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Abstract. We present a semi-decision procedure for checking satisfia-
bility of formulas in the language of algebraic data types and integer
linear arithmetic extended with user-defined terminating recursive func-
tions. Our procedure is designed to integrate into a DPLL(T ) solver loop,
using blocking clauses to control function definition unfolding. The proce-
dure can check the faithfulness of candidate counterexamples using code
execution. It is sound for proofs and counterexamples. Moreover, it is ter-
minating and thus complete for many important classes of specifications:
for satisfiable specifications, for specifications whose recursive functions
are sufficiently surjective, and for functions annotated with inductive
postconditions. We have implemented our system in Scala, building on
top of the Z3 API and Z3’s plugin mechanism. Our results show our ap-
proach to be superior in practice to the alternative of encoding recursive
functions as quantified axioms. Using our system, we verified detailed
correctness properties for functional data structure implementations, as
well as Scala syntax tree manipulations. We have found our system to be
fast for both finding counterexamples and finding proofs for inductively
annotated specifications. Furthermore, it can quickly enumerate many
test cases satisfying a given functional precondition, which can then be
used to test both functional and imperative code. Thanks to our tool,
many SMT solver clients, including verifiers and synthesizers, can ben-
efit from the expressive power of recursive function definitions within
formulas.

1 Introduction and Background

SMT solving tools [20, 4, 8] are important drivers of advances in verification of
large software and hardware systems [3, 10]. SMT solvers are efficient for de-
ciding quantifier-free formulas in the language of useful theories, such as linear
integer arithmetic and algebraic data types. Nonetheless, the operations avail-
able in the existing theories are limited, which prevents verification against more
detailed specifications and the discovery of more complex invariants needed to
prove safety of systems. To increase the power of SMT-based reasoning, we ex-
tend the expressive power of formulas and allow them to contain user-defined
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recursive functions. By insisting on computable (as opposed to arbitrarily ax-
iomatizable) functions, we obtain familiarity to developers, as well as efficiency
and completeness of reasoning in many cases.

We next compare our approach to the most closely related techniques.

Interactive verification systems. The practicality of computable functions
as an executable logic has been demonstrated through a long line of systems,
notably ACL2 [18] and its predecessors. These systems have been applied to
a number of industrial-scale case studies in hardware and software verification
[17, 19]. Recent systems based on functional programs include VeriFun [26] and
AProVE [12]. Moreover, computable specifications form important parts of many
case studies in proof assistants Coq [5] and Isabelle [21]. These systems support
more expressive logics, with higher-order quantification, but provide facilities for
defining executable functions and generating the corresponding executable code
in functional programming languages [15]. When it comes to reasoning within
these systems, the systems offer varying degree of automation. What is common
is the difficulty of predicting when a verification attempt will succeed. This is
in part due to possible simplification loops associated with the rewrite rules and
tactics of these provers. Moreover, for performance and user-interaction reasons,
interactive proofs often fail to fully utilize aggressive case splitting that is at the
heart of modern SMT solvers.

Inductive generalizations vs counterexamples. Existing interactive sys-
tems such as ACL2 are stronger in automating induction, whereas our approach
is complete for finding counterexamples. Analogously, the HMC verifier [16] and
DSolve [24] can automatically discover inductive invariants. Our system does
not attempt to do so and instead focuses on counterexamples and simple cases
of inductive proofs. Counterexample generation has been introduced into the
Isabelle system through tools such as Nitpick [6], but such techniques fail to
explore the efficiency of theory solvers over domains such as integers, finite sets,
and algebraic data types.

Satisfiability modulo theory solvers. SMT solvers behave as complete
decision procedures on certain classes of quantifier-free formulas containing the-
ory operations and uninterpreted functions. However, they do not support user-
defined functions, such as functions given by recursive definitions. An attempt to
introduce them using quantifiers leads to formulas on which the prover behaves
unpredictably for unsatisfiable instances, and is not able to determine whether
a candidate model is a real one. This is because the prover has no to determine
whether universally quantified axioms hold for all of the infinitely many values
of the domain. In our case, terminating executable functions are a particularly
important and well-behaved class of quantified axioms, so we can check the con-
sistency of a candidate assignment by executing them. Moreover, the unfolding
of function definitions gives us an analogue of a quantifier instantiation strategy
along with completeness guarantees.

