Cross-Validation Optimization for Large Scale
Hierarchical Classification Kernel Methods

Matthias W. Seeger
Max Planck Institute for Biological Cybernetics
P.O. Box 2169, 72012 Tubingen, Germany
seeger @ uebi ngen. npg. de

Abstract

We propose a highly efficient framework for kernel multisgamodels with a
large and structured set of classes. Kernel parametergeangeld automatically
by maximizing the cross-validation log likelihood, and gictive probabilities are
estimated. We demonstrate our approach on large scaleléssification tasks
with hierarchical class structure, achieving state-ef#nt results in an order of
magnitude less time than previous work.

1 Introduction

In many real-world statistical problems, we would like tcefinodel with a large number of depen-
dent variables to a training sample with very many cases.ekample, in multi-way classification
problems with a structured label space, modern applicatiteand predictions on thousands of
classes, and very large datasets become available.aiid C' denote dataset size and number of
classes respectively, nonparametric kernel methods \dsSor Gaussian processes typically scale
superlinearly inn C, if dependencies between the latent class functions aggegdyorepresented.
Furthermore, most large scale kernel methods proposed seffain from solving the problem of
learning hyperparameters (kernel or loss function pararsgtThe user has to run cross-validation
schemes, which require frequent human interaction andatisuitable for learning more than a few
hyperparameters.

In this paper, we propose a general framework for learningrobabilistic kernel classification
models. While the basic model is standard, a major featusaicdipproach is the high computational
efficiency with which the primary fitting (for fixed hyperpanaters) is done, allowing us to deal
with hundreds of classes and thousands of datapoints watti@w minutes. The primary fitting
scales linearly inC', and depends on mainly via a fixed number ahatrix-vector multiplications
(MVM) with n x n kernel matrices. In many situations, these MVM primitives e computed
very efficiently, as will be demonstrated. Furthermore, \w#roize hyperparameteesitomatically
by minimizing the cross-validation log likelihood, makinge of our primary fitting technology as
inner loop in order to compute the CV criterion and its grati®©ur approach can be used to learn
a large number of hyperparameters and does not need usarctia.

Our framework is generally applicable to structured lalpalces, which we demonstrate here for
hierarchical classificatiorof text documents. The hierarchy is represented through M@
setup. While theC latent class functions are fully dependenpriori, the scaling of our method
stays within a factor of two compared to unstructured cfecsgion. We test our framework on the
same tasks treated in [1], achieving comparable resultsleaat an order of magnitude less time.
Our method estimates predictive probabilities for eachgemt, which can allow better predictions
w.r.t. loss functions different from zero-one.

The primary fitting method is given in Section 2, the extensmhierarchical classification in Sec-
tion 3. Hyperparameter learning is discussed in Section@mgilitational details are provided in

Section 5. We present experimental results in Section 6. My efficient implementation is
publicly available, as projeddr in the LHOTSE toolbox for adaptive statistical models.

2 Penalized Multiple Logistic Regression

Our problem is to predicy € {1,...,C} fromx € X, given some i.i.d. dat® = {(x;,y,)|i =
1,...,n}. We use zero-one codinge. y, € {0,1}¢, 1Ty, = 1. We elpoy themultiple lo-
gistic regression modglconsisting ofC' latent (unobserved) class functions feeding into the
multiple logistic (or softmax) likelihood(y; . = 1|@;, u;) = ev(®) /(3" , et (@), We write
u. = f.+ b. for intercept parameters. € R and functionsf, living in a reproducing ker-
nel Hilbert space (RKHS) with kerndk (©), and consider th@enalized negative log likelihood
=" log P(y;|wi) + (1/2) X, I£lI2 + (1/2)2||b||%, which we minimize for primary
fitting. || - || is the RKHS norm for kernek (). Details on such setups can be found in [4].

Our notation fom C vectorg (and matrices) uses the orderigg= (y1.1,y2.1,- - - Yn.1,Y1.2, - - -)-
We setu = (u.(x;)) € R"“. @ denotes the Kronecker produttis the vector of all ones. Selection
indexesI are applied ta only: y; = (yi.c)icr.. € RIIC.

