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Abstract. A wide range of problems such as signal reconstruction, denoising, source
separation, feature selection, and graphical model search are addressed today by posterior
maximization for linear models with sparsity-favouring prior distributions. The Bayesian
posterior contains useful information far beyond its mode, which can be used to drive methods
for sampling optimization (active learning), feature relevance ranking, or hyperparameter
estimation, if only this representation of uncertainty can be approximated in a tractable
manner. In this paper, we review recent results for variational sparse inference, and show
that they share underlying computational primitives. We discuss how sampling optimization
can be implemented as sequential Bayesian experimental design. While there has been
tremendous recent activity to develop sparse estimation, little attendance has been given
to sparse approximate inference. In this paper, we argue that many problems in practice,
such as compressive sensing for real-world image reconstruction, are served much better by
proper uncertainty approximations than by ever more aggressive sparse estimation algorithms.
Moreover, since some variational inference methods have been given strong convex optimization
characterizations recently, theoretical analysis may become possible, promising new insights into
nonlinear experimental design.

1. Introduction
Most real-world signal classes of interest are highly structured. While precise high level statistical
modelling of such structure is intractable at present, it imprints robust traces onto low level
representations, which are in the feasible range of today’s statistical methodology. For example,
an image measured by a digital camera or a magnetic resonance scanner exhibits coherent edges,
textures, and smooth areas, revealed by applying derivative or wavelet filters to the image
bitmap: the filter responses show remarkably robust statistical behaviour far from Gaussianity
(which would be obtained by filtering random noise) [1]. This low level statistical understanding,
known as sparsity of image statistics, is used widely today in order to compress image bitmaps
and video frame sequences. Similarly robust deviations from high-entropy Gaussianity occur
for speech or music audio waveforms, leading to efficient compression schemes which can be
decoded in real time. The statistical mechanisms underlying such low level applications are
sparse linear models. The predominance of this technology for direct applications, such as coding
and decoding (estimation), highlights the relevance of formulating and developing Bayesian
frameworks, with which higher-order problems become accessible. In this paper, we will outline
such a program, reviewing recent progress, as well as pointing out directions for research.

A running example in this paper will be sampling design optimization for magnetic resonance
imaging (MRI) [2, 3], which has recently been addressed in [4]. In MRI, Fourier coefficients of
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selected image slices are acquired in a sequential fashion: if images of desired quality can be
reconstructed from fewer acquisitions, we achieve a reduction in scan time, arguably today’s
most relevant limitation of MRI technology. Iterative nonlinear compressive sensing methods
can be used to robustly undercut the classical Nyquist-Shannon sampling limit [5, 6, 7, 8]. The
statistical idea behind these techniques is to import knowledge about “sparse” low level image
statistics by way of a prior distribution, with which redundancies of dense sampling applied
to images are exposed. Within this line of work, two major questions have to be faced: how
to reconstruct given a fixed sampling design, and how to choose the design in the first place?
The first question is addressed by sparse estimation. Given fixed design and data, a single
most sensible image is produced by way of point estimation, minimizing a criterion composed
of a data fit and a sparsity prior (or regularization) term. A wide array of convex and non-
convex sparse estimation algorithms have been proposed. The second question, sampling design
optimization, is different and has seen little attention so far, while there is evidence that the
choice of design can be more relevant for successful real-world image reconstruction than the
estimation algorithm or sparsity penalization used [9].

The nonlinear design optimization problem for realistic images has not been optimally solved,
nor has a fully satisfying characterization been provided. Recent compressive sensing theory [5, 6]
applies to unstructured, highly exactly sparse signals, but entirely fails to support design choices
for natural or real medical images [9, 10, 4]. Short of optimal answers and conclusive theory,
it is sensible to address the problem in an adaptive, data-driven manner, using concepts from
Bayesian machine learning [4]. In this article, design optimization is phrased as search over
realizable sampling patterns, optimizing a statistical criterion based on prior knowledge and
real-world training data, with the aim of tractably detecting a pattern that generalizes well to
future reconstruction problems. How could such a criterion look like? Which information from
the data should it be based on? Which tools are available today in order to tractably evaluate it
along the search? In this paper, we argue that these questions can successfully and tractably be
addressed by adopting an approximate Bayesian viewpoint, extending the presently prevailing
sparse estimation approaches by representations of uncertainty. In order to improve a given
sampling design, a natural idea is to quantify the present shortcomings on real training data in
a way that allows scoring additional candidate measurements as to how much novel information
they are able to provide. This is not an image reconstruction problem per se, and it is hard to
see how sparse point estimation techniques could be used to address it. Rather, it is an instance
of nonlinear Bayesian experimental design, if the uncertainty representation in this picture is
provided for by the Bayesian posterior, a distribution over all possible image reconstructions.
Novel variational inference approximations can be used in order to implement this idea in MRI
practice. Sparse estimation, reporting the mode of the Bayesian posterior, is not well suited to
address higher-order design optimization. The latter is successfully driven by sparse inference,
quantifying shape and covariance of the posterior beyond its mode.