A high degree of automation in our system comes in part from using state-
of-the-art SMT solver Z3 [20] to reason about quantifier-free formula modulo
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theories such as algebraic data types, and linear arithmetic, as well as to perform
case splitting along with automated lemma learning. Our algorithm integrates
into the DPLL(T) loop of Z3, both through a top-level wrapper and a call-back
supported in the Z3 theory plugin.

The algorithm performs demand-driven unfolding of function definitions and
checks the validity of candidate counterexamples using both the forms of the
formulas and code execution. Our algorithm thus both finds proofs and generates
counterexamples in the forms of test cases. We have designed our algorithm to be
complete for counterexamples and for assume-guarantee reasoning, but we have
subsequently discovered that it is complete also for useful previously identified
decidable fragments [25]; this completeness has been confirmed by the behavior
of our system in practice.

Experience with the resulting system. Our system acts as an extension of
the Z3 prover with recursive functions, and can therefore be used for verification
of functional and imperative programs, synthesis, test generation, and related
tasks. We have evaluated it on the verification of functional programs, as well
as test generation.

Our verifier for functional programs allows the developer to state the func-
tions in a subset of Scala and compile them using the standard Scala com-
piler. This means that the developer can manually run tests on sample inputs.
The developer uses the existing library for dynamically checking executable con-
tracts [22] to describe the desired properties. As a result, run-time contract
violations of contracts can be found using testing.

Because we can use other functions to specify properties of the functions of
interest, we obtain a very expressive specification language. We can use abstrac-
tion functions to specify abstract views of data structures. We can naturally
specify properties such as commutativity and idempotence of operations, which
require multiple function invocations and are not easy to express in type systems
and many other specification approaches.

The system generates verification conditions expressing the validity of func-
tions against their contracts. It also generates implicit checks that ensure that
preconditions are met at all function invocations. Finally, it generates conditions
that ensure completeness of pattern matching expressions. Finally, it proves these
verification conditions using our algorithm for integrating function unfolding and
model validation. We have applied our system to a number of examples including
data structures such as red-black trees, a library of list manipulating functions,
as well as expression manipulation functions. We have found that the system
was fast both in finding counterexamples and proofs for verification conditions.

We also examined the performance of our system for generating test cases.
We have found that using a simple model enumeration technique we were able to
generate large number of test cases that satisfy specifications involving recursive
functions.

We therefore believe that the algorithm holds great promise for practical
verification of complex properties of computer systems.

Contributions. We summarize the contributions of our paper as follows:
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– We introduce a procedure for satisfiability modulo computable functions,
which integrates DPLL(T) solving with unfolding of function definitions and
validation of candidate models.

– We observe that our satisfiability procedure is:
1. sound for proofs: if it reports ‘unsat’, then there are no assignments to

free variables for which the formula is true;
2. sound for models: every model it returns in the ‘sat’ case is a true model

of the formula;
3. terminating for all formulas that are satisfiable;
4. terminating in case of unsatisfiable formulas arising from functions anno-

tated with inductive postconditions (as in assume-guarantee reasoning);
5. terminating for the important family of all sufficiently surjective abstrac-

tions [25].
– We describe the implementation of our system, named Leon, as a plugin for

the Scala compiler, which uses only existing constructs in Scala for specifying
functions and properties. The system integrates with the SMT solver Z3
through a combination of a top-level loop and a callback function.

– We present our results in verifying over 40 functions manipulating integers,
sets, and algebraic data types. The system was able to verify correctness
properties expressed as postconditions as well as the completeness of pattern
matching expressions. The system is also able to generate test cases based
on specifications involving recursive functions.

