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Abstract. We present a framework for efficient, accurate approximate
Bayesian inference in generalized linear models (GLMs), based on the ex-
pectation propagation (EP) technique. The parameters can be endowed
with a factorizing prior distribution, encoding properties such as sparsity
or non-negativity. The central role of posterior log-concavity in Bayesian
GLMs is emphasized and related to stability issues in EP. In particular,
we use our technique to infer the parameters of a point process model
for neuronal spiking data from multiple electrodes, demonstrating sig-
nificantly superior predictive performance when a sparsity assumption is
enforced via a Laplace prior distribution.

1 Introduction

The framework of generalized linear models (GLM) [5] is a cornerstone of modern
Statistics, offering unified estimation and prediction methods for a large num-
ber of models frequently used in Machine Learning. In a Bayesian generalized
linear model (B-GLM), assumptions about the model parameters (sparsity, non-
negativity, etc) are encoded in a prior distribution. For example, it is common
to use an overparameterized model with many features together with a sparsity
prior. Only such features relevant for describing the data will end up having
significant weight under the Bayesian posterior. Importantly, for the models of
interest in this paper, inference does not require combinatorial computational
efforts, but can be done even with a large number of parameters.

Exact Bayesian inference is not analytically tractable in most B-GLMs. In
this paper, we show how to employ the expectation propagation (EP) technique
for approximate inference in GLMs with factorizing prior distributions. We focus
on models with log-concave (therefore unimodal) posterior, for which a careful
EP implementation is numerically robust and tends to convergence rapidly to
an accurate posterior approximation. The code used in our experiments will be
made publicly available.

We apply our technique to a point process model for neuronal spiking data
from multiple electrodes. Here, each neuron is assumed to receive causal input
from an external stimulus and the spike history, represented by features in a
GLM. In the presence of high-dimensional stimuli (such as images), with many
neurons recorded at a reasonable time resolution, we end up with a lot of features,



but we can assume that the system can be described by a much smaller number
of parameters. This calls for a sparsity prior, and we are able to confirm the
importance of this prior assumption through our experiments, where our model
achieves much better predictive performance with a Laplace sparsity prior than
with a (traditionally favoured) Gaussian prior, especially for small to moderate
sample sizes. Our model is inspired by [10], who identify commonly used spiking
models as log-concave GLMs, but the Bayesian treatment as well as the usage
of sparsity in this context is novel.

The structure of the paper is as follows. In Section 2, we introduce and
motivate the model class of B-GLMs. In Section 3, we show how the expectation
propagation method can be applied to B-GLMs, motivating the central role of
log-concavity in this context. Our multi-neuron spiking model is presented in
Section 4, and experimental results are presented in Section 5. We close with a
discussion in Section 6.

2 Bayesian Generalized Linear Models

The models we are interested in here are specified in terms of primary parameters
w (or weights) and hyperparameters θ. If D denotes the set of observations, the
likelihood is P (D|w), and the (Bayesian) prior distribution is P (w). We require
that

P (w|D) ∝
∏
j

φj(uj), uj = wTψj , (1)

where P (w|D) ∝ P (D|w)P (w) is the (Bayesian) posterior. uj is a scalar-valued1

linear function of w, and the sites φj(·) are non-negative scalar functions. We
require that all φj are log-concave, i.e. each − log φj is convex2. The role of
log-concavity is clarified shortly, see also Section 3. Note that our framework
can be extended with no additional difficulties to models with an additional
joint Gaussian factor N(w|µ0,Σ0) in (1). Here, Σ0 need not be diagonal. Most
Gaussian process models fall in our class, for example [9].