At present, approximate Bayesian inference is hardly ever applied to low level imaging
problems1, for which much more efficient and well-characterized point estimation technology
is preferred. Variational inference technology for continuous-variable image models is developed
mainly in machine learning or Bayesian statistics. Since issues such as scalability, numerical
robustness, or reductions to standard optimization primitives are not paid much attention
there, previous methods run orders of magnitude slower than reconstruction techniques on the
same model, so that sampling optimization for full high-resolution images cannot sensibly be
addressed with them. A second goal of this article is to raise awareness of these issues. We
show that at least some variational Bayesian approximations can be solved by scalable, well-
characterized algorithms, which reduce to underlying standard image computations. As reviewed

1 Bayesian sparse estimation techniques are applied to such problems, for example sparse Bayesian learning [11].
The crucial differences to Bayesian sparse inference will be highlighted below.
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here, the major variational inference relaxations known today share similarities, and scalable
reformulations should be attempted for all of them. Approximate Bayesian inference applied
to low level real-world problems may come with new concepts and help to overcome obstacles
in novel ways. Yet being based on the same model, prior assumptions and basic primitives, it
should not have to come with entirely new computational methodology. If convex optimization
and numerical mathematics technology is highly successful for imaging, in practice as well as
in theoretical understanding, higher order Bayesian methods would ideally make use of these
advances directly, instead of going different uncharted ways altogether.

The structure of the paper is as follows. The sparse linear model is introduced in
Section 2, along with Bayesian nonlinear experimental design, motivated by MRI sampling design
optimization. Current variational approximations to sparse Bayesian inference are reviewed in
Section 3, along with convexity characterizations and scalable algorithms. This paper draws on
material from previous publications, notably [12, 9, 4, 13], and on the report [14].

2. Sparse linear model. Experimental design
Let us formulate the setup for the MRI sampling optimization problem. Denote the desired MR
image by u ∈ R

n, where n is the number of pixels. Under ideal conditions, the raw data y ∈ R
m

from an NMR scanner consists of Fourier coefficients of u at specific k-space spatial frequencies,
so that y = Xu + ε, ε ∼ N(0, σ2I). Rows of X are Fourier filters (k-space is synonimous
with 2D Fourier space)2. Elementary units of the design (blocks of rows of X) are called phase
encodes. For example, in Cartesian MRI, a phase encode is a complete column in k-space. A
Nyquist-dense design contains encodes to cover k-space completely, while for an undersampled
design X, certain encodes are not acquired (m < n). For undersampled reconstruction, a prior
P (u) is chosen which represents low level statistics of (MR) images, distinctly super-Gaussian
“sparse” distributions. The posterior has the form

P (u|y) ∝ N(y|Xu, σ2I)

q∏
j=1

e−τj |sj/σ|, s = Bu. (1)

The likelihood P (y|u) = N(y|Xu, σ2I) is Gaussian, while the prior P (u) is the normalized
product of q Laplacians on linear projections sj of u, among them the image gradient and wavelet
coefficients (see [9] for details), so that typically q > n. The Laplace distribution encourages
sparsity of s [12]. This posterior is log-concave: it has a single mode, and all level sets are
convex. We refer to this setup as sparse linear model (SLM). Note that we omit (parts of)
X from distribution notation. These are control variables (covariates), and distributions are
conditioned on them implicitly3.

This Bayesian setup can be used for sparse estimation or sparse inference respectively. Sparse
estimation concerns the reconstruction of a single image, which is often done by maximizing the
posterior, or MAP estimation: û = argminu − logP (y|u)− logP (u). For our setup here, this is
a convex quadratic program, a special case of which (B = I) is known as the Lasso [15]. Sparse
inference goes beyond finding the posterior mode, trying to approximate posterior moments such
as mean EP [u|y] or covariance CovP [u|y], or its log-partition function logP (y). Reviewing
the numerous good reasons for doing so is not in the scope of this paper (see for example
[16]): we will concentrate solely on design optimization. We will see below that Bayesian

2 In practice, both u and y are complex-valued, which was neglected (for u) in [4], but is accounted for properly
[14] by doubling the number of real-valued variables (using the C → R

2 embedding), and placing sparsity potentials
on |sj | instead of sj (potentials are even functions). This issue, which does not add implementational complexity,
is ignored in the remainder of this paper, while it is crucial for making the MRI application work. More generally,
norm potentials can be placed on ‖sj‖ [14], using minor modifications.
3 It is useful to address uncertainties in X itself, but this is not done here.
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experimental design in our setting here is mainly driven by the posterior covariance, largely
unrelated to the mode û. It is widely accepted today that the computational simplicity of
finding the latter does not transfer to Bayesian inference, which remains intractable even for
log-concave posteriors. Approximate sparse inference can be done by Markov chain Monte Carlo
[17] or by variational approximations, both originally proposed in statistical physics. While most
Bayesian statisticians prefer to use MCMC, little is known about how to obtain rigorous finite-
time, limited-resources performance guarantees. In this paper, we concentrate on inference
approximations which can be relaxed to image reconstruction technology in place already (such
as convex optimization), thus on variational approximations.