2 Examples

We now illustrate how our verification system based on our procedure for satisfia-
bility modulo computable functions, which we call Leon, can be used to prove in-
teresting properties about functional programs. Consider the following recursive
datatype, written in Scala syntax [23], that represent formulas of propositional
logic:

sealed abstract class Formula
case class And(lhs: Formula, rhs: Formula) extends Formula
case class Or(lhs: Formula, rhs: Formula) extends Formula
case class Implies(lhs: Formula, rhs: Formula) extends Formula
case class Not(f: Formula) extends Formula
case class Literal(id: Int) extends Formula

We can write a recursive function that simplifies a formula by rewriting impli-
cations into disjunctions as follows:

def simplify(f: Formula): Formula = (f match {
case And(lhs, rhs) ⇒ And(simplify(lhs), simplify(rhs))
case Or(lhs, rhs) ⇒ Or(simplify(lhs), simplify(rhs))
case Implies(lhs, rhs) ⇒ Or(Not(simplify(lhs)), simplify(rhs))
case Not(f) ⇒ Not(simplify(f))
case Literal( ) ⇒ f
}) ensuring(isSimplified( ))
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We could prove that simplified formulas never contain implications by using for
instance the approach of set constraints [1]. Alternatively, using our technique we
can simply write a recursive function isSimplified that computes whether a given
formula contains an implication as a subformula, and use it in a contract. The
ensuring statement in the example is a postcondition written in Scala notation
[22], stating that the function isSimplified evaluates to true on the result. We
define isSimplified recursively as follows:

def isSimplified(f: Formula): Boolean = f match {
case And(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Or(lhs, rhs) ⇒ isSimplified(lhs) && isSimplified(rhs)
case Implies( , ) ⇒ false
case Not(f) ⇒ isSimplified(f)
case Literal( ) ⇒ true
}

(Note that we would also typically write such an executable specification function
for testing purposes.) Using our procedure for satisfiability modulo computable
functions, our system can prove that the postcondition of simplify is satisfied for
any input formula f.

Such refinements of types are known as refinement types [11]. Refinement
types that are defined using functions such as isSimplified are in fact sufficiently
surjective abstractions [25], which implies that our system is a decision procedure
for such constraints (see Section 4). This is confirmed with our experiments—our
tool is predictably fast on such examples.

Suppose now that we want to prove that simplifying a simplified formula does
not change it further. In other words, we want to prove that the property sim-
plify(simplify(f)) == simplify(f) holds for all formulas f. Because our programming
and specification languages are identical, we can write such universally quanti-
fied statements as functions that return a boolean and whose postcondition is
that they always return true. In this case, we would write:

def simplifyIsStable(f: Formula) : Boolean = {
simplify(simplify(f)) == simplify(f)
} holds

(Because such specifications are common, we use the notation holds instead of
the more verbose ensuring(res ⇒ res).) Our verification system proves this prop-
erty instantly, by unrolling the definitions and postconditions of simplify and
isSimplified sufficiently many times.

Another application for our technique is verifying that pattern-matching ex-
pressions are defined for all cases. Pattern-matching is a very powerful construct
commonly found in functional programming languages. Typically, evaluating a
pattern-matching expression on a value not covered by any case raises a runtime
error. Because checking that a match expression never fails is difficult in non-
trivial cases (for instance, in the presence of guards), compilers in general cannot
statically enforce this property. For instance, consider the following function that
computes the set of variables in a propositional logic formula, assuming that the
formula has been simplified:
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def vars(f: Formula): Set[Int] = {
require(isSimplified(f))
f match {

case And(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Or(lhs, rhs) ⇒ vars(lhs) ++ vars(rhs)
case Not(f) ⇒ vars(f)
case Literal(i) ⇒ Set[Int](i)
}
}

(++ denotes the set union operation in Scala.) Although it is implied by the
precondition that all cases are covered, the Scala compiler on this example will
issue the warning:

Logic.scala: warning: match is not exhaustive!
missing combination Implies

Previously, researchers have developed ad-hoc analyses for checking such ex-
haustiveness properties [7, 9]. Our system generates verification conditions for
checking the exhaustiveness of all pattern-matching expressions, and then uses
the same procedure to prove or disprove them as for the other verification con-
ditions. It quickly proves that this particular example is exhaustive by unrolling
the definition of isSimplified sufficiently many times to conclude that t can never
be an Implies term. Note that our system will also prove that all recursive calls to
vars satisfy its precondition, a requirement to perform sound assume-guarantee
reasoning.