Since the likelihood depends on tiigonly throughf.(x;), every minimizer of® must be a kernel
expansionf. = ", a; K (-, x;) (representer theorem, see [4]). Plugging this in, the seger
becomeg1/2)a” Ka + (1/2)072||b|]2. K© = (K©)(x;, x;));; € R*" K = diag(K9),
is block-diagonal. We refer to this setupféet classificatiormodel. Theb, may be eliminated as
b=0c2(I®17)a. Thus,ifK = K +02(I ®1)(I ®17), then® becomes

1 ~ -
D =Py, + EaTI(a7 Oy, = —yTu+171, 1; =log1” exp(u;), u=Kao. (1)

® is strictly convex ina (because the likelihood is log-concave), so it has a uniguénmm point
&. The corresponding kernel expansions age= ", &; (K¢ (-, ;) + 02). Estimates of the
conditional probability on test points, are obtained by plugging.(«.) into the likelihood.

We note that this setup can also be seen as MAP approximat@Bayesian model, where ttfg
are given independent Gaussian process préogg/]. It is also related to the multi-class SVM [2],
where— log P(y;|u;) is replaced by the margin lossu,, (x;) + max.{uc(x;) + 1 — d¢,4,}. The
negative log multiple logistic likelihood has similar peaties, but is smooth as a functionwfand
the primary fitting ofae does not require constrained convex optimization.

We minimize® using theNewton-Raphso(NR) algorithm, the details are provided in Section 5.
The complexity of our fitting algorithm is dominated By(k2 + 2) matrix-vector multiplications
with K, wherek; is the number of NR iterationg, the number ofinear conjugate gradien CG)
steps for computing each Newton direction. Since NR is arstonder convergent methokl, can

be chosen smallk, determines the quality of each Newton direction, for boihyfamall values
are sufficient (see Section 6.2).

3 Hierarchical Classification

So far we dealt with flat classification, the classes beingjetident priori, with block-diagonal
kernel matrixK . However, if the label set has a known structumee can benefit from representing
it in the model. Here we focus drierarchical classificationthe label sef1, ..., C} being the leaf
nodes of a tree. Classes with lower common ancestor shomleeclosely related. In this Section,
we propose a model for this setup and show how it can be dethtimvour framework with minor
modifications and minor extra cost.

In flat classification, the latent class functiansare modelled aa priori independent, in that the
regularizer (which plays the role of a log prior) is a sum afiindual terms for each.., without any

1Seewww. kyb. t uebi ngen. npg. de/ bs/ peopl e/ seeger/ | hot se/ .

%In Mat | ab, r eshape(y, n, ©) would give the matrixy; .) € R™°.

3Learning an unknown label set structure may be achieved yoation maximization techniques, but this
is subject to future work.

interaction termsAnalysis of variancé ANOVA) models go beyond this independent design, they
have previously been applied to text classification by [Ht{0, ..., P} be the nodes of the tree,
being the root, and the numbers are assigned breadthifiest (. are the root’s children). The tree
is determined by’ andn,,, p =0, ..., P, the number of children of noge Let L be the set of leaf
nodes,|L| = C. Assign apair of latent functionsy,, i, to each node, except the root. Tligare
assumea priori independent, as in flat classificatiay, is the sum ofz,,/, p’ running over the nodes
(includingp) on the path from the root ta. The class functions to be fed into the likelihood are the
urc) Of the leafs. This setup represents similarities condggban the hierarchy. For example, if
leafs L(c), L(c') have the common parepf thenuy, .y = u, + (), UL(e) = Up + Ur(er), SO
the class functionsharethe effectu,. Since regularization forces all independent effégisto be
smooth, the classes ¢’ are urged to behave similargypriori.

Letu = (up(x:))ip, © = (Up(x;))ip € R™Y. The vectors are related as= (® @ Iu, ® €
{0,1}7F, Importantly,® has a simple structure which allows MVM with or & to be computed
easily inO(P), without having to compute or sto®e explicitly. MVM with @ is described in
Algorithm 1, and MVM with®” works in a similar manner [8].

Under the hierarchical model, the class functieng.) are strongly dependeat priori. We may
represent this prior coupling in our framework by simplygaing in the implied kernel matri¥:

K= (@, 0 K@) 1), 2)

where the innetk is block-diagonal. K is not sparse and certainly not block-diagonal, but the
important point is that we are still able to do kernel MVMs &fntly: pre- and postmultiplying by

® is cheap, ands is block-diagonal just as in the flat case.