In the remainder of this section, we briefly review Bayesian sequential experimental design
and motivate how it can be used to address MRI sampling optimization. More general reviews
are found in [18, 19, 20]. Recalling the basic idea from Section 1, we have to score extension
candidates X∗ ∈ R

d,n (phase encodes) with respect to the decision of appending them to the
present design X. A generally useful measure is the information gain

Δ(X∗) := H[P (u|y)]− EP (y∗|y) [H[P (u|y,y∗)]] , (2)

where P (u|y) is the Bayesian posterior before, P (u|y,y∗) after including (X∗,y∗), P (y∗|y) =
EP (u|y)[P (y∗|u)] is the predictive posterior, and H[P (u|y)] := EP (u|y)[− logP (u|y)] is the
Shannon (differential) entropy [21]. The information gain measures the decrease in uncertainty
about u, averaged over the “soft” prediction P (y∗|y). It is not the only criterion that can
be used [20], especially if more specific utilities can be defined for the task at hand. What is
characteristic of Bayesian experimental design, is that averages over P (u|y) and P (y∗|y) are
taken: a principal and important difference to plugging in “best estimates”, the preferred option
with purely estimation-based techniques. The highest-scoring encode is appended to X, and the
process is iterated sequentially. When applying this procedure to MRI sampling optimization [4],
many candidates X∗ can be scored in each round without performing costly NMR measurements
for them: an important advantage over “trial-and-error” approaches.

Given that we have to approximate sparse inference, it is important to understand which
posterior moments are required in order to evaluate the information gain (2). In this paper,
we concentrate on Gaussian posterior approximations Q(u|y) ≈ P (u|y), fitted by means of
a variational optimization problem. For a Gaussian, H[Q(u|y)] = (1/2) log |CovQ[u|y]| + C.
Moreover, we approximate P (u|y,y∗) by the Gaussian ∝ N(y∗|X∗u, σ2I)Q(u|y), so to avoid
having to re-run the variational optimization for each candidateX∗. With these approximations,

Δ(X∗) ≈ − log |A|+ log
∣∣A +XT

∗ X∗
∣∣ = log

∣∣I +X∗A−1XT
∗
∣∣ , CovQ[u|y] = σ2A−1. (3)

The notation in terms of A will be convenient below. Therefore, for the methods of interest
here, Δ(X∗) most strongly depends on the posterior covariance CovP [u|y]. More precisely,
(3) is dominated by the largest eigenvectors and eigenvalues of CovQ[u|y], which fits into the
intuitive picture of Section 1: we assess the directions of largest posterior spread of uncertainty,
then align novel measurements with these directions of maximum uncertainty in what u should
be. While we do not even know how to represent the exact SLM posterior, its leading covariance
eigendirections constitute a definite approximation target in practice as well as for theoretical
investigations.

3. Variational inference for sparse linear models
In this section, we review variational approximation techniques which have been applied to
Bayesian inference for the sparse linear model. We will be interested in properties of the
underlying variational optimization problems which allows for reductions to commonly used
scientific computing techniques. We rely on [22, 12].
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The posterior P (u|y) is intractable to integrate over for two reasons coming together.
First, u is very high-dimensional, so that black-box techniques like quadrature are impossibly
expensive. Second, P (u|y) is not Gaussian, due to the presence of non-Gaussian potentials
tj(sj) = e−τj |sj/σ|. Gaussian integrals are analytically tractable linear algebra expressions,
which can often be approximated reliably even at large scales, by exploiting structure in the
matricesX,B. Variational inference techniques relax the problem of integrating against P (u|y),
by replacing the posterior (or relevant moments thereof) by approximations which allow for
tractable computation. This goes hand in hand with introducing new variational parameters,
and the variational problem is to optimize over these in order to fit the approximation to the
posterior. Once this is done, the posterior approximation is used in place of the true posterior,
when it comes to Bayesian queries such as design score computations (2). In this paper, we
concentrate on Gaussian posterior approximations Q(u|y) ≈ P (u|y), of the form

Q(u|y) = N(u|u∗, σ2A−1) ∝ P (y|u)
q∏

j=1

e−σ−2(s2j/(2γj)−bjsj), A := XTX +BTΓ−1B, (4)

where Γ := diag γ. The family {Q(u|y)} is formally obtained from P (u|y) by replacing
potentials tj(sj) with Gaussian functions, introducing variational parameters γ = (γj), b = (bj).
Most of the methods discussed below do not impose the structure of (4), but rather start with
a general idea of how to approximate P (u|y). Given that, the form (4) is implied.

What is the role of the variational parameters? For sparse linear models, the b parameters
seem much less relevant. In some techniques, they are fixed to zero or other constant values. For
other models not discussed here, b plays a more significant role (they allow to shift the mean
without affecting the covariance). The variance parameters γ are instrumental. If γ � 0, it is
easy to show that4 VarQ[sj |y] ≤ σ2γj [14], so that the approximate posterior variance along sj is
bounded in terms of γj . Sparse linear models embody selective shrinkage: most |sj | are shrunk
strongly towards zero, while some |sj | are hardly penalized at all. This property captures low
level statistical properties of real-world signals discussed above5. Selective shrinkage is controlled
by the γj parameters, which will be small for coefficients that are shrunken under the posterior,
but large for such that are not strongly penalized. Readers familiar with image modelling may
be sceptical about the proposal to approximate sparse image model posteriors by Gaussians.
Is it not generally accepted that images have strong non-Gaussian statistics, for example along
edges? Is it not a main argument of this paper that non-Gaussian linear models are to be used?
This “dilemma” is solved by the presence of variational parameters. While Q(u|y) is a Gaussian,
it is heavily parameterized (typically, q is larger than n) in a very non-stationary manner. While
an “average” member of {Q(u|y)} may not represent image statistics, the closest fit to P (u|y)
from this large family does so indeed6.