Consider now the following function, that supposedly computes a variation
of the negation normal form of a formula f:

def nnf(formula: Formula): Formula = formula match {
case And(lhs, rhs) ⇒ And(nnf(lhs), nnf(rhs))
case Or(lhs, rhs) ⇒ Or(nnf(lhs), nnf(rhs))
case Implies(lhs, rhs) ⇒ Implies(nnf(lhs), nnf(rhs))
case Not(And(lhs, rhs)) ⇒ Or(nnf(Not(lhs)), nnf(Not(rhs)))
case Not(Or(lhs, rhs)) ⇒ And(nnf(Not(lhs)), nnf(Not(rhs)))
case Not(Implies(lhs, rhs)) ⇒ And(nnf(lhs), nnf(Not(rhs)))
case Not(Not(f)) ⇒ nnf(f)
case Not(Literal( )) ⇒ formula
case Literal( ) ⇒ formula
}

From the supposed roles of the functions simplify and nnf, one would imagine
that the operations are commutative. Because of the treatment of implications
in the above definition of nnf, though, this is not the case. We can disprove this
property by finding a counterexample to

def wrongCommutative(f: Formula) : Boolean = {
nnf(simplify(f)) == simplify(nnf(f))
} holds

On this input, Leon reports
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Error: Counter-example found: f -> Implies(Not(And(Literal(48),
Literal(47))), And(Literal(46), Literal(45)))

A consequence of our algorithm is that Leon never reports false positives (see Sec-
tion 4). In this particular example, the counter-example clearly shows that there
is a problem with the treatment of implications whose left-hand side contains a
negation. Counterexamples such as this one are typically short and discovered
rapidly.

As a final example of the expressive power of our system, we consider the
question of showing that an implementation of a collection implements the
proper interface. Consider the implementation of a set as red-black trees, de-
fined as follows:

sealed abstract class Tree
case class Empty() extends Tree
case class Node(color: Color, left: Tree, value: Int, right: Tree) extends Tree
sealed abstract class Color
case class Red() extends Color
case class Black() extends Color

To specify the operation on the trees in terms of the set interface that they are
supposed to implement, we define an abstraction function that computes from
a tree the set it represents:

def content(t : Tree) : Set[Int] = t match {
case Empty() ⇒ Set.empty
case Node( , l, v, r) ⇒ content(l) ++ Set(v) ++ content(r)
}

Note that this is again a function one would anyway want to write for testing
purposes. The specification of insertion and of tree balancing using this abstrac-
tion becomes very natural, despite the relative complexity of the operations:

def ins(x: Int, t: Tree): Tree = (t match {
case Empty() ⇒ Node(Red(),Empty(),x,Empty())
case Node(c,a,y,b) ⇒

if (x < y) balance(c, ins(x, a), y, b)
else if (x == y) Node(c,a,y,b)
else balance(c,a,y,ins(x, b))

}
}) ensuring (res ⇒ content(res) == content(t) ++ Set(x))

def balance(c: Color, a: Tree, x: Int, b: Tree): Tree = ((c,a,x,b) match {
case (Black(),Node(Red(),Node(Red(),a,xV,b),yV,c),zV,d) ⇒

Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),Node(Red(),a,xV,Node(Red(),b,yV,c)),zV,d) ⇒

Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),a,xV,Node(Red(),Node(Red(),b,yV,c),zV,d)) ⇒

Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
case (Black(),a,xV,Node(Red(),b,yV,Node(Red(),c,zV,d))) ⇒

Node(Red(),Node(Black(),a,xV,b),yV,Node(Black(),c,zV,d))
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case (c,a,xV,b) ⇒ Node(c,a,xV,b)
}) ensuring (res ⇒ content(res) == content(Node(c,a,x,b)))

Leon proves these properties of red-black tree operations. Similarly, one can
write an abstraction function that computes whether a tree satisfies a given
invariant (such as being balanced, or having the right coloring property), and
prove that the invariants are maintained by all operations. More such results are
described in Section 6.

3 Our Satisfiability Procedure

In this section, we describe our algorithm for checking the satisfiability of for-
mulas modulo computable functions. At a high-level, it can be described as an
abstraction-refinement approach; initially, function symbols are treated as en-
tirely uninterpreted, and their interpretation is introduced gradually, for deeper
and deeper unrollings. In other words, the formula can be viewed as a partial
but growing program that computes a truth value. We use boolean variables
to represent the branching conditions, and at any point in the execution of our
algorithm, we ensure that paths that lead to a function call that has not yet
been unrolled are blocked. As a result, when the SMT solver reports a satisfying
assignment, we know it to be valid, because it can correspond to an execution
of the formula that returned false using only known parts of the program; in
other words, the SMT solver had all the information it needed to evaluate the
counter-example using the proper semantics for all required functions.

