADF) projections in order to replace them by Gaussian factors NU(ui,c|bi,c, πi,c).
This is done in much the same way as for single process models [6, 10] during the separate
inclusion phase. In the common inclusion phase, a pattern i is included jointly into all Ic. The
correct way of doing this would be to determine the joint marginal Q(vi), vi ∈ R

C and doing
the ADF projection by computing mean and covariance of ∝ Q(vi)

∏

c P (yi,c|vi,c). This has
to be done not only for patterns to be included, but also in order to score an inclusion
candidate, thus many times between each inclusion, requiring the joint marginals even in
case of a Gaussian likelihood. We do not know a way of maintaining these joint marginals
more efficiently than using the naive method.13 The problem is akin to joint rather than

12For SLFM, the likelihoods are Gaussian, and the site parameters are given by bi,c = σ−2
c yi,c, πi,c = σ−2

c .
13We suggest to use a joint common inclusion phase in [13], which essentially amounts to running the naive

method during the common inclusion phase. This requires additional approximations and is not covered here.

marginal inference in parametric graphical models, which also comes at substantial extra
costs. Another problem is that for non-Gaussian likelihoods, we need to do C-dimensional
quadrature in order to implement the ADF projection, which quickly becomes infeasible
with growing C. We settle for the approximation of doing ADF projections separately
for each vi,c, resulting in site parameters bi,c, πi,c. The updated marginal is Q′(vi,c) ∝
Q(vi,c)N

U (vi,c|bi,c, πi,c), its moments match the ones of ∝ Q(vi,c)P (yi,c|vi,c).

Next, we need an efficient way of selecting active variables (i, c) for inclusion into Ic.
Information-theoretic scores (from active learning) which measure the improvement from
Q(vj,c) to Q′(vj,c) (after inclusion), have been suggested in [6, 10]. For example, we may
choose the information gain score ∆i,c = −D[Q′(vj,c) ‖Q(vj,c)]. During the separate in-
clusion phase, we can score a set of candidates (i′, c′) and pick the overall winner (i, c),
which means that i is included into Ic. During the common inclusion phase, the values
∆j,c, c = 1, . . . , C need to be combined14 into a score for j, suggestions include

∆avg
j = C−1

∑

c

∆j,c, ∆min
j = min

c
∆j,c.

5 Parameter Learning

A nonparametric model comes with parameters as well, although they are less directly
related to observations than in parametric models. We refer to them as hyperparameters α.
In the case of the SLFM, α includes Φ and the parameters of the K̃(c) and K(p). Note that
we cannot avoid the hyperparameter learning issue15 in this case, because Φ has to be fitted
to the data in any case. The derivations in this Section are preliminary and rather serve
as suggestions for future work, in that a number of approximations are proposed without
experimental validation. However, once more these suggestions are derived from the single
process model case, where they have proven useful.

An empirical Bayesian method for estimating α is to maximize the marginal likelihood

P (y |α) =

∫

P (y|v)P (v|α) dv . (7)

This computation is of course intractable, but inference approximation techniques typically
come with some approximation for log P (y |α). It is shown in [13] that

G =

C
∑

c=1

(

n
∑

i=1

EQ[− log P (yi,c|vi,c)] + D [Q(vI,c) ‖P (vI,c)]

)

.

is an upper bound on − log P (y |α). We can minimize G in order to choose α. If we neglect
the dependence of Ic, b(c), Π(c) on α, we can even compute the gradient ∇�G efficiently.
As suggested in [10], we can use a double loop optimization scheme. In the outer loop,
Ic, b(c), Π(c) are computed by conditional inference, as discussed in Section 4. In the inner

14Again, we cannot compute exact the information gain for including j into all Ic, since this requires
knowledge of the joint Q(� j), � j ∈

�C .
15Many kernel methods proposed so far “avoid” the learning issue by selecting hyperparameters by semi-

manual techniques such as cross-validation. This is not possible with Φ in general, because these are too
many parameters.

loop, G is minimized for fixed Ic, b(c), Π(c). These inner optimizations should be run for
few steps only.

Alternatively, EP comes with its own marginal likelihood approximation (see [12]) which
can be adopted to the case of SLFMs. First, our representation only allows access to the
marginals Q(v(c)), so we should look for an approximation P (y) ≈ e−φ with φ =

∑

c φc.
φc is taken to be the EP marginal likelihood approximation for the “prior” P (v(c)) =
N(µ(c),Σ(c)) and the posterior Q(v(c)). Following Seeger [12], we obtain after some algebra
involving R3(c):

φc = −

n
∑

i=1

log Zi,c +
∑

i∈Ic

log Z̃i,c +
1

2

(

log
∣

∣

∣
B(3,c)

∣

∣

∣
+ b(c)TΠ(c)−1b(c) − β(3,c)T β(3,c)

)

.