How will we approximate the posterior covariance matrix CovP [u|y]? In contrast to discrete
variable variational relaxations, where only very simple distributions can be represented exactly,
the Gaussian family {Q(u|y)} is rich enough to represent a wide range of global covariances, to
the extent that for a log-concave (uni-modal) posterior P (u|y), the covariance of a close global
fit Q(u|y) ≈ P (u|y) can be a useful proxy for the leading directions of posterior covariance (see
also end of Section 3.4).

4 Strictly speaking, the proof assumes that γ � 0. By continuity, it holds also if coefficients of γ become zero,
as long as A stays positive definite.
5 These properties are often referred to as sparsity (hence sparse linear model), but super-Gaussianity (introduced
below) would be a better term in the context of natural images, which are not piecewise constant (which sparsity
would imply), but filter coefficients exhibit a super-Gaussian (power law) decay.
6 If γ for this closest fit is plotted accordingly for large enough m, edges of the underlying image are typically
revealed.
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3.1. Super-Gaussianity. Scale mixtures. Direct site bounding
How to replace single potentials tj(sj) by Gaussian functions in a principled manner? Two
general ideas are reviewed in [22]: writing tj(sj) as a scale mixture, and lower-bounding tj(sj)
by a Gaussian function. In the former case, tj(sj) =

∫
>0N(sj |0, σ2γj)fj(γj) dγj . In the latter

case, tj(sj) = maxγj>0 e
−(sj/σ)

2/(2γj)−hj(γj)/2. Both ideas are restricted to potentials tj(sj) for
which such representations exist [22]. Potentials for which the latter max-representation exists,
are called super-Gaussian: they can be lower bounded by Gaussian functions of any width.
This definition is equivalent to tj(sj) being even, positive, and s2j �→ log tj(sj) being convex

and decreasing. Namely, if xj := (sj/σ)
2, λj := −1/(2γj), then log tj(sj) = maxλj<0 xjλj −

hj(−1/(2λj))/2, convex as maximum over affine functions (this is a Legendre/Fenchel duality,
see [23]). Many potential functions used in statistics are super-Gaussian. Remarkably, it is shown
in [22] that all scale mixture potentials are super-Gaussian: the latter concept is more general.
For Laplacian potentials (which are scale mixtures), hj(γj) = τ2j γj . Further examples and closure
properties can be found in [22, 14]. In the context of SLMs, super-Gaussianity is precisely the
property associated with sparsity-favouring potentials: for a Gaussian tj(sj), s

2
j �→ log tj(sj) is

affine, so that convexity of this function translates into heavier tails and stronger concentration
of mass close to zero. The concept can be extended to non-even potentials, whenever tj(sj)e

κjsj

is even for some κj . For example, Bernoulli (or logistic) potentials used as binary classification
likelihoods are super-Gaussian, which was noted and exploited in [24].

An early Bayesian treatment of SLMs was sparse Bayesian learning (SBL) [11], motivated
in terms of scale mixture decompositions for Student’s t potentials, but derived in a somewhat
heuristic manner. The maximum a posteriori arguments used to motivate SBL are problematic,
because by changing the parameterization (say, γj versus πj = 1/γj), we arrive at different
algorithms, which may address different problems (sparse estimation, sparse inference), and
whose convergence properties and speed can be very different. SBL, which in the form applied
in [11] is a sparse estimation technique, has found widespread use, in the wake of which the
concepts of different variational relaxation principles, sparsity priors, and update algorithms
have been mixed in a confusing manner. Confusions of this kind can be avoided by focussing
on approximation principles (independent of algorithms for solving them) that are invariant
to parameterizations, which is what we restrict ourselves to in this paper. Among sparse
estimation techniques, SBL (also known as ARD) works remarkably well, often improving on
MAP estimation significantly [25].

For super-Gaussian potentials tj(sj), direct site bounding7 (DSB) is obtained by plugging site
bounds into the log partition function:

logP (y) ≥ max
γ�0

−φDSB(γ)/2, φDSB(γ) := −2 logZQ + h(γ),

ZQ :=

∫
P (y|u)e− 1

2
σ−2sTΓ−1s du, Γ := diag γ, h(γ) :=

∑
j

hj(γj).
(5)

The variational problem is minγ�0 φDSB(γ), motivated by tightening the lower bound to
logP (y). Why should this lead to a closer fit of Q(u|y) to P (u|y)? The log partition
function logP (y) is the general approximation target of variational techniques. It is the moment
generating function of P (u|y), while the lower bound plays the same role for Q(u|y). A more
direct interpretation in terms of relative entropy divergence is given in Section 3.2. However,
at present there is no finite-size theory we are aware of that firmly links improvements in
lower bound tightness to approximation quality of posterior moments. Note that ZQ is the
normalization constant of Q(u|y), whose form does not depend on specifics of the potentials
tj(sj).

7 As opposed to SBL, DSB is not a commonly used terminology, but was chosen for convenience here.
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As a Gaussian integral, φDSB(γ) can be evaluated tractably. A simple optimization strategy
is coordinate descent, updating each γj in turn while keeping all others fixed. For Laplacian
potentials, this algorithm is due to [26], see [22, 12] for more general discussions. The update for
γj is a simple function of the posterior marginal Q(sj |y). As shown in [22], this algorithm can
be implemented without knowing hj(γj) explicitly. However, in order to update all parameters,
posterior means and variances are required for all sj . In cases where the precision matrix σ−2A
of Q(sj |y) exhibits a sparse graphical model structure, such single site updating algorithms
can be implemented by message passing. Once a potential has been updated, the information
is propagated to the next site to be visited. In large scale situations of interest here, where
Q(sj |y) does not have useful graphical model structure, a n× n linear system has to be solved
from scratch in order to access any single marginal Q(sj |y): message passing is not attractive.
We will come back to this point in Section 3.4.