Figure 1 describes our approach in pseudo-code. In this figure, φ is the for-
mula for which we want to determine satisfiability, Π is the program containing
the function definitions, implΠf is the expression corresponding to the body of
f in Π, postΠf is the (boolean) expression corresponding to its precondition (or
true if not defined), and similarly for precΠf . The free variables of implΠf are de-
noted by argsΠf . The free variables of postΠf are argsΠf plus a special variable ρ
that denotes the value returned by the function.

We can make the following observations:

– The prioritization of pairs added to the queue Queue is not specified in our
description, and neither is the bound on the loop in the function dequeue.
Indeed, the specifics can vary, as long as the priority queue is guaranteed to
be fair, that is that every pair is popped eventually. A valid strategy is for
instance to always empty the queue in dequeue.

– While the description of solve suggests that we need to query the solver
twice in a given loop iteration, we can in practice use the solver’s capability
to output unsat cores to detect with a single query whether the blocking
literals

∧
b∈B b played any role in the unsatisfiability.

– Similarly, when adding the clauses obtained from dequeue, we can use the
solver’s incremental reasoning and push the new constraints directly, rather
than building a new formula and requerying it.
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Queue← empty
function solve(φ,Π)

(initialClauses,B)← clausify(φ,Π)
φ←

V
initialClauses

while true do
result1 ← Solver.solve(φ ∧

V
b∈B ¬b)

if result1 = sat then
return sat

else
result2 ← Solver.solve(φ)
if result2 = unsat then

return unsat
else

(newClauses, newB) = dequeue(Π)
φ← φ ∧

V
newClauses

B ← newB
end if

end if
end while

end function
function dequeue(Π)

B ← ∅
clauses← ∅
while . . . do

(b, F )← Queue.pop
for f(args)← F do

ψ1 ← (fargs) = implΠf
ˆ
args/argsΠf

˜
)

ψ2 ← (postΠf
ˆ
args/argsΠf

˜
[f(args)/ρ])

(clauses1, B1)← clausify(ψ1, Π)
(clauses2, B2)← clausify(ψ2, Π)
clauses← clauses ∪ clauses1 ∪ clauses2
B ← B ∪B1 ∪B2

end for
end while
return (clauses,B)

end function
function clausify(ψ,Π)

Returns a pair (clauses,B) where
V
clauses is equivalent to ψ. As a side-effect,

pushes into Queue all pairs (b, F ), where F is the non-empty set of recursive function
application terms appearing in clauses and that are guarded by b.
end function

Fig. 1. Pseudo-code of our Procedure for Satisfiability Modulo Computable Functions
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– It can happen in any iteration that the solver concludes that, for a literal b ∈
B, φ =⇒ b. In that case, we can safely remove the pair (b, F ) from the queue
(if it was present), because we know for sure that the path represented by b
will never be used in a satisfying assignment. While this does not necessarily
influence the solver’s search space, it can speed up the unrolling process, as
some function invocations can be ignored.

4 Properties of Our Procedure

The properties of our procedure rely on the following two assumptions.

Termination: Each functions in the programΠ terminates on each input. Tools
such as [13,2] could be used to establish this property.

SMT Solver Soundness: The underlying SMT solver is complete and sound
for the quantifier-free formulas that it receives. The completeness means that
each model that the solver reports should be a model for the conjunction of
all constraints passed to the solver. Similarly, soundness means that when-
ever the SMT solver reports unsatisfiability, false can be logically concluded
modulo the solver’s theories from these constraints.

We use the above assumptions throughout this section.

Soundness for Proofs. Our algorithm reports unsatisfiability if and only if the
underlying SMT solver could prove the problem given to it unsatisfiable without
the blocking literals. Because the blocking literals are not present, some func-
tion applications are left uninterpreted, and the conclusion that the problem
is unsatisfiable therefore applies to any interpretation of the remaining func-
tion application terms, and in particular to the one conforming to the correct
semantics.