We note that the step from flat to hierarchical
classification requires minor modifications oAlgorithm 1: Matrix-vector multiplication
existing code only. If code for representing & = &z

block-diagonal K is ayailable, we can use it o (.90 := 0.5 := 0.

to represent the inneK’, just replacingC' by forp=0,...,Pdo

P. This simplicity carries through to the hyper- if n,, > 0 (p not a leaf nodejhen

parameter learning case (see Section 4). The LetJ(p) ={s+1,...,s+n,}.
cost of a kernel MVM is increased by a factor y— (", yl" + fB?(p))T- § 8+ np.
P/C < 2, which in most hierarchies in prac- o4 it

tice is close tal. However, it would be wrong
to claim that hierarchical classification in gen-
eral comes as cheap as flat classification.

end for

The subtle issue is that the primary fitting becomes mordy;qetecisely because there is more
coupling between the variables. In the flat case, the Hesdiénis close to block-diagonal. The
LCG algorithm to compute Newton directions converges dyjdlecause it nearly decomposes into
C independent ones, and fewer NR steps are required (se®i$&ti In the hierarchical case,
both LCG and NR need more iterations to attain the same aocuta numerical mathematics,
much work has been done to approximately decouple lineaemygsbypreconditioning In some
of these strategies, knowledge about the structure of tstesymatrix (in our case: the hierarchy)
can be used to drive preconditioning. An important point fiture research is to find a good
preconditioning strategy for the system of Eq. 5. Howewvegli our experiments so far the fitting
of the hierarchical model took less than twice the time regglifor the flat model on the same task.
Some further extensions, such as learning with incompégtel linformation, are discussed in [8].

4 Hyperparameter Learning

In any model of interest, there will be fréwperparameteré, for example parameters of the ker-
nels K (). These were assumed to be fixed in the primary fitting methwddoced in Section 2.
In this Section, we describe a scheme for learrfingghich makes use of the primary fitting algo-
rithm as inner loop. Note that such nested strategies arencmplace in Bayesian Statistics, where
(marginal) inference is typically used as subroutine foapgeter learning.

Recall that primary fitting consists of minimizing of Eg. 1 w.r.t.c. If we minimize® w.r.t. h as
well, we run into the problem of overfitting. A common remedyté minimize the negativeross-

validation log likelihoodV instead. Le{ I} be a partition of 1, ..., n}, with J, = {1,... ,n}\ I,
and let®;, = uf, ,((1/2)es,) —y,,) + 171, be the primary criterion on the subsgt of the

data. Hereuwk] = K.]ka[m. Theay;,) are independent variablesot part of a commorx. The
CV criterion is

U= Z Ur, Up o=yl upg+170, wp = Ko 00 3
p

wherea;,) minimizes®,, . Since for eachk, we fit and evaluate on disjoint parts gf ¥ is
an unbiased estimator of the test negative log likelihood, @inimizing ¥ should be robust to
overfitting.

In order to selech, we pick a fixed partition at random, then do gradient-baswdization of &
w.r.t. h. Tothis end, we keep the st ;,; } of primary variables, and iterate between re-fitting those
for each fold!;,, and computingl andV, W. The latter can be determined analytically, requiring
us to solve a linear system with the Hessian maIriRVE]k]KJkV[Jk] already encountered during
primary fitting (see Section 5). This means that the same L8& awised to compute Newton
directions there can be applied here in order to compute rihdient of &'. The details are given
in Section 5. As for the complexity, suppose there @felds. The update of thex|;,; requires

q primary fitting applications, but since they are initializaith the previous valuea/;,;, they do
converge very rapidly, especially during later outer itieras. Computingd based on thex
comes basically for free. The gradient computation deca®pinto two parts: accumulation, and
kernel derivative MVMs. The accumulation part requirevsa g systems of sizé(¢ — 1)/q)n C,
thusq k3 kernel MVMs on theK ;, if linear conjugate gradients (LCG) is uséd,being the number

of LCG steps. We also need two buffer matridBs F' of ¢n C elements each. Note that the
accumulation step imdependenof the number of hyperparameters. The kernel derivative MVM
part consists of derivative MVM calls for each independent componenhokee Section 5.1. As
opposed to the accumulation part, this part consists of pleitarge matrix operation and can be
run very efficiently using specialized numerical linearedda code.

As shown in Section 5, the extension of hyperparameterilegita the hierarchical case of Section 3
is simply done by wrapping the accumulation part, the codind additional memory effort being
minimal. Given a method for computing andV,, ¥, we plug these into a custom optimizer such
as Quasi-Newton in order to leahn

5 Computational Details

In this Section, we provide details for the general plan taid above. It is precisely these which
characterize our framework and allow us to apply a standardeito domains beyond its usual
applications, but of interest to Machine Learning.

