
IEEE SIGNAL PROCESSING MAGAZINE   [81]   NOVEMBER 20101053-5888/10/$26.00©2010IEEE

 Digital Object Identifier 10.1109/MSP.2010.938082

[ Matthias W. Seeger and David P. Wipf] 

M
ilestones in sparse 
signal reconstruction 
and compressive sens-
ing can be understood 
in a probabilistic 

Bayesian context, fusing underdeter-
mined measurements with knowledge 
about low-level signal properties in the 
posterior distribution, which is maxi-
mized for point estimation. We review 
recent progress to advance beyond this 
setting. If the posterior is used as a dis-
tribution to be integrated over instead 
of merely an optimization criterion, 
sparse estimators with better properties may be obtained, and 
applications beyond point reconstruction from fixed data can be 
served. We describe novel variational relaxations of Bayesian 
integration, characterized as well as posterior maximization, 
which can be solved robustly for very large models by 
 algorithms unifying convex reconstruction and Bayesian 
 graphical model technology. They excel in difficult real-world 
imaging problems where posterior maximization performance 
is often unsatisfactory.

INTRODUCTION
Signal reconstruction from noisy measurements is a core 
problem in signal processing and computational mathematics. 

At its heart lies ambiguity resolution 
between alternative data explanations, 
based on uncertain knowledge about 
signal properties. A general approach is 
to model such knowledge probabilisti-
cally and then to invert this causal 
description for inference about the sig-
nal, given the data.

In this section, we phrase sparsity-
penalized least squares reconstruction 
in a probabilistic Bayesian context, as 
maximization of the posterior distribu-
tion over signals conditioned on 
observed data. We motivate recent 

progress to advance beyond this setting, by embracing a dif-
ferent inference principle: Bayesian integration over the pos-
terior, rather than its maximization. We review variational 
relaxations of Bayesian integration that not only result in 
estimators with provably better properties than posterior 
maximization, but also further applications beyond point 
reconstruction from fixed data. These relaxations are solved 
by convex reconstruction and Bayesian graphical model algo-
rithms coming together, drawing a novel bridge between 
these concepts. In subsequent sections, we discuss large-scale 
algorithms, theoretical and empirical advancements, and 
demonstrate real-world improvements for magnetoencepha-
lography (MEG) and electroencephalography (EEG) source 
localization and new applications to magnetic resonance 
imaging (MRI).

[Improving and broadening 
the scope of compressive sensing]

© PHOTODISC

IEEE SIGNAL PROCESSING MAGAZINE   [81]   NOVEMBER 20101053-5888/10/$26.00©2010IEEE



IEEE SIGNAL PROCESSING MAGAZINE   [82]   NOVEMBER 2010

SPARSE SIGNAL RECONSTRUCTION
Consider the linear reconstruction problem. Given measure-
ments y [ Rm and design matrix X [ Rm3n, we seek u [ Rn, 
which minimizes the squared error || y2 Xu ||2. In MRI recon-
struction, u is an image slice (n pixels), y are noisy Fourier 
coefficients, and X a partial discrete Fourier transform. With 
less measurements than pixels (m , n), this problem is ill 
posed: many different u give zero error. Ideally, estimation 
should be biased towards known properties of the signal class.

If we apply derivative or wavelet filters B to an image bit-
map, the responses s5 Bu [ Rq exhibit statistical sparsity: 
most values are tiny, however, some can be large [1]. We 
assume that q $ n in the sequel. An important special case is 
B5 I . A remarkably robust low-level property of natural imag-
es, sparsity is what drives modern image compression and 
denoising methods. As sparsity of s is encouraged by way of 
the ,p penalty ||s||p

p 5 g i|si|
p for p # 1 [2], the ,p sparse 

reconstruction problem is biased towards images 

 min
u
s22||y2 Xu||21 2R,p

1u2,  R,p
1u2 5 ||Bu||p

p Ja
q

i51
|si|

p, 

  p [ 10, 14,  s2 . 0, s5 Bu. (1)

A particularly important instance is ,1 reconstruction 1 p5 12 , a 
convex optimization problem whose unique solution û,1

 is a 
tradeoff between data fit and signal sparsity. In general, Bû,p

 is 
exactly sparse for p # 1, many of its  coefficients are equal to 
zero. The strongest ,0 penalty R,0

1u2 5 ||s||0 J g i I5si206 (which 
counts the number of  nonzeros in s) leads to maximally sparse 
solutions, meaning a maximal number of elements equal to 
exactly zero. 

With the advent of compressive sensing [2], [3], there has 
been growing interest in closely approximating maximally 
sparse reconstruction. However, problem (1) is nonconvex for 
any p [ 30, 1 2 , featuring many local minima. For p near zero, 
it becomes a combinatorial search, prohibitively expensive 
even for modest m, n, and q. For B5 I, celebrated results 
establish that û,1

 has the same sparsity profile (location of 
nonzeros) as û,0

 whenever the design X satisfies a restricted 
isometry property (RIP) [2], [3]: roughly, each 2|| û,0

||0 col-
umns of X  are close to orthonormal. While for randomly 
drawn X, RIPs hold with as little as m5O 1|| û,0

||0log n2  mea-
surements, they are not even remotely satisfied in many prac-
tical situations, where û,1

 tends to be much less sparse than û,0
 

(see the section “Properties of Automatic Relevance 
Determination”).