From the assumption that the SMT solver only produces sound proofs, it
suffices to show that all the axioms body and post communicated to the solver
in our procedure are obtained from sound derivations.

The body axioms are correct by definition: they are logical consequences
obtained by the definition of functions, and these definitions are conservative
when the functions are terminating.

An important consideration when discussing soundness of the post axioms is
that any proof obtained with our procedure can be considered valid only when
the following properties about the functions of Π have been proved:1

1. for each function f of Π, the following formula must hold:

precΠf =⇒ postΠf

[
implΠf /ρ

]
1 When proving or disproving a formula φ modulo the functions of Π, it is in fact

sufficient that the three properties hold only for all functions in φ and those that
can be called (transitively) from them or from their contracts.
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2. for each call in f to a function f2 (possibly f itself), the precondition precΠf
must be implied by the path condition

3. for each pattern-matching expression, the patterns must be shown to cover
all possible inputs under the path condition.

The above conditions guarantee the absence of runtime errors, and they also
allow us to prove the overall correctness by induction on the call stack, as is
standard in assume-guarantee reasoning for sequential procedures without side
effects [14, Chapter 12].

The first condition shows that all postconditions are logical implications of
the function implementations under the assumption that the preconditions hold.
The second condition shows that all functions are called with arguments satis-
fying the preconditions. Because all functions terminate, it follows that we can
safely assume that postconditions always hold for all function calls. This justifies
the soundness of axioms post in the presence of φ and Π.

Soundness for Models. Our algorithm reports satisfiability when the solver
reports that the unrolled problem augmented with the blocking literals is satis-
fiable. By construction of the set of blocking literals, it follows that the solver
can only have used values for function invocations whose definition it knows. As
a consequence, every model reported by the SMT solver for the problem aug-
mented with the blocking literals is always a true model of the original formula.
We mentioned in Section 3 that we can also check other satisfying assignments
produced by the solver. In this second case, we use an evaluator that complies
with the semantics of the program, and therefore the validated models are true
models as well.

Termination for Satisfiable Formulas. Our procedure has the remarkable
property that it finds a model whenever the model for a formula exists. To under-
stand why, consider a counterexample for the specification. This counterexample
is an assignment of integers and algebraic data types to variables of a function
f(x) being proved. This evaluation specifies concrete inputs a for f such that
evaluating f(a) yields a value for which the postcondition of f evaluates to false
(the case of preconditions or pattern matching is analogous). Consider the com-
putation tree arising from (call-by-value) evaluation of f and its postcondition.
By our Termination assumption, this computation tree is finite. Consequently,
the tree contains finitely many unfoldings of function invocations. Let us call K
the maximum depth of that tree. Consider now the execution of the algorithm
in Figure 1; because we assume that any pair that is pushed into the queue is
popped eventually, we can safely conclude that every function application in the
original formula will eventually be unrolled. By applying this reasoning induc-
tively, we conclude that eventually, all function applications up to nesting level
K + 1 will be unrolled. This means that the computation tree corresponding to
f(a) has also been explored. By the completeness of the SMT solver and the
consistency of a satisfying specification, it means that the SMT solver reports a
counterexample (either a itself or another counterexample).
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Termination for Valid Inductively Annotated Programs. When arguing
soundness for proofs, we have observed that our algorithm subsumes assume-
guarantee reasoning for functional programs in which functions are annotated
with contracts. For the same reason, if assume-guarantee reasoning succeeds to
prove a formula, then our algorithm succeeds as well. Note that our algorithm
supports arbitrary expressions relating any number of functions. Moreover, like
k-induction, it succeeds also in the cases where the annotations of functions are
not inductive, but become inductive after some number of function unfoldings.

Termination for Sufficiently Surjective Abstraction. Our procedure al-
ways terminates and is therefore a decision procedure in the case of a recursive
function that is sufficiently surjective [25]. We have already established termi-
nation in the case of satisfiability. In the case of an unsatisfiable formula, the
termination follows because the unsatisfiability can be detected by unrolling the
function definitions a finite number of times [25]. The unrolling depth depends on
the particular sufficiently surjective abstraction, which is why [25] presents only
a family of decision procedures and not a decision procedure for all sufficiently
surjective abstractions. In contrast, our approach is one uniform procedure that
behaves as a decision procedure for the entire family, because it unrolls functions
in a fair way. It is also a first implementation that we know that is simultaneously
complete for all these decidable problems.