Recall Section 2. We minimiz& by choosing search directioss and doing line minimizations
alonga + As, A > 0. For the latter, we maintain the pdin, v), © = K o. We have:

Vu@ =7 —y+a, m=explu—1®1), ie. mc=Py,c=1u;). (4)
Given(a, u), andV,, ® can be computed i®(n C), without requiring MVMs. This suggests to

perform the line search in along the directiors = K s, the corresponding: can be constructed
from the final\. Since kernel MVMs are significantly more expensive thaséid®n C) operations,
the line searches basically come for free!

We choose search directions Bgwton-Raphso(NR)?, since the Hessian df is required anyway
for hyperparameter learning. LE? = diagw, P = (1 I)(1T ®I),andW = D - DPD. We
haveVV,®;, = W, andg = V,®;, = w —y from Eq. 4. The NR system id + Wk)a’ =
Wu — g, with the NR direction being = o/ — . If V = (I — DP)D"?, thenW = VvV T,
becausé1” @ I)D = I. We see thaty’ = V 3 (using(1” ® I)g = 0), and we can obtain it from
the equivalensymmetric system

(I+VTKV)ﬂ —VTu D Yr —y), o =Vp (5)

“Initial experiments with conjugate gradientsangave very slow convergence, due to poor conditioning,
but experiments with a different dual criterion are in pirepian.

(details are in [8]). Note thaPz = (3", z(<))., so that MVM with V' can be done itD(n C).
The NR direction is obtained by solving this system appratity by thdinear conjugate gradients
(LCG) method, requiring a MVM with the system matrix in eatdration, thus a single MVM with
K. Our implementation includes diagonal preconditioning anmerical stability safeguards [8].
The NR system need not be solved to high accuracy (see Seécfipn Initially, 3 = D ?q,
because theW 3 = a if only (17 @ I)a = 0, which is true if the initiakx fulfils it.

We now show how to compute the gradievif, U for the CV criterion¥ (Eqg. 3). Note that

oy is determined by the stationary equation;; + g; = 0. Taking the derivative gives
dapy) = —Wi((dK j)ap + K'J(dam)). We obtain a system foda; which is sym-
metrized as above:(I + V[TJ]KJV[J])ﬁ = fV[TJ](dKJ)a[J], dayy = V8. Also,

dV; = (71'[[] - y])T((dK]_,J)OL[J] + KI,J(dOé[J])). With s = I._’](Tl'[[] — y[) — I._’(]V[J] (I +
VK Vi)'V K (mi—y;), we have thatll; = (I. ja;)7 (dK)s. If we collectthese
vectors as columns d, F' € R":4, we have thati¥ = tr E” (dK) F . In the hierarchical setup,
we use Eq. 2. = (®] . ® I)E € R"7¢, F accordingly, thenl¥ = tr E'(dK)F. Here, we
build E, F in the buffers allocated faE, F', then transform them later in place.

We finally mention some of the computational “tricks”, wititavhich we could not have dealt with
the largest tasks in Section 6.2 (for section B, a simgle vector require881/ of memory). For
the linear kernel (see Section 5.1), the main primitive— X X” A can be coded very efficiently
using a standard sparse matrix format %t If A is stored row-majord; 1, a1 2, ..), the com-
putation becomes faster by a factor4oto 6 compared to the standard column-major forfmdtor
hyperparameter learning, we work on subsgtsand need MVMs withK ;, . “Covariance repre-
sentation shuffling” permutes the representationfs., sits in the upper left part, and MVM can
use flat rather than indexed code, which is many times fadteralso share memory blocks of size
n C between LCG, gradient accumulation, line searches, kggpamoverall memory requirements
atrn C for a small constant, and avoiding frequent reallocations.

5.1 Matrix-Vector Multiplication

MVM with K is the bottleneck of our framework, and all efforts shouldcbecentrated on this
primitive. We can tap into much prior work in numerical matregics. With many classes, we
may share kernelsk () = v M), v, > 0 variance parameterd/(") independent correlation
functions. Our generic implementation stores two symmemitricesl\/_f(l) in an x n buffer.