We can view ,p reconstruction as a decision procedure 
based on a probabilistic sparse linear model (SLM). If 
y5 Xu1 e, where e is white Gaussian noise with variance 
s2, the data likelihood is P 1y |u2 5N 1Xu, s2I 2 . Since 22log 
P 1y |u2 5s22|| y2 Xu ||2 up to a constant, it matches the 
squared error term in (1), while the penalizer R 1u 2  corre-
sponds to a prior distribution P 1u 2  over signals: R 1u 2  
~ 2log P 1u 2 . Statistical sparsity of s5 Bu is well captured by 
a Laplace prior distribution: P 1u 2 ~ w i

 ti 1si 2  with 

 ti 1si 2 5 e2ti |si |,  ti . 0, (2)

which corresponds to R,1
1u 2  in (1). Another example is given 

by Student’s t sparsity potentials 

 ti 1si 2 5 111 1ti /n2si
2 221n112 /2,    ti, n . 0, (3)

where n controls the degree of sparsity enforced. Combining 
P 1 y |u2  and P 1u 2  by rules of probability, we obtain the posterior 
distribution P 1u|y 2 ~ P 1 y|u 2P 1u2 , the general solution to our 
inference problem: 

 P 1u | y2 5 Z21N 1 y |Xu, s2I 2q
q

i51
ti 1si 2 ,  s5 Bu, (4)

where Z5 eN 1 y | Xu, s2I 2 w i
 ti 1si 2  du is known as the partition 

function. Bayesian inference amounts to computing posterior 
moments, such as the mean and (parts of the) covariance, which 
requires integration over (4). Sparse Bayesian inference is infer-
ence in SLMs. 

The posterior is a distribution over signals, representing our 
uncertainty in what u should be. We can decide for a single point 
by maximum a posteriori (MAP) estimation: argmaxu P 1u | y2 , or 
equivalently argminu2 logP 1y |u2 2 logP 1u2 . Note that MAP 
estimation does not require integration over the posterior. For a 
Laplace sparsity prior (2) with ti5 1, we recover ,1 sparse recon-
struction, and ,p variants are obtained for ti 1si 2 ~ e2ti|si |

p

. The 
Bayesian viewpoint provides a statistical context for linear recon-
struction, within which a particular way of point  reconstruction, 
MAP estimation, is equivalent to sparse reconstruction by penal-
ized least squares (1).

SPARSITY PRIORS
Both statistical and computational properties of SLM inference 
methods are determined by the choice of positive potentials 
ti 1si 2  in the prior P 1u2 ~ w i ti 1si2 . They allow us to enforce 
sparsity, a combinatorial property, within computationally trac-
table algorithms.

The statistical role of sparsity potentials is understood by 
inspecting the prior and posterior distributions they give rise 
to (Figure 1). For a high-dimensional Gaussian, which does 
not encourage sparsity, all coefficients si of typical samples are 
smallish, none are large or very small. In contrast, sparsity 
priors concentrate much more probability mass close to coor-
dinate axes, and typical samples have many tiny and a few 
dominant |si | [1], [4]. Conditioning on the same measure-
ments, we obtain posterior distributions with markedly differ-
ent properties [Figure 1(b)]. With sparsity priors, posterior 
mass is skewed towards coordinate axes, sparsity is enforced 
probabilistically, while Gaussian priors enforce nothing beyond 
uniformly small size. Note that sparsity priors have a distinct 
effect on the posterior mode: it is exactly sparse (see 
Figure 1(b), middle and right and the section “Sparse Signal 
Reconstruction”), a property not shared by its samples almost 
surely. For sparsity priors discussed in this article, posterior 



IEEE SIGNAL PROCESSING MAGAZINE   [83]   NOVEMBER 2010

distributions concentrate mass on sparse points (thus promote 
sparsity exactly rather than  statistically) only in limit cases, a 
notion we expand upon in the section “Benefits of Sparse 
Bayesian Inference.”

Most sparsity potentials are super Gaussian [5]: they can 
be represented as maximum of Gaussian functions 
(see Figure 2 and the section “Variational Sparse Bayesian 
Inference”). Sparsity is enforced by  non-Gaussian priors, yet 
their representations in terms of Gaussians allow for efficient 
algorithms. Among sparsity potentials, Laplacians stand out 
by being log-concave: siA log ti 1si 2  is concave. For such 
potentials, the posterior is unimodal with convex contours 
(Figure 1(b), left and middle), and MAP estimation (1) is a 
convex optimization problem. With non-log-concave priors, 
such as the Student’s t (3), the posterior has multiple local 
modes in general (Figure 1(b), right). We will see in the sec-
tion “Algorithms for Variational Sparse Bayesian Inference” 
that log-concavity can play much the same role for approxi-
mate Bayesian inference.

BENEFITS OF SPARSE BAYESIAN INFERENCE
Can sparse estimators with better properties than MAP estima-
tion (1) be obtained from P 1u| y2? Moreover, sparse point recon-
struction from given data being a means to an end, how can 
real-world applications be furthered by posterior information 
beyond its mode? In this section, we motivate advancements in 
sparse reconstruction and beyond, by using P 1u| y2  as a distri-
bution to be integrated over, rather than a criterion to be maxi-
mized. Computational aspects are discussed in the section 
“Variational Sparse Bayesian Inference.”

Shortcomings of MAP become evident for neuronal current 
source localization (see the section “Source Localization and 
Group Sparsity Penalization”), a typical real-world signal pro-
cessing estimation problem. A smooth nonlinear model f 1 # 2  is 
densely sampled at n locations ui, and sources are reconstruct-
ed from sensor readings y by sparse estimation with 
X5 3f 1ui24. Convex ,1 reconstruction tends to perform poorly. 
Measurements are noisy and RIPs (see the section “Sparse 
Signal Reconstruction”) are violated: columns of X are strong-
ly correlated, a rule rather than an exception in real-world 
imaging applications. Nonconvex MAP reconstruction does 
not do well either: 2logP 1u| y2  has many shallow local mini-
ma, which efficient optimizers tend to get stuck in. 