3.2. Variational mean field approximations
A variational mean field (VMF)8 characterization of Bayesian inference is given by

logP (y) = max
Q(u|y)

EQ [logP (y,u)− logQ(u|y)] , (6)

where the maximum is taken over all distributions [27]. The maximizer is given by Q(u|y) =
P (u|y), the true posterior. The slack in the lower bound for any fixed Q(u|y) is the relative
entropy D[Q(u|y) ‖P (u|y)]. VMF relaxations are obtained by restricting the maximum to a
subset of distributions, for which the lower bound to logP (y) can be evaluated tractably. In
other words, the closest member Q(u|y) from this subset in terms of D[· ‖P (u|y)] divergence
is pursued9. In this section, we will discuss two relaxations, which have been used for SLMs.

First, we may simply restrict ourselves to unconstrained Gaussian distributions Q(u|y),
which allows for tractable lower bound maximization (this involves computing Gaussian
expectations over log tj(sj)). Interestingly, stationary points of this optimization have the form
prescribed by (4) (see Appendix), so that Q(u|y) can be restricted to lie in this family without
loss of generality. The lower bound becomes

logP (y) ≥ max
γ,b

−φMF(γ, b)/2, φMF(γ, b) := −2 logZQ +
∑
j

hMF
j (γj , bj , Q(sj |y)),

hMF
j (γj , bj , Q(sj |y)) := −2EQ[log tj(sj) + (sj/σ)

2/(2γj)− bjsj/σ
2],

(7)

where ZQ is the normalization constant of Q(u|y). This criterion has a more complicated
structure than (5), because hMF

j depends on Q(sj |y). More can be said if b is fixed to

zero and all tj(sj) are super-Gaussian: hMF
j = −2EQ[log tj(sj) + (sj/σ)

2/(2γj)]. Since

log tj(sj)+(sj/σ)
2/(2γj) ≥ −hj(γj)/2 for all sj , γj > 0, we have that hMF

j (γj , Q(sj |y)) ≤ hj(γj)
for γj > 0. Therefore, this variant of VMF uses a potentially tighter bound on logP (y) than
DSB does. Moreover, since logP (y) = −2φMF(γ) + D[Q(u|y) ‖P (u|y)], this means that DSB
minimizes an upper bound to the VMF relative entropy D[Q(u|y) ‖P (u|y)], which can have a
simpler structure than the relative entropy itself (see Section 3.4).

8 A historically more correct terminology would be variational structured mean field. In this paper, VMF
approximations are those that make use of (6) with restricted families for Q(u|y). In general, the term VMF
seems reserved for factorization restrictions only. In recent papers, structured VMF has been termed “variational
Bayes”, ignorant of the fact that methods like DSB or EP are variational Bayesian approximations just as well,
but are based on different ideas.
9 In general, VMF approximations do not constitute convex optimization problems. While the bound can be
optimized locally, finding a global optimum may still be a hard problem.
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A different variant of VMF is discussed in [22], for cases in which the tj(sj) have scale
mixture decompositions. Once γ are introduced alongside u, the VMF characterization
(6) can be written as maximum over Q(u,γ|y) just as well, where P (y,u) is replaced by
P (y|u)N(s|0, σ2Γ)(fj(γj)) (recall the scale mixture decomposition of tj(sj) from Section 3.1).
In this case, tractability is obtained by making a factorization assumption: Q(u,γ|y) =
Q(u|y)Q(γ|y). Once more, this free-form assumption implies further simplifications: Q(u|y)
can be restricted to lie in the Gaussian family (4), with b = 0. Moreover, it is shown in [22] that
single site updating for this VMF variant is precisely equivalent to coordinate descent for DSB.
Therefore, this second VMF variant is nothing new, but simply a different way of motivating
the DSB variational problem.

3.3. Expectation propagation
The expectation propagation (EP) algorithm [28, 29] is based on the idea of moment matching.
It builds on the assumed density filtering (ADF) principle [30]. Suppose a posterior of the
form (1) is to be approximated by a Gaussian Q(u|y), where (different from the SLM discussed
above) the Gaussian factor in P (u|y) is normalizable. In exact Bayesian filtering, we start
with a Gaussian Q0(u) proportional to this factor, then include one potential tj(sj) after the
other, stepping from Q0(u) to ∝ Q0(u)t1(s1), and so on. Even after the first inclusion, the
filtering distribution is not Gaussian anymore, and computations become intractable rapidly.
In ADF, after each Bayesian inclusion, we project the intermediate distribution back onto a
Gaussian, preserving mean and covariance. This is equivalent to finding the solution Q1(u) of

minQGaussianD[P̂1(u) ‖Q(u)], where P̂1(u) ∝ Q0(u)t1(s1) (see Appendix). Moreover, to step
from Q0 to Q1, we multiply the present state Q0(u) by t̃1(u) ∝ Q1(u)/Q0(u). In fact, since

t1 depends on s1 only, we may choose t̃1(u) = t̃1(s1) := eσ
−2(b1s1−s21/(2γ1)), where b1, γ1 can be

computed from Q0(s1) and t1(s1) only (see Appendix). The ADF update is a local computation
for models with local potentials tj(sj). Moreover, the Gaussian approximation Q(u|y) = Qq(u)
lies within the family (4).