Perhaps the simplest B-GLM is the linear one, where the likelihood is Gaus-
sian and given by factors φj(uj) = N(yj |uj , σ

2), describing data D = {(ψj , yj)},
yj ∈ R. Equivalently, yj = ψT

j w + εj , where εj ∼ N(0, σ2) is noise. If the lin-
ear model is used with a Gaussian prior on w, Bayesian inference can be done
analytically, essentially by solving the normal equations. However, this conve-
nient conjugate choice does not encode any strong assumptions about w and
can severely underperform in situations where such assumptions are reasonable.
What non-Gaussian priors can we use within our model class? We restrict our-
selves to factorizing priors: P (w) =

∏
k P (wk). Log-concave choices include the

Laplace (or double exponential) P (wk) ∝ e−ρk|wk| (sparsity); positive Gaus-
sian P (wk) ∝ N(wk|0, σ2

k)I{wk>0} (non-negativity); or exponential distribution

1 Our framework applies just as well if the uj are low-dimensional vectors, but this is
not in the scope of this paper.

2 We allow for generalized convex functions, which may take the value +∞.



P (wk) ∝ e−ρkwkI{wk>0} (sparsity and non-negativity). Furthermore, any prod-
uct of log-concave functions is log-concave again.

Gaussian Laplace Very Sparse

Fig. 1. Different prior distributions over coefficients of w.

In this paper, we are principally interested in the Laplace distribution as a
sparsity prior. The linear model with this prior is the basis of the Lasso [19],
extensively used in Machine Learning (under names such as L1 regularization,
basis pursuit, and others). In the Lasso, we compute point estimates for the pa-
rameters, by maximizing the sum of the log likelihood and the log of the Laplace
sparsity prior. The latter L1 regularizer tends to force coefficient estimates to
zero exactly if they are not required. L1 penalization can be applied to nonlin-
ear GLMs as well, resulting in a convex estimation problem, for which several
algorithms have been proposed in Machine Learning.

The Bayesian inference approach is quite different. Rather than just esti-
mating a single parameter value, a posterior distribution over parameters is
computed. More than a point estimate, we obtain credibility regions and infor-
mation about parameter correlations from the posterior. Parameters are never
forced exactly to zero under the posterior, since such a conclusion could not
be justified from finite observations. The function of the Laplace sparsity prior
in Bayesian inference is motivated in Figure 1. It leads to shrinkage of poste-
rior mass towards coordinate axes (vertical in the figure), something a Gaussian
prior does not do. On the other hand, the posterior remains log-concave, so that
all contours enclose convex sets. The stronger sparsity prior ∝ e−|aij |0.4

is not
log-concave and induces a multimodal posterior, which can be very hard to ap-
proximate. Note that the role of the Laplace prior in our work here is not to
provide feature selection or sparse estimation, but rather to improve our infer-
ence for an overparameterized model from limited data. Note that the method
proposed here has been applied to Bayesian inference for the sparse linear model



underlying the Lasso in [16]. However, our application here requires a nonlinear
model, since the data are event times rather than real-valued responses.

Generalized linear models [5] extend the linear model to a range of different
tasks beyond real-valued regression estimation, while maintaining desirable prop-
erties such as identifiability, efficient estimation, and simple asymptotics. All log-
concave GLMs are of the form (1). The likelihood has exponential family form, in
that P (D|w) = exp(φ(D)Tg−l(g)−a(D)), where g = g(w) are the natural pa-
rameters, and l(g) is the log partition function, which is convex in g . If g is linear
in w, then P (D|w) is log-concave in w, since − log P (D|w) = −φ(D)Tw+ l(g)
up to a constant. Therefore, any log-concave factorizing prior on w induces a
B-GLM. If g(w) is composed of a linear map and a nonlinear link function,
log-concavity must be established separately. A concrete example of a B-GLM
of this kind is given in Section 4.

Importantly, the posteriors of B-GLMs are log-concave in w, therefore uni-
modal. This property is quite crucial to ensure that our approximate inference3

method is accurate and can be implemented in a numerically stable manner.
Note that many models of general interest are not B-GLMs, such as mixture
models, models with Student-t likelihoods. Many of the commonly used spar-
sity priors, such as “spike-and-slab” (mixture of narrow and wide Gaussian),
Student-t, or ∝ exp(−ρ|wk|α), α < 1 (see Figure 1 for α = 0.4), are not log-
concave, and accurate approximate inference is in general a very hard problem.
Furthermore, most approximate inference methods known today are numerically
unstable when applied to such models.