Thelinear kernel K (©) (z, ') = v.z” 2’ is frequently used for text classification (see Section.6.2)
If the data matrixX is sparse, kernel MVM can be done in much less than the ge@éfitn?),
typically in O(C n), requiringO(n) storage forX only, even if the dimension at is way beyond

n.

If the K'(©) are isotropic kernels (depending @ — || only) and ther are low-dimensional, MVM

with K can be approximated using specialized nearest neighbtausttactures such &D trees
[12, 9]. Again, the MVM cost is typicallyO(C n) in this case. For general kernels whose kernel
matrices have a rapidly decaying eigenspectrum, one camxépmate MVM by usinglow-rank

matricesinstead of thek () [10], whence MVM isO(C n d), d the rank.

In Section 4 we also need MVM with the derivativ(ei?s/ahj)K(C). Note that(9/dlog v.) K® =
K9, reducing to kernel MVM. For isotropic kerneldl) = f(A), a;; = |xi — z;], so

(8/6hj)K(C) = g;(A). If KD trees are used to approxima#k, they can be used equivalently (and
with little additional cost) for computing derivative MVMs

The innermost vector operations work on contiguous churikaemory, rather than strided ones, thus
supporting cacheing or vector functions of the processor.

6 Experiments

In this Section, we provide experimental results for oumfeavork on data from remote sensing, and
on a set of large text classification tasks with very manyselasthe latter are hierarchical.

6.1 Flat Classification: Remote Sensing

We use thesatimageremote sensing task from tistatlogrepository? This task has been used in
the extensive SVM multi-class study of [5], where it is amdhg datasets on which the different
methods show the most variance. It has 4435 training,m = 2000 test cases, and = 6 classes.
We use the isotropiGaussian (RBFkernel

KO (x,2') = veexp (—%Hw - :c'HQ) , Ve,we >0, x,x’ €RY (6)

We compare the methodsc-sep(ours with separate kernels for each class; 12 hyperpaeas)et
mc-tied (ours with a single shared kernel; 2 hyperparametdn®st (one-against-restC' binary
classifiers are trained separately to discriminafeom the rest, they are voted by log probability
upon prediction; 12 hyperparameters). Note thrastis arguably the most efficient method which
can be used for multi-class, because its binary classif@erse fitted separately and in parallel. Even
if run sequentiallylrestrequires less memory by a factor©fthan a joint multi-class method.

We use oub-fold CV criterion ¥ for each method. Results here are averaged over ten randomly
drawnb-partitions of the training set (the same partitions areddee the different methods). The
test error (in percent) ahc-seps 7.81 vs.8.01 for 1rest The result formc-seps state-of-the-art,

for example the best SVM technique tested in [5] attainéd, and SVM one-against-rest attained
8.30 in this study. Note that whilérestalso may choose 12 independent kernel parameters, it does
not make good use of this possibility, as opposethtesep mc-tiedhas test erro8.37, suggesting

that tying kernels leads to significant degradation. RO@esifor the different methods are given

in [8], showing thainc-sepalso profits from estimating the predictive probabilitiesibetter way.

6.2 Hierarchical Classification: Patent Text Classificatio

We use the WIPO-alpha collectibpreviously studied in [1], where patents (title and claimtye
are to be classified w.r.t. the standard taxondR19, a tree with4 levels and229 nodes. Sections
A, B,..., H. form the first level. As in [1], we concentrate on theubtasks rooted at the sections,
ranging from D ¢ = 1140, C = 160, P = 187)to B (n = 9794, C = 1172, P = 1319).
We use linear kernels (see Section 5.1) with variance paeame. All experiments are averaged
over three training/test splits, different methods usimg same onesW is used with a different
5-partition per section and split, the same across all methd@dur method outputs a predictive
p; € RY for each test case;. The standard predictionz;) = argmax, p; . maximizes expected
accuracy, classes are rankedag) < r;(c’) iff p; . > p;.-. The test scores are the same as in [1]:
accuracy(acc)m™! > i L=y} precision(prec)m ! > r;(y;)~', parent accuracypacc)
m~1 >~ i Ypar(y(z;))=par(y;)}» Par(c) being the parent of.(c). Let A(c,c’) be half the length of
the shortest path between ledféc), L(c’). Thetaxo-loss(taxo) ism ! > Ay(z;), yj). These
scores are motivated in [1]. For taxo-loss and parent acguvee better choosg(x;) to minimize
expected loss different from the standard prediction.