A Bayesian approach can alleviate these problems in many 
situations, computing the posterior mean E 3u | y45 euP 1u| y2  du 
instead of its mode, integrating instead of maximizing over 
P 1u| y2 . While the mean is not exactly sparse (see the section 
“Sparsity Priors”), this is enforced by taking a zero temperature 
limit, for example by computing E 3u| y4 for the Student’s t 
potentials (3), then letting n S 0. An approximation to this pro-
cedure, detailed in the section “Variational Sparse Bayesian 
Reconstruction,” performs substantially better in source local-
ization practice than ,p sparse reconstruction for any 
p [ 10, 1 4. The terminology “zero temperature limit” comes 
from statistical physics [6]. With decreasing temperature, the 

posterior concentrates on the “ground states,” which are the ,0 
solutions in our case (see the section “Properties of Automatic 
Relevance Determination”). 

To motivate these advancements, note that P 1u| y2  is a prob-
ability density function, ranking u not by its height but by the 
mass surrounding it. For non-log-concave SLMs, mass tends to 
concentrate at deep optima, but many more shallow local opti-
ma stand for less sparse data explanations supported by very lit-
tle posterior mass (Figure 1(b); right). MAP estimation is blind 
to mass and easily trapped in any shallow optimum, while such 
are mainly averaged out by Bayesian integration. Moreover, the 
posterior P 1u| y2  encodes dependencies between different signal 
hypotheses, which shape its moments more than its modes, and 
perfect reconstruction can be established under weaker condi-
tions on X than RIPs for the ,1 relaxation [7]. 

The posterior for a sparse linear model is useful far 
beyond point reconstruction. For example, prediction confi-
dences are naturally provided by the posterior covariance 
matrix Cov 3u|y 4. Posterior covariance represents the struc-
ture of remaining uncertainty in u, information different 
from any single best guess the like mode or mean, which 
allows to optimize data acquisition as such. Optimizing X by 
Bayesian experimental design can strongly improve subse-
quent sparse reconstruction [8], and is used to shorten scan 
time in MRI (see the section “Sampling Optimization of 
Magnetic Resonance Imaging”). 

VARIATIONAL SPARSE BAYESIAN INFERENCE
The advantages of Bayesian inference could well be offset by its 
computational difficulty. In general, given a high-dimensional 
function of the known structure, it can be much more difficult 
to accurately evaluate integrals over it than to find its mode. 

Gaussian Laplace

(a)

Very Sparse

(b)

[FIG1] (a) Different prior distributions with the same variance 
(Gaussian, Laplace (2), and t(s)~e2t|s | 0.4

 ), together with 
placement of one measurement (same for all). (b) Corresponding 
posteriors for same measurement. Mass is skewed towards the 
coordinate axes for sparsity priors, the mode is exactly sparse. 
Posteriors for Gaussian, Laplace are log-concave. (Figure courtesy 
of F. Steinke.)
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While there is a large and diverse body of approximate 
Bayesian inference technology, until recently none of these 
methods, applied to sparse linear models, could match the 
computational efficiency and theoretical characterization of 
MAP. In this section, we motivate a variational approximation 
to sparse Bayesian inference, which can be solved efficiently 
and reliably for very large SLMs and for which several advan-
tages over MAP estimation can be established. 

Bayesian inference in SLMs, integrating over the posterior 
(4), is intractable for two reasons coming together: P 1u | y2  is 
highly coupled (X is not block diagonal) and non-Gaussian. 
Two major classes of inference approximations are Markov 
chain Monte Carlo (MCMC) and variational relaxations [6]. In 
MCMC, P 1u| y2  is represented by samples, which are generated 
by random walks. While unbiased results are obtained in the 
infinite time limit, there are no realizable convergence diag-
nostics, making MCMC hard to use in practice. Moreover, stan-
dard MCMC samplers tend to converge very slowly for highly 

coupled models such as SLMs. While MCMC has recently been 
applied to sparse reconstruction [7], [9], it will play no further 
role in this article. 

In variational approximations, Bayesian inference is relaxed 
to feasible optimization problems. While many different meth-
ods fall under this umbrella term (see [6] and [10] for a 
detailed overview), the particular approximation of interest 
here illustrates the main issues. Our goal is to fit P 1u | y2  by a 
Gaussian distribution Q 1u | y; g2  parameterized by g, minimiz-
ing a  divergence measure between P 1u|y 2  and Q 1u| y2  (sup-
pressing g-dependence for lighter notation), which we 
construct in the following way. We exploit super-Gaussianity of 
the prior potentials (see Figure 2 and the section “Sparsity 
Priors”), meaning that ti 1si 2 5maxgi$0 e

2si
2/ 12gi22hi1gi2/2 [5]. For 

example, for Laplace potentials (2), we have hi 1gi 2 5t i
2gi. 

P lugging these  into  the  log  part i t ion funct ion 
log Z5 logeN 1 y| Xu, s2I 2 w i ti 1si 2  du of the posterior (4), we 
obtain a representation purely in Gaussian terms. While still 
intractable, we note that the integral can easily be evaluated for 
any fixed g, as the log partition function of the Gaussian dis-
tribution Q 1u| y2 ~ N 1y| Xu, s2I 2e2sTG21s/2. Each of these trac-
table Gaussian integrals lower bound log Z, so that

 log Z $ max
gf0  

log3N 1 y | Xu, s2I 2e2sT G21s/22h1g2/2 du,

 s5Bu,  G J diag g, (5)

where h 1g2 J g q
i51hi 1gi2 . The variational inference problem 

constitutes in optimizing this lower bound: we fit Q 1u| y2  to 
P 1u| y2  by maximizing the right-hand side of (5) or equiva-
lently by minimizing the divergence criterion 22log 
eN 1 y| Xu, s2I 2e2sTG21s/2 du1 h 1g2 . Note how both the approx-
imation family 5Q 1u|y 2 6 and divergence are implied by lower 
bounding log Z in a particular way. While this relaxation has 
been known for some time [5], [11], most properties dis-
cussed in this article are recent. Its application to SLMs is 
algorithmically and theoretically far better understood than 
for other approximations, and it can be solved for much 
 larger models. 