Several approximate inference methods for B-GLMs have been proposed. The
MCMC technique of [11] could be applied, together with adaptive rejection sam-
pling [3] for the likelihood factors. Our approach is significantly faster and more
robust than MCMC (where convergence is very hard to assess). Sparse Bayesian
Learning (SBL) [20] is the most well-known method for the sparse linear model.
SBL is related to our EP variant in [16]. It has been combined with EP and
applied to B-GLMs in [12]. The main technical difference to our proposal is that
they use separate techniques to deal with likelihood sites (EP, moment match-
ing) and prior sites (scale mixture decomposition of Student-t), while we employ
EP for all sites. The EP update for Laplace prior sites is numerically challenging,
and an equivalent direct EP variant for a non-log-concave Student-t prior (used
in SBL) is likely to behave non-robustly (Malte Kuss, pers. comm.). The scale
mixture treatment circumvents these numerical difficulties, and stronger spar-
sity Student-t priors can be used. On the other hand, our direct approach runs
significantly faster on models of interest here, where there are many more like-
lihood than prior factors. The method of [12] is a double-loop algorithm, where
EP is run to convergence on the likelihood sites after each update of the (prior)
scale mixture parameters. Our method is also more transparent, not mixing two

3 Faced with non-log-concave models with multimodal posteriors, most approximate
inference techniques somewhat break down, with the exception of MCMC techniques,
which however typically become very inefficient in such situations.



different approximate inference principles4. Finally, their method approximates
a multimodal posterior with a single Gaussian in a variational lower-bound fash-
ion (SBL can be interpreted in a variational way, see [22]), which is often quite
loose. Typical robustness and “symmetry-breaking” problems in such methods
are hidden in the optimization over the scale mixture (prior) parameters, which
may be hard to solve properly. Even if their SBL approach is applied to a model
with Laplace priors (by using the scale mixture decomposition of the Laplace,
see [11]), the implications of posterior log-concavity for their method are less
clear.

Note that the Laplace approximation frequently used for approximate Bayesian
inference cannot be applied directly to the sparse GLM, since the Hessian does
not exist at the posterior mode. A double-loop method can be derived by apply-
ing the Laplace approximation to the likelihood only, this has been proposed in
[20].

3 Expectation Propagation

Exact Bayesian inference is not analytically tractable for the application con-
sidered here, or for most B-GLMs in general. However, it can be approximated,
and our approach is based on the expectation propagation (EP) method [7, 9]. EP
results in a Gaussian approximation Q(w) to a posterior P (w|D) of the form
(1). While the latter is not Gaussian, its log-concavity (and unimodality) moti-
vates such an approximation. EP is used for a linear model (Gaussian likelihood)
with Laplace prior in [16], and has been used for a range of models with Gaus-
sian prior and log-concave likelihood [9], albeit not for point process data (as
is done here; an application to discrete-state continuous-time Markov processes
was given in [8]). In general, there has not been much work on approximate
inference for nonlinear models with sparsity priors (an exception is [12]).

The posterior P (w|D) in (1) is formally a product of J sites φj , normalized
to integrate to one. Each site φj is either part of the likelihood P (D|w) or of the
prior P (w). Let K be the number of variables: w ∈ RK . We use a factorizing
Laplace prior on w,

P (w) =
K∏

k=1

φk(wk), φk(wk) ∝ e−ρ|wk|, ρ > 0, (2)

whose sparsity-enducing role has been motivated above. The likelihood sites
φj , j = K + 1, . . . , J in (1) are log-concave and will be specified further below
for the model of interest.