Once all potentials tj(sj) have been included, ADF has to be terminated. EP extends ADF
by the capability of re-visiting previous projections, in order to obtain a full-fledged variational
inference technique. If ADF updates were continued after the first round, we would overcount
the influence of non-Gaussian potentials. An ADF update at tj(sj) is done for a state Q(u|y)
where bj = 1/γj = 0. In order to re-create this situation, an EP update starts with dividing out

the Gaussian term t̃j(sj) := eσ
−2(bjsj−s2j/(2γj)), followed by an ADF update. In other words, the

cavity distribution Q\j(sj |y) ∝ Q(sj |y)t̃j(sj)−1 is used as basis for computing P̂j(sj), in place
of the marginal Q(sj |y). The EP algorithm is of the single site updating type (see Section 3.1),
running EP updates in some ordering until convergence. At a stationary point, moment
consistency is attained: all P̂j(u) share their Gaussian moments with Q(u|y). This condition
should be compared with the first VMF variant in Section 3.2, where D[Q(u|y) ‖P (u|y)] is
minimized over Gaussians. Following the information-theoretic interpretation of relative entropy
D[Pa ‖Pb] (coding loss if Pb is used instead of the true Pa), the ordering of arguments is the wrong
way around. The minimization of D[P (u|y) ‖Q(u|y)] is of course intractable: it is equivalent
to finding the exact posterior mean and covariance. EP can be seen as using the relative entropy
with arguments the right way around, yet replacing the posterior P (u|y) by surrogates P̂j(u)
(“one step away from Gaussian”) for which the divergence can be computed. With EP, γj can
become negative in general [28]. However, if all tj(sj) are log-concave, all γj remain positive
throughout [12].

What is the variational problem underlying the EP algorithm? Let us introduce additional
parameters Cj , defined by moment matching conditions of zero-th order: EQ\j [tj(sj)] =
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EQ\j [Cj t̃j(sj)]. Replacing tj(sj) by Cj t̃j(sj), we obtain the approximation

logP (y) ≈ −φEP(γ, b)/2, φEP(γ, b) := −2 logZQ − 2
∑
j

logCj , (8)

which is brought into the form previously used by defining hEPj (γj , bj , Q(sj |y)) := −2 logCj .
Every fixed point of the EP algorithm is a stationary point of φEP(γ, b) [12]. There are important
differences to DSB and VMF. First, these stationary points are neither local maxima nor minima,
but true saddle points (at least with respect to the unconstrained parameterization in terms of
(b,γ)). The criterion φEP(γ, b) has a more complicated structure than φMF or φDSB, and the
EP algorithm does not always converge [28] (a convergence proof has not been given even for
log-concave models). While there are provably convergent algorithms [31], they are significantly
more expensive to run. Finally, EP seems more susceptible to numerical instability problems
than the other techniques discussed here. For the SLM with (log-concave) Laplacian potentials,
EP frequently fails on real-world image data [12]. Due to the underdetermined likelihood,
cavity variances of Q\j(sj |y) tend to be huge, which leads to runaway numerical errors in the

moment computations for P̂j(sj), even if these are executed with utmost care. In this case,
the EP algorithm is highly sensitive to such errors. A remedy is to use fractional EP [32], in

that Q\j(sj |y) ∝ Q(sj |y)t̃(sj)−η, P̂j(sj) ∝ Q\j(sj |y)tj(sj)η for η < 1. While this constitutes

a variational problem different10 from standard EP, numerical problems essentially disappear
even for η = 0.9 [12].

3.4. Convexity properties. Scalable double loop algorithms
We discussed a range of continuous-variable variational inference approximations (DSB, VMF,
EP) above, along with single site updating algorithms. Implementations of these algorithms
tend to be similar, and underlying variational criteria can be brought into similar form. This
superficial similarity does not mean that the variational problems can be characterized or solved
equally well in practice. We saw that EP is a saddle point rather than an optimization problem,
which tends to be numerically more problematic than the others. In this section, we show that
for log-concave posteriors (including the SLM introduced above), DSB is a convex optimization
problem, and we provide an algorithm to solve it even for very large models. In comparison,
VMF is a non-convex problem in general, and no scalable solvers have been proposed so far, let
alone for EP.

All criteria share the part −2 logZQ. Suppose that b is fixed to zero or some other constant,
so that γ are the sole variational parameters (natural for DSB, can be enforced for VMF, EP).
γ �→ −2 logZQ is a convex function for γ � 0 [14]. Namely, logP (y|u)+σ−2(bTu−sTΓ−1s/2)
is jointly concave as function of (u,γ), γ � 0, so that γ �→ logZQ is concave by Prékopa’s
marginalization theorem [33]. This holds only if b is constant: logZQ is not concave in (b,γ) in
general. It is shown in [14] that for super-Gaussian potentials, h(γ) is convex iff all sites tj(sj)
are log-concave: the DSB variational inference problem is convex if and only if MAP estimation
is convex for the same model. An equivalent characterization does not hold for VMF in general,
and certainly not for EP.