We can relate the variational inference problem (5) to MAP 
estimation directly: the latter is obtained from the former by 
replacing ecdu (integration over u) with maxu (optimization 
over u). Advantages of variational Bayesian inference over MAP 
are ultimately due to this difference. A zero temperature limit 
case of our variational inference problem (the Student’s t poten-
tials, n S 0; see the section “Benefits of Sparse Bayesian 
Inference”) gives rise to a sparse point reconstruction method 
known as automatic relevance determination (ARD), (see the 
section “Variational Sparse Bayesian Reconstruction”), while 
instantiating (5) with proper priors (e.g., ,p-based potentials with 
p [ 10, 1 4 or the Student’s t with n . 0) allows for Bayesian 
inference applications beyond sparse point estimation. The fol-
lowing points are discussed in the remainder of the article. 

For sparse reconstruction, ARD is an attractive alternative  ■

to convex or nonconvex MAP estimation (1). In the zero 
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[FIG2] Super-Gaussian potentials t(s) admit tight 
  Gaussian-form lower bounds of any width g. Formally, 
t(s) 5 maxg$0e2s2/ (2g)2h(g)/2. (a) Laplace (2). (b) Student’s t (3). 
(Figure courtesy of H. Nickisch.)
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noise limit s2 S 0, ARD’s global minimum points are those 
of ,0 reconstruction, yet it comes with far fewer local mini-
mum points in general than strongly nonconvex MAP relax-
ations. Empirically, it can substantially outperform both ,1 
and nonconvex ,p reconstruction in brain imaging applica-
tions, where columns of X are strongly correlated (see the 
section “Source Localization and Group Sparsity 
Penalization”). ARD, as opposed to MAP reconstruction, 
exploits nonuniform coefficient scaling of the ,0 solution, a 
stable feature of real-world signals such as natural images 
(see the section “Properties of Automatic Relevance 
Determination”). 

Variational sparse Bayesian inference (5) is a convex opti- ■

mization problem if and only if MAP estimation is convex for 
the same model (see the section “Algorithms for Variational 
Sparse Bayesian Inference”). It is instrumental in driving 
nonlinear Bayesian experimental design, which can be used 
to optimize measurement designs X in real-world medical 
imaging settings (see the section “Sampling Optimization of 
Magnetic Resonance Imaging”). 

The variational inference relaxation (5) is solved by dou- ■

ble-loop algorithms, scaled up to very large models by reduc-
tions to convex reconstruction and Bayesian graphical model 
technology. Solving the ARD problem (locally) with these 
algorithms comes at the cost of a small number of reweight-
ed ,1 MAP problems (see the section “Properties of Automatic 
Relevance Determination”).

GAUSSIAN BAYESIAN GRAPHICAL MODELS
What does it take to solve the variational problem (5)? Can we 
use MAP estimation technology, or do we need computations of 
a different kind? At the least, we will need gradients w.r.t. g21 

=g21log3N 1y|Xu, s2I 2e2sTG21s/2 du521EQ 3si|y421VarQ 3si|y4 2 /2.

We require means and variances of the marginal distributions 
Q 1si | y2 , Bayesian inference in Gaussian models. While com-
mon MAP algorithms (such as iteratively reweighted least 
squares) reduce to Gaussian mean computations equivalent to 
1EQ 3si |y4 2 , variances are not part of them. Fortunately, we can 
approximate both means and variances by Bayesian graphical 
model algorithms. 

An (undirected) graphical model describes structure in a 
family of multivariate probability distributions by way of an 
undirected graph G, with nodes representing random variables 
(say, x1, c, xn) and the absence of edges indicating conditional 
independence relationships. The latter can be used to dramati-
cally simplify the computation of marginal posterior distribu-
tions P 1xi 2 , which by brute force scales exponentially in n. The 
formalism unifies ideas scattered across many disciplines: 
prominent examples are hidden Markov models, Kalman filter-
ing, and low-density parity-check decoding [6]. Model distribu-
tions factorize into nonnegative potential functions defined 
on the cliques (fully connected node subsets) of G: 

P 1x1, c, xn 2 5 Z21wC[C cC 11xi 2 i[C 2 ,  a representation in 
terms of local functions. In Figure 3, x1, x3, x4 are separated by 
x2, a structure that simplifies computations: P 1x1 2 ~g x2, x3, x4

C12 1 x1, x2 2C23 1 x2, x3 2C24 1 x2, x4 2  5 g x2
C12 1x1, x2 21g x3C23 1x2, x3 22 1g x4C24 1x2, x4 22 . The basic elements of these 

computations are messages miS j 1xj 2  passed along edges of G: 
P 1x1 2 ~ m2S1 1x1 2  is obtained from m3S2 1x2 2 ~ g x3C23 1x2, x3 2  
and m4S2 1x2 2 ~ g x4C24 1x2, x4 2  through the local sum-product 
message passing rule. For tree (singly connected) graphs G, the 
message passing (or belief propagation) algorithm  computes all 
marginals P 1xi 2  with 2 1n2 1 2  sum-product operations [6].

For graphs with cycles, message passing becomes loopy 
belief propagation, an iterative algorithm for approximate 
inference, whose convergence and marginal error properties 
are subject to intense ongoing research [6]. The junction tree 
algorithm speeds up marginal computations even for loopy 
sparse G, but remains generally intractable. Exact inference 
for discrete variable models is NP-hard [6]. For Gaussian 
models, exact inference requires O 1n3 2  time and O 1n2 2  space, 
which for very large n is practically prohibitive. G is deter-
mined by the sparsity pattern of the inverse covariance matrix 
A5 Cov 3x 421: 1 ij 2  is an edge iff aij 2 0 [Figure 3(b)], and the 
sum-product rule coincides with Kalman filtering equations. 
Whenever Gaussian loopy message passing converges (suffi-
cient conditions for convergence are well understood), mar-
ginal means are correct, while variances are approximate in 
general [12]. Nevertheless, Gaussian message passing forms 
an integral part of today’s most successful large scale variance 
approximations (see the section “Double-Loop Algorithms”).