4 These principles may in fact be based on qualitatively different divergence measures,
noting that SBL has variational mean-field character [22], which uses a different di-
vergence than EP [6]. Since these divergences focus on different aspects of approx-
imation [6], mixing them is non-transparent and may lead to algorithmic problems
such as slow convergence.



The EP posterior approximation of (1) has the form Q(w) ∝
∏

j φ̃j(uj),
where φ̃j(uj) = exp(bjuj− 1

2πju
2
j ) are site approximations of Gaussian form, the

bj , πj are called site parameters. The log-concavity of the model implies that
all πj ≥ 0. Some of them may be 0, as long as Q(w) is a (normalizable) Gaus-
sian throughout. An EP update at j consists of computing the Gaussian cavity
distribution Q\j ∝ Qφ̃−1

j and the non-Gaussian tilted distribution P̂ ∝ Q\jφj ,
then updating bj , πj such that the new Q′ has the same mean and covariance as
P̂ (moment matching). This is iterated in some random ordering over the sites
until convergence.

Let Q(w) = N(w|h,Σ). An EP update at site j leads to a rank-one update
of Σ , featuring vj = Σψj , and costs O(K2). Details are given in the appendix.
It is shown in [15] that for log-concave sites this update can always be done, and
results in πj ≥ 0. In this case, EP updates can typically be done in a stable way,
and empirically the method converges reliably and quickly. In contrast to this,
EP tends to be very problematic to run on non-log-concave models. Full updates
may not always be possible (for example resulting in negative variances), and
damping techniques are typically required to attain convergence at all. Cases
of EP divergence for multimodal posteriors have been reported [7]. EP updates
often become inherently unstable operations in these cases5.

A good initialization of b, π depends on the concrete B-GLM. For our sparse
spiking model (see Section 4), we start with b = 0, and πj = 0 for all likelihood
sites, but πk = ρ2/2 for prior sites, ensuring that φk (2) and φ̃k have the same
first and second moments initially, k = 1, . . . ,K.

It is reported in [16] that in the presence of a factorizing Laplace prior, EP
can behave extremely unstably if w is only weakly constrained by the likeli-
hood. This happens in strongly underdetermined linear models (more variables
than observations), but will typically not be the case in parametric B-GLMs.
For example, in our spiking model application, we have many more likelihood
sites than w components. In such cases, an initial EP update sweep over all like-
lihood sites is recommended, before any Laplace prior sites are updated. In an
underdetermined case, the measures developed in [16] may have to be applied.

The marginal likelihood P (D|θ) is the probability of the data, given model
and hyperparameters θ, where primary parameters w have been integrated out.
It is the normalization constant in (1). This quantity, also known as partition
function or evidence, can be used to conduct Bayesian tests (via Bayes factors),
or to adjust θ in a way robust to overfitting. EP comes with a marginal likelihood
approximation, which in our case can be derived from [16, 15], together with its
gradient w.r.t. θ. Details will be described in a longer version of this paper.

5 In this case, a multimodal posterior is approximated by a unimodal Gaussian, so
that spontaneous “symmetry breaking” does occur. The outcome may then depend
significantly on artificial choices such as site ordering for the updates, or numerical
roundoff errors during the updates.



4 Sparse Feature Neuronal Spiking Model

An important approach to understanding neural systems is to build models in
order to predict spike responses to natural stimuli [2]. Traditionally, single cell
responses are characterized using spike-triggered averaging techniques6, allowing
for efficient estimation of the linear receptive field, a concise description of what
the cell is most sensitive to. For example, a neuron in the early visual cortex may
act as a detector of certain features such as edges or lighting/texture gradients
of particular orientation in a small area of the visual field: its receptive field
can be thought of as a localized, oriented filter, and only the appearance of the
specific event will elicit a strong response. This notion can be grounded in a spe-
cific GLM: the linear-nonlinear cascade model [10]. Recent developments apply
this formalism to multi-neuron responses [4, 10]. We present another important
conceptual extension: rather than computing point estimates of model param-
eters only, we employ a full Bayesian inference scheme, allowing us to encode
desirable properties via the prior. The resulting posterior gives quantitative an-
swers about localization and dispersion of inferred model parameters, together
with credibility intervals (“error bars”) describing the range of uncertainty in
the parameters. Assessing uncertainty is essential in this application, since neu-
ral response models come with many parameters, and only a limited amount of
data is available.