A scalable algorithm to solve DSB for sparse generalized linear models has recently been
proposed [4, 14]. It runs orders of magnitude faster than single site updating, and can be used
to successfully address MRI design optimization. In order to understand its benefits, we have to
view variational inference from a computational standpoint: which computations are minimally
required in order to solve SLM variational inference problems? In single site updating, each step

10 Fractional EP is different from the common practice of damping, which does not change the fixed points, but
does not help either to alleviate problems in this case.
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requires marginal mean and variance of Q(sj |y) = N(hj , σ
2ρj), and each potential has to be

visited at least once. For large scale SLMs whose model graph is not a tree, each update requires
the solution of a n × n linear system from scratch (see Section 3.1): these algorithms do not
provide scalable sparse inference solutions in general. Can we do better with global steps, say
by gradient descent? The computation of ∇γφDSB is dominated by bulk mean and variances
computations (“bulk” means that all means and variances are required). This is not a problem
for the means: all of them are obtained by solving a single n × n linear system, say by linear
conjugate gradients [34]. However, no general method is presently known for approximating all
variances in an equally scalable manner, not even if Q(u|y) has a sparsely connected graphical
model structure such as a nearest-neighbour grid. This fundamental computational difference
between bulk mean and variances computation is underlined by theoretical analyses into the
convergence of belief propagation in Gaussian Markov random fields [35]. Any variational
inference algorithm has to compute bulk means and variances eventually, but among different
algorithms, those will fare best that require as few bulk variances computations as possible until
convergence.

Inspired by [25], we can write φDSB(γ) = log |A| + φ∪(γ), where φ∪(γ) is a decoupled
function. It is the highly coupled term log |A| that calls for computing variances. Crucially,
γ−1 �→ log |A| is a concave function, so can be upper bounded by affine functions, making use of
Legendre/Fenchel duality once more: log |A| ≤ zT (γ−1)−g∗(z), z � 0 the normal vector, g∗(z)
the offset. Naturally, this observation leads to a provably convergent double loop algorithm,
alternating between outer loop updates (computing z, g∗(z) so to tangentially fit the affine
bound at γ) and inner loop minimizations of the upper bound φ∪(γ) + zT (γ−1)− g∗(z). In the
absence of log |A|, these inner minimizations are solved much more efficiently than minγ�0 φDSB

itself: they are penalized least squares problems of standard form, which can be solved by IRLS,
a variant of Newton-Raphson [4]. Variances computations are not required during inner loops
at all. For outer loop updates,

z ← ∇γ−1 log |A| = diag−1(BA−1BT ) = σ−2(VarQ[sj |y]), g∗(z) ← zT (γ−1)− log |A|,

requiring the bulk marginal variances computation avoided during the inner loop. Since
convergence is typically attained after few such outer loop steps, the double loop algorithm
is a scalable DSB solver. It can be applied even if h(γ) is not convex, see [14] for details.

To sum up, the DSB variational relaxation can be solved for very large models by decoupling
the critical log |A| term by way of a double loop algorithm: most of the work is done in standard
form decoupled inner loop optimizations. Can the same idea be applied to VMF or EP? A similar

direct approach does not work, because their h
(·)
j functions depend on Q(sj |y) and cannot simply

be upper bounded. An important point for future research is to find scalable algorithms for these
variational approximations.

Finally, is it fair to call the double loop algorithm “scalable”? After all, bulk variances
still have to be computed a number of times. Moreover, computing many design score
values (3) constitutes a closely related problem. While bulk variances cannot at present be
approximated nearly as tractably as solving a linear system, this problem is addressed in
numerical mathematics. A general idea is to employ a low rank PCA approximation to A−1,
featuring only the k � n smallest eigenvalues and eigenvectors of A. Plugging this in, variances
or design scores can be approximated efficiently. The optimality of PCA among all rank-k
choices in terms of (co)variance explained is well known. Importantly, typical precision matrices
A exhibit a roughly linear11 spectral decay, so that the k smallest eigenvalues of A can be

11 The linear spectral decay is good news, since Lanczos reveals smallest eigenvalues. It is bad news for the overall
relative accuracy of variance approximations: their dependence on the interior of the spectrum, never penetrated
by Lanczos, is significant.
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found efficiently by the Lanczos algorithm [36, 4]. The latter scales superlinearly in k and runs
up O(nk) memory, so only a limited number of iterations can be done. Proposals exist in
numerical mathematics for probing deeper into the spectrum of A [37]. For image models with
Markov random field structure, alternative low rank approximations have been proposed that
circumvent Lanczos computations [38]. Lastly, variances computation can easily be parallelized.
Ultimately, if large scale problems are to be addressed with variational relaxations like DSB
without accurate bulk variances computation in place, successful solvers will have to be robust
to errors committed by estimators such as Lanczos. Empirically, at least for SLMs in the context
of MR image data, the double loop algorithm behaves well in that respect [14]. Developing a
better understanding of the impact of Gaussian variances errors on variational inference results
is an important goal for future research.