Gaussian inference fails to capture statistical sparsity (see 
the section “Sparsity Priors”), while sparse MAP estimation does 
not quantify prediction uncertainty and falls short of Bayesian 
averaging. However, we will see that their combination is suffi-
cient to drive variational sparse Bayesian inference.

ALGORITHMS FOR VARIATIONAL 
SPARSE BAYESIAN INFERENCE
In this section, we describe efficient double-loop algorithms for 
solving the variational relaxation (5) at large scales and charac-
terize its convexity. Full details are found in [13]–[15].

m
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→
1
(x

1
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m 3→2
(x 2

) m
4→
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2 )
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[FIG3] (a) Tree-structured graphical model. Messages miS j 
(xj), 

computed by the sum-product rule, are passed along edges. (b) 
Inverse covariance matrix structure for Gaussian model on the 
left (black squares indicating potential nonzero elements).
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Off-the-shelf optimization of (5) is not a viable option for 
very large models. Recall the form of the Gaussian posterior 
approximation Q 1u | y2 , parameterized by g f 0. In particular, 
i t s  covar iance  matr i x  i s  CovQ 3u | y45 A21,  where 
A J s22XTX1 BTG21B. As the integration is over a Gaussian, 
we can convert it into an optimization [13], obtaining the fol-
lowing reformulation of (5):

min
gf0

 min
u
5f 1u, g2 J log| A|1s22|| y2Xu ||21 sTG21s1 h1g26. 

 (6)

Recalling our comments in the section “Variational Sparse 
Bayesian Inference,” the precise relationship between variation-
al inference (5) and the MAP problem is clear now: their criteria 
differ solely in the log| A| term. Gaussian integration over u 
introduces dependencies between variables according to the 
posterior covariance (see the section “Benefits of Sparse 
Bayesian Inference”), giving rise to the coupling term log|A| not 
present in MAP. While the variational inference problem can be 
phrased as penalized least squares problem (1) with 
RVB 1u2 5min gf0 log| A|1 h 1g2 1 sTG21s, this term does not 
come with the separable structure of MAP penalties (it cannot 
be expressed in the form f 1u2 5g i fi 1si22 .

The reformulation (6) is essential for constructing efficient 
solvers. It is a jointly convex problem iff h 1g 2  is convex, equiv-
alent to all ti 1si 2  being log-concave [14], [16]. Recalling the 
role of log-concavity for MAP (see the section “Sparsity 
Priors”), the variational inference problem is convex if and 
only if MAP estimation is convex for the same model. This 
property sets (5) apart from all other continuous-variable 
inference approximations we are aware of. Popular techniques 
like structured mean field [10] are nonconvex in general, oth-
ers like expectation propagation [6] are not even provably con-
vergent algorithms.

DOUBLE-LOOP ALGORITHMS 
The joint minimization of (6) is difficult due to the coupled 
term log| A|, but a concept known as concave-convex or 

majorize-minimize applies. The critical term is a concave func-
tion of g21. By Legendre duality, we have that log| A|5  
min zf0 zT 1g212 2 g1

* 1z 2  for some function g1
* 1z 2 ,  and as 

detailed in [13] and [14], (6) can be converted into

   min
zf 0

amin
u
s22i y2Xui 22 2a

q

i51
 logti"zi1 s2

i 2 g1
* 1z 2 . (7)

For any fixed z, we have a separably penalized least squares 
problem w.r.t. u of the same form (1) as MAP estimation (in fact, 
MAP estimation would be obtained precisely by setting all zi5 0). 
For Laplace potentials (2), this inner problem is (1) with 
R 1u 2 5 g i

 ti "zi1 s2
i .

Our double-loop algorithm [13], [15] iterates between inner 
loop minimizations of (7) over u (which involve posterior mean 
calculations 1EQ 3si |y42  as commonly used for MAP estimation), 
and outer loop updates of z (see Figure 4). The latter are given 
by z d =g21log| A|5 diag21 1BA21BT 2 5 1VarQ 3si | y4 2 , they re -
quire computing Gaussian variances. The variational relaxation 
(5) is solved at large scales by penalized least squares recon-
struction and Gaussian model inference joining forces. The 
algorithm is guaranteed to converge to a stationary point [15], 
whether (5) is convex or not. It converges orders of magnitude 
faster on large SLMs than other approximate inference methods 
we are aware of. For non-log-concave prior potentials, a simple 
variant of (7) ensures that merely convex inner loop problems 
have to be solved [16].

While in Gaussian models, posterior means 1EQ 3si | y42  are 
obtained solving a single linear system by the conjugate gradi-
ents algorithm, no similarly general and efficient method is 
known for the variances 1VarQ 3si | y4 2 . Today’s most promising 
variance approximations use graphical model message passing 
(see the section “Gaussian Bayesian Graphical Models”) or fit A 
by a low rank matrix [17], for example, by using the Lanczos 
algorithm [13], [18]. Message passing is used as subroutine in 
methods that approximate Q 1u| y2  by tree-like graphs [17], [19] 
or in Gauss-Seidel algorithms [20]. Distributed message passing 
computations can be used together with Lanczos methods to 
address very large models (see the section “Sampling 
Optimization of Magnetic Resonance Imaging”). Effects of low 
rank variance approximation errors on the problem (7) are ana-
lyzed in [21]. 