We adopt linear-nonlinear-Poisson (LNP) cascade models [17], where spikes
Di = {tj,i} of neuron i come from an inhomogeneous Poisson process, whose
instantaneous firing rate λi(t) is a nonlinear function of the output of a linear
filter. The filter coefficients are the primary parameterswi. λi(t) depends on both
stimulus events as well as the spiking history of all neurons. There are stimulus-
neuron dependencies (normally described by the linear receptive field) as well as
neuron-neuron dependencies: λi(t) may depend on spikes from D = ∪iDi, lying
in [0, t). In summary, LNP models are obtained as λi(t) = λi(wT

i ψ(t)), where
ψ(t) does not depend on primary parameters: a linear filter is followed by a non-
linear transfer function λi, which feeds into an inhomogeneous Poisson process.
According to general point process theory [18], the negative log likelihood for
spike data D is

∑
i

−∑
j

log λi(wT
i ψ(tj,i)) +

∫
λi(wT

i ψ(t)) dt

 .

It has been shown in [10] that the likelihood is log-concave in wi if λi(·) is convex
and log-concave.

The model we consider here is a generalization of a Poisson Network [13], and
a special LNP model. For a sequence of changepoints 0 = t̃0 < t̃1 < · · · < t̃j <
. . . , we assume that ψ(t) is constant in each [t̃j−1, t̃j), attaining the value ψj

there. The semantics of changepoints are given below, here we note that all spikes
6 Statistics are obtained by averaging over a window [ti−∆, ti), ti a spike, character-

izing effects which precede a spike emission [14].



(from all neurons) are changepoints, with ξj,i = 1 iff t̃j ∈ Di and ξj,i = 0 oth-
erwise. Under this assumption, the likelihood is P (D|{wi}) =

∏
i Li(wi), where

each Li(wi) has the form (1), with φj,i(uj,i) = λi(uj,i)ξj,i exp(−τjλi(uj,i)), τj =
t̃j − t̃j−1. Importantly, while we require that all rates λi(t) are piecewise con-
stant, we do not restrict ourselves to a uniform quantization of the time axis.
The changepoint spacing is far from uniform, but rather tracks current spiking
activity and stimulus quantization.

A simple transfer function is λi(u) = eu, giving rise to a log-linear point
process model. Another option is λi(u) = euI{u<0} + (1 + u)I{u≥0}, which grows
linearly only [4]. The class of admissable λi is characterized in [10].

The piecewise constant features ψ(t) encode spike history and input stimulus
(with some history as well) by using windows back in time. In order to infer the
precise timing of relationships, we need a narrow spacing, and thus end up with
many features, only a small part of which will be necessary to describe the
data. This notion is embodied in the Laplace sparsity prior. We use P ({wi}) =∏

i P (wi), each factor having the form (2). The posterior for our sparse multi-
neuron spiking model factorizes w.r.t. wi, each factor constituting a B-GLM
of the form (1). The prior sites have the form φk,i(uk,i) = ρi

2 exp(−ρi|uk,i|)
with ψk = δk = (I{l=k})l. EP is used for approximate inference, as detailed in
Section 3. It can be run in parallel across neurons, although the feature vectors
ψj are shared among them.