3.5. Sparse estimation and sparse inference
We have seen that sparse estimation and sparse inference are different problems. They
address different goals (for example, image reconstruction from fixed data, versus design
optimization) and come with different algorithmic challenges (for example, bulk Gaussian
variances computation is required for variational sparse inference, but not for sparse estimation).
Why are they so frequently confused? First, they are based on the same underlying models and
prior distributions. Second, in the context of variational approximations, their optimization
problems may look deceivingly similar. Recall that SBL is a sparse estimation method, yet is
motivated as inference approximation in [11]. By tempering with the hj(γj) functions in (5),
DSB can be turned into SBL, or into any number of other variants. The highly sparse estimation
algorithm of [25], solving an instance of SBL, is formally similar to the Laplacian SLM inference
method of [4]: hj(γj) = τ2j γj in the latter becomes hj(γj) = log γj in the former: outcomes are
drastically different, as are computational demands.

For sparse estimation, the goal is to eliminate irrelevant variables. In the context of “SBL-
like” methods, this means driving many γj to exactly zero. Since VarQ[sj |y] ≤ σ2γj (Section 3),
γj = 0 leads to sj = 0 almost surely under Q(u|y). The latter is a highly degenerate distribution,
representing correlations and mass only for the small number of non-eliminated variables:
certainly not a sensible approximation to the true posterior. Bayesian sequential experimental
design based on sparse estimation rather than inference [39] fails for real-world signals [9]: the
“posterior” precludes any exploration beyond what has already been extracted from the data,
and the procedure gets stuck. Sparse estimation is typically computationally simpler than sparse
inference. MAP estimation is a convex quadratic problem for the SLM discussed here, without
any approximations. In the double loop algorithm of [25], outer loop updates are simple to do
using low rank formulae, since they inherit the exact sparsity of γ: bulk variances computation
is not a hard problem for highly degenerate Q(u|y).

Sparse estimation and sparse inference are different problems, but what is their theoretical
and algorithmic overlap? Given that sparse estimation receives much more attention, advancing
this understanding may lead to benefits for sparse inference. For example, the inner loop problem
of the double loop DSB algorithm [4] has the form of a commonly used smooth approximation
to MAP estimation for the same model. Variational sparse inference methods have to operate
without the computational benefit of exact sparsity in γ, yet they can still benefit from smoothed
estimation technology.

4. Discussion
We have contrasted sparse estimation problems (undersampled reconstruction, denoising,
decoding of compressed images) with problems of sparse Bayesian inference (measurement
design optimization), where the posterior distribution is approximated beyond locating its mode.
We have reviewed common variational relaxations of sparse Bayesian inference, related their
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criteria and discussed algorithmic differences. Adopting a computation-centered view of these
techniques, relating them on the same sparse linear model, we aim to clear up currently prevailing
confusions (relying on work by David Wipf and colleagues [40, 22, 25]), to point out major
avenues for future research, and to show how sparse estimation and inference can benefit from
each other.
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Appendix
In Section 3.2, a variant of variational mean field restricts the maximum in (6) to Gaussian
distributions Q(u|y) = N(μ,Σ). If Q(u|y) is a stationary point, we show that Σ−1 =
σ−2XTX +BTDB for a diagonal matrix D, to that Q(u|y) lies in (4), as long as γ may have
negative entries (if B has full rank n, any mean μ can be achieved within (4) by varying b alone).
Writing logP (y|u) = 1

2σ
−2(cTu − uTPu) + C with P = XTX, and νj = 2EQ[− log tj(sj)],

then twice the criterion to minimize is log |Σ| −σ−2(trP(Σ+μμT )− cTμ)−1Tν. Considering
the mean μ to be fixed, the relevant part is F = log |Σ| − σ−2 trPΣ − 1Tν. Here, νj depends
on Q(sj |y) only, whose means are fixed, and whose variances are ρ = diag−1(BΣBT ). If
dj = ∂νj/(∂ρj), D = diagd, then dF = tr(∇ΣF)(dΣ) = trΣ−1(dΣ) − σ−2 trP(dΣ) −
trDB(dΣ)BT . Solving ∇ΣF = Σ−1 − σ−2P −BTDB = 0 establishes the claim.

In Section 3.3, we claim that moment matching of P̂1(u) is equivalent to minimizing

D[P̂1(u) ‖Q(u)] over all Gaussians Q(u). There is a unique Gaussian Q1(u) sharing mean

and covariance with P̂1(u), with which D[P̂1(u) ‖Q(u)] = D[P̂1(u) ‖Q1(u)] + EP̂1
[logQ1(u)−

logQ(u)]. Here, logQ1(u) − logQ(u) is a quadratic function in u. Since P̂1(u) and Q1(u)
have the same moments up to second order, EP̂1

[. . . ] can be replaced by EQ1(u)[. . . ], and the

second term becomes D[Q1(u) ‖Q(u)] ≥ 0. Therefore, D[P̂1(u) ‖Q(u)] is minimized uniquely
by Q(u) = Q1(u).

Moreover, P̂1(u) = P̂1(s1)Q0(u|s1) with P̂1(s1) ∝ t1(s1)Q0(s1). By the chain rule of

relative entropy, D[P̂1(u) ‖Q(u)] = D[P̂1(s1) ‖Q(s1)] + EP̂1
[D[Q0(u|s1) ‖Q(u|s1)]], to that

Q1(u|s1) = Q0(u|s1) for the minimizer (zeroing the second term), and the marginal Q1(s1)

matches moments of P̂1(s1), which can be obtained as Q1(s1) ∝ eσ
−2(bjsj−s2j/(2γj))Q0(s1), where

bj , γj depend on Q0(s1) and t1(s1) only.
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