VARIATIONAL SPARSE BAYESIAN RECONSTRUCTION
Bayesian inference can be used for sparse point reconstruction by 
computing the posterior mean euP 1u| y2  du in a zero tempera-
ture limit (see the section “Benefits of Sparse Bayesian Inference”), 
where posterior mass is concentrated on exactly sparse points. A 
variational approximation thereof, known as ARD [15], is obtained 
from (5) with Student’s t potentials (3), letting n S 0, which ren-
ders h 1g2 5g i loggi [14]. The role of this concave function, 
unbounded below as gi S 0, is to drive components of g to zero. 
It is easy to see that 5gi5 06 implies the elimination of si: the 
Gaussian Q 1u | y2  is a degenerate distribution, fixing components 
of s to zero. In contrast, degenerate Q 1u | y2  cannot arise in 

φ∩ φ∪φ∪

φ∩ + φ∪ φ/ + φ∪

γt γt+1

φ/

(a) (b)

[FIG4] (a) Illustration of double-loop algorithm to minimize 
f(g) 5 f"(g) 1 f:(g), f" concave, f: convex. (b) Outer loop 
iteration starting at gt : (1) bound f" by affine f/, tangent at gt, 
then (2) minimize convex upper bound f/ (g) 1 f:(g) to obtain 
g 

t11. While the algorithm in the section “Double-Loop 
Algorithms” exploits concavity in g21, the same principle 
applies. (Figure courtesy of H. Nickisch.)
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 variational inference for normalizable potentials ti 1si 2 , where 
gs0 throughout.

REWEIGHTED ,1 ALGORITHM
In the ARD zero temperature limit, we can use an alternative to 
the double-loop algorithm above, enjoying the same global con-
vergence property but some additional benefits [15]. Since 
gAlog|A|1g iloggi is concave for g f 0 [14], Legendre duality 
provides its representation as min zf0 zTg2 g2

* 1z2  (see Figure 4) 
g*

2 1z 2 , and as detailed in [15], (6) is converted into 

 min
zf0

amin
u
s22|| y2 Xu||21 2a

q

i51

zi
1/2|si |b 2 g2

* 1z2. (8)

In this case, the inner loop problem is a reweighted form of ,1 
reconstruction (1), whose minimizer is exactly sparse. Running 
this double-loop algorithm often requires many less outer loop 
iterations than the method of the “Double-Loop Algorithms” sec-
tion applied to ARD, since the bound on log|A| used here is tighter 
for gi < 0. Moreover, it is easier to add additional convex con-
straints on u [22]. Outer loop updates are given by 
zi d 112 VarQ 3si |y4 /gi 2 /gi. If ||g ||0 V q, these values can be 
computed efficiently by low-rank formulae [22], [23].

PROPERTIES OF AUTOMATIC 
RELEVANCE DETERMINATION
In this section, we show that ARD can offer substantial advantages 
over separable (convex or nonconvex) MAP estimation when 
searching for maximally sparse solutions. These improvements 
have to be offset against an increase in running time, since ,1 
reconstruction has to be run a few times (see the section 
“Reweighted ,1 Algorithm.”) Detailed accounts of these results, 
including all proofs, are found in [22] and [23]. We will assume 
that m , n (less observations than signal components), and that 
each subset of m columns of X is linearly independent. Moreover, 
B5 I in this section, and s5 u. For simplicity, we restrict our-
selves to the zero noise limit (s2 S 0), for which ,0 reconstruc-
tion becomes

 min
u
e||u||05a

n

i51
I5ui206f  such that y5 Xu, (9)

while ARD becomes

 min
u
RVB 1u2 such that y5 Xu, (10)

where 

 RVB1u25min 
gf0

log|XGX T|1uTG21u5min
zf0

2 a
n

i51
zi

1/2|ui|2g2
* 1z2

(which holds up to an additive constant [14]).
Since the ,1 MAP relaxation of maximally sparse ,0 recon-

struction is exact when RIPs hold true (see the section “Sparse 
Signal Reconstruction”), we focus on practically relevant situ-
ations where such conditions for X are violated (see the sec-
tion “Source Localization and Group Sparsity Penalization”). 
There is growing empirical evidence that the variational ARD 

method can substantially outperform separable MAP-like 
relaxations in many such cases (for example, Figure 5), and 
our aim is to provide sound explanations for these findings. 
Our results do not necessarily imply that ARD improves upon 
MAP reconstruction uniformly over all sufficiently sparse 
instances, but rather that it exploits additional structure in 
the signal beyond exact sparsity, thus is in general much less 
reliant on X obeying RIPs to work well. 

Separable MAP-like relaxations often fail to closely 
approximate (9) for one of the following reasons. For a con-
vex MAP relaxation (e.g., ,1 reconstruction), the global solu-
tion is not sufficiently sparse, thus biased away from 
maximally sparse solutions of (9). One way to decrease such 
bias is to employ MAP with stronger, non-log-concave poten-
tials (e.g., minimizing ,p with p < 0, or running MAP with 
the Student’s t in the n S 0 limit). However, such criteria 
are notoriously hard to optimize, and many algorithms get 
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[FIG5] Comparison of ARD sparse Bayesian reconstruction (10), 
using the algorithm from the section “Double-Loop Algorithms,” 
with basis pursuit (BP), solving the <1 problem (1) for s2 5 0, 
and orthogonal matching pursuit (OMP), a greedy method for 
solving (9) locally. Data generation: m 5 50, n 5 100, columns of 
X drawn uniformly of unit norm, true vectors u r with support 
size d [ [10, 30], nonzeros either from (a) highly scaled 
distribution or (b) set to one, y 5 Xu r ( m, n, d guarantee that u r 
maximally sparse in general). Error rates (fraction of failure to 
find sparsity pattern of u r) were estimated by running 1,000 
repeats each. (a) As expected, BP performs identical in both 
settings, while OMP and especially ARD benefit from 
nonuniform scaling. (b) Even in the worst case of identical 
nonzeros, ARD outperforms the other methods. 
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stuck in poor local solutions. Another option is to employ a 
nonseparable penalizer R 1u2 . This is the route taken by ARD, 
whereby the penalizer RVB 1u2  is obtained in a principled 
manner through Bayesian integration. In the zero noise 
limit, ARD (10) has precisely the same global maximum 
points as the ,0 problem (9). However, while nonconvex MAP 
relaxations sharing this global minima condition are plagued 
by a provably large number of local minima, Bayesian averag-
ing serves to smooth away many (and typically most) subop-
timal local solutions in the variational ARD criterion.