We describe the composition of ψ(t) informally only. A more formal descrip-
tion will be given in a longer version of this paper. The spike-history part of
ψ(t) depends on windows Il(t) = (t−∆H

l , t−∆H
l−1], 0 = ∆H

0 < ∆H
1 < . . . , com-

ponents are ni,l(t) = |{j| tj,i ∈ Il(t)}|. These give rise to changepoints tj,i + ∆l

for all j, i, and l ≥ 0. The input stimulus x(t) is a step function, changing at
tIj , j ≥ 1. This adds components x(t − ∆I

l ) to ψ(t) for another system of lags
0 ≤ ∆I

0 < ∆I
1 < . . . . The corresponding changepoints are tIj + ∆I

l for all j, l.
The list of changepoints can be computed from the dataset, it does not depend
on parameter settings. We also use a constant feature in ψ(t), whose parameter
controls the mean firing rate.

For fixed parameters wi, we can easily compute the log likelihood for some
data by an accumulation of log φj,i. Here, the list of changepoints can be grown
sequentially. The posterior expected log likelihood can be approximated by av-
eraging over a sample drawn from Q({wi}), or by just plugging in the posterior
means. We can also sample data exactly from the model for fixed parameters
wi, using a simple variant of the Gillespie algorithm (e.g., [21]). This is possible
only because we restrict ourselves to piecewise constant features ψ(t). Sampling
from the model is useful to approximate predictive probabilities for essentially
arbitrary queries.

5 Experimental Results

In this section we present results for the multi-neuron spiking model of Section 4,
applied to data recorded from retinal ganglion cells stimulated with white noise in



Fig. 2. Left: Comparison between Gaussian and Laplace prior for the reduced model.
Hyperparameters are chosen by crossvalidation (see text). The negative log-likelihood
value on the test dataset is plotted as a function of dataset size of the training set.
Errorbars are obtained by sampling from the approximative posterior distribution and
correspond to 2 standard deviations. Right: Receptive fields (shown are posterior
means) under model with Gaussian (upper) and with Laplace prior (lower), for different
training set sizes. Curves below show marginal posteriors (absolute value of mean, one
std. dev. error bars, cut off at zero), decreasing order.

a whole-mount preparation. More precisely, the stimulus has been generated from
an m-sequence, yielding 16x16 bitmaps of spatially and temporally decorrelated
light intensity patterns presented at about 50Hz (20 ms between stimulus onset
and offset). We selected four out of 27 neurons for our analysis, with average
mean firing rate of 9Hz for a recording time of 658 s . Details about the recording
technique and the spike-sorting method can be found in [23].

The goal of our first analysis is to investigate how the Gaussian and the
Laplace priors differentially affect the inference in our neuronal spiking model,
depending on the amount of data used. This study is carried out for one out
of the four neurons, with a substantially reduced set of parameters, in that
we use a single time lag ∆I

0 = 120 ms for stimulus dependence, six windows
∆H

l = 0, 1, 10, 20, 40, 80, 160 ms for spike history, and a constant offset feature.
The complete data set was partitioned into test set, validation set (10% each),
and a training pool (80%). The training sets are selected as increasing portions
of the latter, in steps of 10%. Our B-GLM at present comes with a single hyper-
parameter ρ, the scale of the prior. This parameter is determined, independently
for the Gaussian and the Laplace variant, by maximizing the log likelihood of
the validation set under the posterior mean parameters for a training set of size
10%.

The log likelihood scores on the test set (Figure 2, left) show that the Laplace
prior configuration of our model clearly outperforms the Gaussian prior variant.
As expected, the difference is most pronounced for small training set sizes, and
does eventually vanish for large data sets, when the prior has less and less in-
fluence on the inference. This confirms the statistical validity of the sparseness
assumption for this task. As discussed in Section 2 and Figure 1, the Gaussian



Fig. 3. Left: Stimulus dependence for the four neurons (columns) at different time
lags (rows). Shown are posterior means. Gray scale from dark (minimum) to light
(maximum). Right: Causal dependencies between the four neurons. Each plot shows
the parameter value as function of increasing time lag. Shown are posterior mean and
three std. dev. Note that all inter-dependency parameter estimates are positive, while
the offset parameters for each of the neurons is significantly negative. Self-excitation
can be clearly seen, explaining the bursting behaviour seen in the data.

has a strong tendency to push large values towards zero, while the Laplace prior
concentrates more on shrinking smaller values strongly to zero (see Figure 2,
right; 80%, lower panel). The intolerance of even a small number of large coeffi-
cients means that the prior variance of the Gaussian has to be chosen larger than
for the Laplace, leading to very diffuse receptive field estimates (see Figure 2,
right).