We compare methods F1, F2, H1, H2 (F: flat; H: hierarchical). &l v. shared (1); H1v. shared
across each level of the tree (3). F2, H2:shared across each subtree rooted at root’s children (A:
15,B:34,C: 17,D: 7, E: 7, F: 17, G: 12, H: 5). Recall that thare 3 accuracy parameters. For
hyperparameter learning; = 8, ka = 4, ks = 15 (F1, F2);k; = 10, ko = 4, k3 = 25 (H1, H2).

®Available atht t p: / / waw. ni aad. | i acc. up. pt/ol d/statl og/.

'Raw data from www. wi po.int/ibis/datasets. Label hierarchy described at
WWW. Wi po.int/classifications/en. Thanks to L. Cai, T. Hofmann for providing us with the
count data and dictionary. We did Porter stemming, stop wemntbval, and removal of empty categories. The
attributes are bag-of-words over the dictionary of ocayisrords. All cases; were scaled to unit norm.

8For parent accuracy, let(j) be the node with maximal mass (ungey) of its children which are leafs,
theny(x;) must be a child op(y).

®Except for section C, whetle, = 14, k2 = 6, ks = 35.

acc (%) prec (%) taxo

F1 H1 F2 H2| F1 H1 F2 H2| F1 H1 F2 H2
40.6 419 405 419|516 534 514 534|127 1.19 1.29 1.19
32.0 329 31.7 32.7| 41.8 438 416 437|152 144 155 1.44
33.7 34.7 341 345|452 466 454 464|134 126 135 1.27
40.0 40.6 39.7 40.8| 524 541 522 543|119 1.11 1.18 1.11
33.0 342 328 34.1] 451 471 450 47.1|139 131 138 1.31
314 324 314 325|428 449 428 450|143 134 143 1.34
40.1 40.7 40.2 40.7|51.2 525 513 525|132 1.26 1.32 1.26
39.3 39.6 394 39.7| 524 533 525 534|117 115 1.17 1.14

taxo[0-1] pacc (%) pacc[0-1] (%)

F1 H1 F2 H2| F1 H1 F2 H2| F1 H1 F2 H2
128 119 129 118|589 616 582 615|572 61.3 56.9 614
154 144 156 144|536 564 527 56.6|519 559 514 559
133 126 132 126|589 626 585 620 586 61.8 58.9 61.6
120 112 122 112|646 670 644 67.1|63.5 67.1 626 67.0
143 133 144 1.34/56.0 59.1 56.2 59.2|54.0 58.2 53.5 579
143 134 144 134|568 59.7 56.8 59.8|54.9 58.7 54.6 58.9
132 126 132 126|580 59.7 576 59.6/ 56.8 59.2 56.6 58.9
119 116 1.19 115|616 625 61.8 625|599 61.6 60.0 61.8

ITOTmMOOwm>

IOTMmMOOm>

Table 1: Results on tasks A-H. Methods F1, F2 flat, H1, H2 Inédiiaal. taxo[0-1], pacc[0-1] for
argmax, p; . rule, rather than minimize expected loss.

FinaINR (s) | CV Fold (s) FinalNR (s) | CV Fold (s)

F1 H1l F1 H1l F1 H1 F1 H1l
2030 3873] 573 598 1315 203.4| 32.2 49.6
3751 8657| 873 1720 1202 2871 426 568
4237 7422| 719 1326 1342 2947| 232 579
56.3 1185| 9.32 20.2 971.7 1052| 146 230

o0Owm>
IGOmTm

Table 2: Running times for tasks A-H. Method F1 flat, H1 hiehézal. CV Fold: Re-optimization
of o], gradient accumulation for single fold.

For final fitting: k1 = 25, ko = 12 (F1, F2);k1 = 30, ko = 17 (H1, H2). The optimization is started
from v, = 5 for all methods. Results are given in Table 1.

The hierarchical model outperforms the flat one consistentVhile the differences in accuracy
and precision are hardly significant (as also found in [Higyt(partly) are in taxo-loss and parent
accuracy. Also, minimizing expected loss is consistengligdy than using the standard rule for the
latter, although the differences are very small. H1 and HZdoperform differently: choosing
many different.. in the linear kernel seems no advantage here (but see SéctiprThe results are
very similar to the ones of [1]. However, for our method, teeammendation in [1] to use. = 1
leads to significantly worse results in all scores,#hehosen by our methods are generally larger.