It is understood in great detail by now how the difficulty of 
sparse reconstruction grows with the number of nonzeros in 
the optimal ,0 solution û,0

. However, the size distribution of 
nonzeros in û,0

 can play a substantial role as well. This fact has 
largely been overlooked so far [2], quite possibly because the 
recovery performance of the ,1 MAP relaxation is invariant to 
rescaling the nonzeros in û,0

. Nonuniform coefficient scaling is 
a property of most real-world signal classes of interest (for 
example, distributions of natural image wavelet coefficients are 
scale-free and vary over a large dynamic range [1]). In contrast 
to ,1 reconstruction, such scaling is successfully exploited by 
ARD whenever present (see Figure 5). The following result con-
firms these observations: whenever the coefficient scaling of û,0

 
is sufficiently nonuniform, the ,0 solution is the only local mini-
mum point of the ARD criterion. Say that u r with ||u r ||0 # k 
obeys scaling constraints 1wi2 [ 10, 14k21 of order k if 
|ur1i112 | # wi|ur1i2 | for i5 1, c, k2 1, where 1ur1i2 2  is a permu-
tation of u r in nonincreasing (absolute) coefficient ordering: 
|ur1i112 | $ |ur1i2 |. Then, for any X, there exists scaling constraints 
of order m2 2, so that for any signal u r, ||ur||0 , m obeying 
these constraints and y5 Xu r, ARD has no local minimum 
point apart from u r, and u r will necessarily equal the unique, 
maximally sparse solution.

Finally, as the reweighted ,1 double-loop algorithm from the 
section “Reweighted ,1 Algorithm” is typically started with 
straight ,1 reconstruction (z5 1 for the first outer loop step), it 
is important to stress that apart from increased running time, 
there is no risk involved in running further iterations and 
 progressing beyond convex MAP estimation. The sparsity ||u* ||0 
for successive inner loop minimizers u* is nonincreasing, so 
that ARD’s recovery performance cannot be worse than that of 
,1 MAP estimation. Moreover, given any X and sparsity profile 
S ( 51, c, n6  [location of nonzeros; |S| # 1m1 12 /2] for 
which ,1 reconstruction fails to recover some û,0

, running sub-
sequent ARD iterations can always lead to successful recovery. 
Precisely, there are sets 5y5 Xu r6 of nonzero Lebesgue mea-
sure, u r with sparsity profile S, for which the ARD reweighted 
,1 algorithm always succeeds in solving (9), yet ,1 reconstruc-
tion (1), the tightest convex relaxation of the ,0 problem, always 
fails. This statement in particular covers instances for which 
RIPs do not hold.

APPLICATIONS
Bayesian methods for sparse linear models are useful for 
sparse point reconstruction, and beyond for decision making 

based on uncertain, highly underdetermined knowledge. In 
this section, we provide examples for sparse Bayesian inference 
and point reconstruction of particular interest to signal and 
image processing.

SAMPLING OPTIMIZATION OF 
MAGNETIC RESONANCE IMAGING
In MRI [24], image slices are reconstructed from coefficients 
sampled along smooth trajectories in Fourier space (phase 
encodes). In Cartesian MRI, phase encodes are dense columns 
(or rows) in discrete Fourier space. The most serious limiting 
factor is long scan time. MRI is a prime candidate for compres-
sive sensing in practice [25], [26]: if quality images can be 
reconstructed from an undersampling, time is saved at no 
additional costs. The success of sparse reconstruction on real-
istic images is mainly determined by the choice of the design 
X [8], [26]. This empirically well-established fact, not captured 
by current compressive sensing theory, motivates the optimi-
zation of X, which can be done with Bayesian experimental 
design. A good explanation for the apparent mismatch between 
theory and real imaging practice is that assumptions made by 
the theory do not come close to capturing real-world image 
structure [8].

Bayesian experimental design makes use of posterior cova-
riance Cov 3u | y4, quantifying the dependency structure of 
remaining uncertainty in u, in that subsequent phase encodes 
are aligned with directions of maximum uncertainty, optimiz-
ing X in a greedy sequential manner. Our algorithm iterates 
between scoring phase encodes X* based on the posterior 
approximation Q 1u| y2  for the current data 1X, y 2 , extending 
X by the winner X* and y by corresponding new data y*, and 
refitting Q 1u| y2  [Figure 6(a)]. The scoring criterion to be 
maximized is IQ1u | y2 1X*2 5 11/22 log| I1 X*

T A21X*|, an approxi-
mation to the information gain [27], [4]. Computing 
5IQ1u | y2 1X*26 for a large set of candidate encodes X* is closely 
related to computing Gaussian variances 1VarQ 3sj | y4 2  for all 
components sj, and essentially the same technology can be 
applied (see the sections “Gaussian Bayesian Graphical 
Models” and “Double-Loop Algorithms”). This procedure was 
implemented for a study with Cartesian MRI scans of the 
human brain [13], [26], driven by the convex variational 
relaxation (5) with Laplace prior potentials (here, 
n5 131,072, q < 3n, m up to 13/4 2n, and u are complex-val-
ued). Optimized designs X clearly outperform setups drawn at 
random from engineered variable-density ensembles [25], 
when either are applied to a wide variety of test data 
(Figure 6(b); note that all reconstructions for given designs X 
are done by conventional ,1 MAP estimation). This framework 
is not specific to MRI and applies to other image acquisition 
modalities as well. It is an instance of adaptive compressive 
sensing, choosing X actively based on representative real-
world data using concepts from machine learning. Adaptive 
compressive sensing schemes have to maintain some repre-
sentation of uncertainty over all coefficients beyond single 
best estimates, such as the measurement budget distribution 
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in distilled sensing [28], a recent adaptive  reconstruction 
method. Distilled sensing is an online adaptive scheme (X has 
to be re-learned for each reconstruction), while Bayesian 