The goal of our second study is to demonstrate that the sparse Bayesian
estimation framework allows us to obtain reliable results also for more complex
models with a large number of parameters. We did the same experiments as
above with a full setup consisting of n = 4 neurons, five time lags for stimu-
lus dependency (20, 40, 80, 120, 160 ms), the same six windows for spike history
and constant offset feature as above, resulting in a total number of parameters
K = 1305 (versus K = 263 for the restricted setup). We use training set size
10%, and score Gaussian and Laplace variant by the negative test set log like-
lihood for the one neuron used in the restricted setup. We have nlh1,Gauss =
1953.14, nlh1,Laplace = 1920.35, diff1,Gauss−Laplace = 32.79 for the restricted, and
nlh4,Gauss = 2984.5, nlh4,Laplace = 1992.59, diff4,Gauss−Laplace = 991.91 for the
full setup. Both Gaussian and Laplace variant become worse on the full setup,
owing to the fact that there is a much larger number of parameters and inter-
dependence features, explaining the same number of spikes (although the data
from the other neurons can be used as well in the full setup). In summary the
Laplace prior becomes more import the more parameters the model has.

Using the full training pool (80%, 178326 changepoints), we obtain reliable
posterior mean estimates for both the stimulus-neuron and the neuron-neuron
dependencies (we used the ρ value determined for the restricted setup). The



receptive fields (Figure 3, left) are localized in space and time, as is typical
for retinal ganglion cells. Self-feedback dominates the spike history parameters
(Figure 3, right), allowing the model to explain short burst behaviour of retinal
cells [1].

6 Conclusion

We have presented a method for approximate Bayesian inference in generalized
linear models with factorizing priors, which is accurate, efficient, and numerically
robust. In particular, we applied this method to a multi-neuron spiking model
and showed that the usage of a Laplace sparsity prior leads to superior prediction
performance at no extra cost, compared to the standard Gaussian choice.

Our method is versatile and flexible, catering to various applications as the
family of B-GLMs is large, containing the sparse linear model, the generalized
linear and Gaussian process models for classification, robust regression, ordinal
regression, survival analysis and many more. While these models are often fitted
to data by point estimation techniques, our framework can be used to obtain a
good approximation to the full posterior distribution efficiently.

In future work, we will explore ideas to speed up our method drastically, for
example by exploiting the fact that ψj+1 − ψj is sparse. We will also consider
factor representations of the parameters wi, for example to learn wide-horizon,
fine-grained spatio-temporal receptive fields, and extensions of our basic model
by latent variables. Both will render the complete model non-log-concave, but our
method here will still be useful as subroutine in a surrounding belief propagation
architecture.
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Appendix

EP update: match moments of P̂ (uj) ∝ φj(uj)φ̃j(uj)−1Q(uj) and Q′(uj), so
bj → b′j = bj + ∆bj , πj → π′j = πj + ∆πj . If Q(w) = N(h,Σ), then Q′(w) ∝
exp((∆bj)uj − 1

2 (∆πj)u2
j )Q(w) with uj = ψT

j w. If vj = Σψj , aj = ψT
j vj ,

µj = ψT
j h:

Σ′ = Σ − ∆πj

1 + ∆πjaj
vjv

T
j , h′ = h +

∆bj −∆πjµj

1 + ∆πjaj
vj .

The computation of b′j , π′j depends on the exact form of φj(uj). For Laplace sites,
the computation is analytic, but numerically challenging [16]. For the likelihood
sites of our spiking model, the required one-dimensional integrals are numerically
harmless and can be approximated with Gauss-Hermite quadrature.
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