In Table 2, we present running tim&sor the final fitting and for a single fold during hyperparasret
optimization § of them are required fob, V). Cai and Hofmann [1] quote a final fitting time of
2200s on the D section, while we requifd 9s (more thanl8 times faster). It is precisely this high
efficiency of primary fitting which allows us to use it as inh@op for hyperparameter learning.

7 Discussion

We presented a general framework for very efficient largéedearnel multi-way classification with
structured label spaces and demonstrated its featuresecardtiical text classification tasks with
many classes. As shown for the hierarchical case, the frankaw easily extended to novel struc-

%prgcessor time ofi4bit 2.33GHz AMD machines.

tural priors or covariance functions, and while not showrehi is also easy to extend it to different
likelihoods (as long as they are log-concave). We solve dradd parameter learning problem by
optimizing the CV log likelihood, whose gradient can be caomep within the framework. Our
method provides estimates of the predictive distributibteat points, which may result in better
predictions for non-standard losses or ROC curves. Efficiad easily extendable code is publicly
available (see Section 1).

An extension to multi-label classification is planned. Maidvanced label set structures can be
adressed, noting that Hessian vector products can oftearbputed in about the same way as gra-
dients. An application to label sequence learning is wonrogress, which may even be combined
with a hierarchical prior. Infering a hierarchy from datgisssible in principle, using expectation
maximization techniques (note that the primary fitting cealdvith targedistributionsy,), as well

as incorporating uncertain data.

Empirical Bayesian methods or approximate CV scores foetpgrameter learning have been pro-
posed in [11, 3, 6], but they are orders of magnitude more resipe than our proposal here, and
do not apply to a massive number of classes. Many multi-&&8d techniques are available (see
[2, 5] for references). Here, fitting is a constrained corweblem, and often fairly sparse solutions
(many zeros in) are found. However, if the degree of sparsity is not largst-firder conditional
gradient methods typically applied can be stbwSVM methods typically do not come with effi-
cient automatic kernel parameter learning schemes, agdithaot provide estimates of predictive
probabilities which are asymptotically correct.

Acknowledgments

Thanks to Olivier Chapelle for many useful discussions. fouted in part by the IST Programme
of the European Community, under the PASCAL Network of Ebecede, IST-2002-506778.

References
[1] L. Cai and T. Hofmann. Hierarchical document categditmawith support vector machines. @KM
13, pages 78-87, 2004.

[2] K. Crammer and Y. Singer. On the algorithmic implemeiatatof multiclass kernel-based vector ma-
chines.J. M. Learn. Res2:265-292, 2001.

[3] P. Craven and G. Wahba. Smoothing noisy data with splimetfons: Estimating the correct degree of
smoothing by the method of generalized cross-validatdumerische Mathematild1:377—-403, 1979.

[4] P.J. Green and B. SilvermamNonparametric Regression and Generalized Linear Mod®enographs
on Statistics and Probability. Chapman & Hall, 1994.

[5] C.-W. Hsu and C.-J. Lin. A comparison of methods for muglass support vector machinesEEE
Transactions on Neural Networks3:415-425, 2002.

[6] Y. Qi, T. Minka, R. Picard, and Z. Ghahramani. Predictatdomatic relevance determination by expec-
tation propagation. IProceedings of ICML 212004.

[7] M. Seeger. Gaussian processes for machine learhiternational Journal of Neural Systeirik}(2):69—
106, 2004.

[8] M. Seeger. Cross-validation optimization for struetiHessian kernel methods. Technical report, Max
Planck Institute for Biologic Cybernetics, Tubingen, @any, 2006.

[9] Y. Shen, A. Ng, and M. Seeger. Fast Gaussian processsggreusing KD-trees. |Advances in NIPS
18, 2006.

[10] A. Smola and P. Bartlett. Sparse greedy Gaussian psaegsession. Idvances in NIPS 13ages
619-625, 2001.

[11] C. K. I. Williams and D. Barber. Bayesian classificatioith Gaussian processeslEEE PAM],
20(12):1342-1351, 1998.

[12] C. Yang, R. Duraiswami, and L. Davis. Efficient kernelahies using the improved fast Gauss trans-
form. In Advances in NIPS 1pages 1561-1568, 2005.

1These methods solve a very large number of small problemasgiitely, as opposed to ours which does few
expensive Newton steps. The latter kind, if feasible atofilen makes better use of hardware features such as
cacheing and vector operations, and therefore is the peefepproach in numerical optimization.