experimental design aims to find designs that generalize well 
to unseen data. Moreover, distilled sensing has not been 
applied to real-world images. 
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In realistic MRI experiments, a stack of neighboring image 
slices is acquired in an interleaved fashion. Bayesian design 
optimization can be generalized to this setting, representing 
dependencies between slices, if the double-loop algorithm is 
configured with parallel convex reconstruction and approximate 
Kalman smoothing [29]. The Markov structure of this very large 
setup is exploited by graphical model technology to iteratively 
reduce computations to the single slice case (see the section 
“Gaussian Bayesian Graphical Models”). 

SOURCE LOCALIZATION AND 
GROUP SPARSITY PENALIZATION
A basic problem in array processing is source localization [30]. 
Measurements y [ Rm  are modeled as P 1 y |a, Q25 
N Qy |ak

j51
aj f 1u1 j2 2 , s2I R, where Q5 3u1 j 2 4 [ Rr3k represents 

k  source locations, a [ Rk  signal amplitudes, and 
f 1 # 2  : Rr S Rm is a fixed nonlinear signal transduction function. 
The number of active sources k must be learned along with 
their locations. Estimating a, Q and k is an intricate nonconvex 
optimization problem, a powerful alternative to which is offered 
by sparse estimation. We densely sample locations at n W m 
points 5ui6 and apply sparse Bayesian reconstruction with 
X5 3f 1ui24. Upon convergence to u*, the nonzeros correspond 
to a, k d ||u*||0, and relevant locations u 1 j2 correspond to 
active columns of X. Due to favorable properties described in 
the section “Properties of Automatic Relevance Determination,” 
estimates are much less dependent on initialization or the local 
minimum profile of the likelihood than in the  traditional non-
linear setup. Sparse Bayesian source localization has been 
applied successfully to tomographic imaging of neuronal cur-
rent sources by MEG and EEG [31]. The ARD double-loop algo-

rithms discussed above scale well to realistic problem sizes, e.g., 
m5 300 sensors and n5 106 voxels, significantly outperform-
ing results for ,1 MAP reconstruction (see Figure 7). As noted in 
the section “Benefits of Sparse Bayesian Inference,” this can be 
explained by RIPs [3] certainly being violated: due to dense sam-
pling and smoothness of f 1 # 2 , columns of X are strongly corre-
lated. Similar to MRI (see the section “Sampling Optimization 
of Magnetic Resonance Imaging”) or most imaging modalities 
in practice, this property of X is not negotiable. Other success-
ful applications of ARD include direction-of-arrival estimation 
for sonar and radar processing [30], [32]. 

Our algorithms are easily extended to incorporate group 
sparsity penalization [33], [34]. If s5 Bu decomposes into 
subvectors si (for example, columns of a matrix), we may 
replace ti 1si 2  (scalar si) by ti 1 ||si ||2 , || # || the Euclidean norm. 
For example, if s is complex-valued (see the section “Sampling 
Optimization of Magnetic Resonance Imaging”), the encoding 
si [ R2 naturally leads to group penalization. A more general 
example is the simultaneous sparse approximation problem, 
arising in applications such as image coding or source local-
ization [30]: given an overcomplete dictionary and a set of 
response vectors 5yk6, the goal is to jointly encode them using 
the same sparsity profile, allowing for different nonzero 
weights. A group extension of the ,0 problem asks for solu-
tions of maximal group sparsity, where coefficients si are elim-
inated jointly. Extending our reweighted ,1 ARD algorithm 
accordingly, we obtain a method where inner minimizations 
are second-order-cone programs. Once more, empirical perfor-
mance improvements over standard MAP relaxations can be 
substantial [22], and these observations are backed up by theo-
retical results [35]. 

DISCUSSION
Bayesian methods differ from MAP point 
estimation in that the unknown signal is 
averaged over the posterior distribution 
rather than fixed to a single best guess. 
Conceptual advantages of Bayesian aver-
aging over MAP are typically offset by the 
higher running costs and less rigorous 
theoretical characterizations of most 
commonly used approximate inference 
methods. With novel variational Bayesian 
inference techniques reviewed here, the 
efficiency gap relative to convex MAP 
reconstruction can be narrowed consid-
erably. Applied to sparse reconstruction, 
they constitute attractive alternatives to 
convex or nonconvex separable MAP esti-
mation. At the cost of calling reweighted 
,1 problems a few times, they come with 
provable advantages in important appli-
cations, where restricted isometry prop-
erties typically do not hold. Moreover, 
they allow to quantify prediction 

Ground Truth ARD <1 MAP Beamforming

[FIG7] MEG source localization simulation example. A signal y is obtained from MEG 
sensors on the scalp surface, measuring small magnetic fields induced by cortical current 
flow. The design X can be constructed via Maxwell’s equations and a structural MRI scan. 
Note that currents/sources u (in red) are typically confined to compact regions of the 
brain for a given experiment, they are sparse. We compare ARD source localization with 
<1 MAP reconstruction (1) and minimum variance adaptive beamforming [31].
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 confidences and uncertainty structure that can be used for 
advanced decision making problems beyond point reconstruc-
tion, such as automatic acquisition optimization by Bayesian 
experimental design. Their associated optimization problems 
are well characterized and can be solved efficiently even for very 
large models by way of scalable double-loop algorithms, reduc-
ing approximate Bayesian inference to separable point recon-
struction and Gaussian graphical model computations coming 
together. Within the methodology reviewed here, Bayesian 
graphical models gain surprising new relevance to help to 
improve, as well as broaden, the scope of compressive sensing. 
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