Here, log Zi = log E\i[P (yi,c|vi,c)] and log Z̃i = log E\i[N
U (vi,c|bi,c, πi,c)], where Q\i(vi,c) =

Q(vi,c) for i 6∈ Ic, and Q\i(vi,c) ∝ Q(vi,c)/N
U (vi,c|bi,c, πi,c) for i ∈ Ic. The criterion simplifies

for the case of Gaussian noise, P (yi,c|vi,c) = N(yi,c|vi,c, σ
2
c), since Z̃i = Zi for i ∈ Ic in this

case:

φc = −
∑

i6∈Ic

log Zi,c +
1

2

(

log
∣

∣

∣
B(3,c)

∣

∣

∣
+ b(c)TΠ(c)−1b(c) − β(3,c)T β(3,c)

)

.

The exact gradient of φ cannot be computed in general, because the active sets Ic and site
parameters depend on α. However, if we assume these to be fixed, the gradient ∇�φ can
be computed efficiently along the same lines as for the variational bound. We may use the
same double-loop scheme in order to optimize φ.

6 Conclusions

A general marriage of parametric graphical models and nonparametric random field models,
each of which are well-understood and frequently used in Machine Learning and Statistics,
should prove very rewarding in that models of complicated structure can be dealt with using
a more flexible nonparametric setup. However, it is not clear how this connection can be
achieved in a sufficiently efficient manner in order to be of interest in practice. In this paper,
we showed where the principal problems lie and provided some ideas for tackling them. We
used the example of semiparametric latent factor models, for which the main difficulties
of the “curse of dependency” arise and can be demonstrated clearly, and we suggested a
number of different bottleneck approximations in order to deal with these problems. Our
main proposal is to use the generic IVM framework for sparse approximations, which so far
has been applied to single process models only. While the techniques we employ here already
result in a significant reduction in computational complexity for the SLFM in comparison
to a naive approach, additional approximation ideas will have to be developed in order to
render this marriage useful to practitioners. Our work presented here is preliminary at this
stage, an experimental validation of our ideas is subject to future work.

We are not aware of prior work combining Bayesian GP models with structured graphical
models in an efficient manner. Friedman and Nachman [2] suggest Gaussian process di-
rected graphical models, but they do not deal with reducing computational complexity in
a principled manner. In fact, they propose either to use the naive approach or to assume
that the posterior processes at each node are completely independent (this was called the

baseline method here). Nonparametric belief propagation has been used in a very different
context by Sudderth et.al.[14]. They represent a belief state by a parametric mixture whose
components are updated using ADF projections, but also resampled in a way related to
particle filtering. Their method is somewhat more general than ours here, since they are
able to represent beliefs with multiple modes16, but they do not deal with the “curse of
dependency” arising through unstructured dependencies of random fields along the data
dimension. It would be possible to combine their approach with ours for a structured GP
model with multi-modal posterior, but the complexity of such a framework would probably
be formidable.

Acknowledgments

The ideas presented here originate in joint work done with Yee-Whye Teh and Michael I.
Jordan. This work was supported in part by the IST Programme of the European Com-
munity, under the PASCAL Network of Excellence, IST-2002-506778. This publication only
reflects the authors’ views.

References

[1] N. Cressie. Statistics for Spatial Data. John Wiley & Sons, 2nd edition, 1993.

[2] N. Friedman and I. Nachman. Gaussian process networks. In C. Boutilier and M. Gold-
szmidt, editors, Uncertainty in Artificial Intelligence 16, pages 211–219. Morgan Kauf-
mann, 2000.

[3] Finn V. Jensen. An Introduction to Bayesian Networks. UCL Press, 1st edition, 1996.

[4] M. I. Jordan, editor. Learning in Graphical Models. Kluwer, 1997.

[5] S. Lauritzen. Graphical Models. Oxford Statistical Sciences. Clarendon Press, 1996.

[6] N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods:
The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 609–616. MIT Press,
2003.

[7] Thomas Minka. Expectation propagation for approximate Bayesian inference. In
J. Breese and D. Koller, editors, Uncertainty in Artificial Intelligence 17. Morgan Kauf-
mann, 2001.

[8] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1990.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes in C. Cambridge University Press, 2nd edition, 1992.

[10] M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, July 2003.
See www.kyb.tuebingen.mpg.de/bs/people/seeger.

16The SLFM is a jointly Gaussian model, and the posterior Q(�) (for fixed hyperparameters) is a Gaussian,
so the problem of multiple modes does not arise.

[11] M. Seeger. Gaussian processes for machine learning. International Journal of Neural
Systems, 14(2):69–106, 2004.

[12] M. Seeger. Expectation propagation for exponential families. Tech-
nical report, University of California at Berkeley, 2005. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.

[13] M. Seeger, M. I. Jordan, and Y.-W. Teh. Semiparametric latent factor
models. Technical report, University of California at Berkeley, 2004. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.

[14] E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Distributed occlusion reasoning
for tracking with nonparametric belief propagation. In L. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing Systems 17. MIT Press, 2005.

[15] Y.-W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In
Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and Statis-
tics 10, 2005.