Among the examples of such recursive functions for which our procedure is
a decision procedure are functions of algebraic data types such as size, height,
or a content (expressed as a set, multiset, or a list). Further examples include
properties such as sortedness of a list or a tree, or a combination of any finite
number of functions into a finite domain. Among the functions that map into
a finite domain are predicates expressing refinement types [11], which explains
why Leon was successful in verifying complex pattern-matching exhaustiveness
constraints.

5 Our Verification System

We now present some of the characteristics of the implementation of Leon, our
verification system that has at its core an implementation of the procedure pre-
sented in the previous sections. Leon takes as an input a program written in
a purely functional subset of Scala and produces verification conditions for all
specified postconditions, calls to functions with preconditions, and match ex-
pressions in the program.

Front-end. We wrote a plugin for the official Scala compiler to use as the
front-end of Leon. The immediate advantage of this approach is that all pro-
grams are parsed and type-checked before they are passed to Leon. This also
allows users to write expressive programs concisely, thanks to type-inference
and the flexible syntax of Scala. The subset we support allows for definitions
of recursive datatypes, as shown in examples throughout this paper, as well as
arbitrarily complex pattern-matching expressions over such types. The other ad-
mitted types are integers and sets, which we found to be particularly useful for
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specifying properties with respect to an abstract interface. In our function def-
initions, we allow only immutable variables for simplicity (vals and no vars in
Scala terminology).

Underspecified functions. Leon also supports functions whose implementa-
tion is not expressed in the strict subset; in such cases, it emits a warning that
the results are provided under the assumption that the implementation of the
unknown functions is correct. This can be useful for instance to specify only the
pre- or postcondition of a function without its implementation.

Conversion of pattern-matching. We transform all pattern-matching expres-
sions into equivalent expressions built with if-then-else terms. For this purpose,
we use predicates that test whether their argument is of a given subtype (this is
equivalent to the method .isInstanceOf[T] in Scala). The translation is relatively
straightforward, and preserves the semantics of pattern-matching. In particular,
it preserves the property that cases are tested in their definition order. To en-
code the error that can be triggered if no case matches the value, we return for
the default case a fresh, uninterpreted value. This value is therefore guarded by
the conjunction of the negation of all matching predicates. When we success-
fully prove that all match expressions are exhaustive, we effectively rule out the
possibility that this value affects the semantics of the expression. Note that we
only generate verification conditions for pattern-matching expressions that are
not obviously complete; if the match contains a catch-all, or if it is clear from
the syntax that all alternatives of the matched data typed are covered, we do
not need to use an error value.

Proofs by induction. To simplify the statement and proof of some inductive
properties, we defined an annotation @induct, that indicates to Leon that it
should attempt to prove a property by induction on the arguments. This works
only when proving a property over a variable that is of a recursive type; in these
cases, we decompose the proof that the postcondition is always satisfied into
subproofs for the alternatives of the datatype. For instance, when proving by
induction that a property holds for all binary trees, we generate a verification
condition for the case where the tree is a leaf, then for the case where it is a
node, assuming that the property holds for both subtrees.

Communicating with the solver. We used Z3 [20] as the SMT solver at the
core of our solving procedure. As described in Section 3, we use Z3’s support for
incremental reasoning to avoid solving a new problem at each iteration of our
top-level loop.

Interpretation of selectors as total functions. We should note that the
treatment of selector functions in Z3 is different than in Scala, since they are
considered to be total, but uninterpreted when applied to values of the wrong
type. For instance, the formula Nil.head = 5 is considered in Z3 to be satisfiable,
while taking the head of an empty list has no meaning in Scala (if not a runtime
error). This is not a problem in practice though, as we are guaranteed that all
programs that go through the front-end are well-typed, and thus all selectors are
applied only to valid terms.
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Test case enumeration. Leon can also be used to generate test cases. This
feature is particularly useful for functions that are not implemented in the core
functional subset of Scala, but are annotated. The generation works by finding
a series of satisfying assignments for the precondition of the function we wish to
test, using our procedure for satisfiability modulo computable functions. We have
found that even for relatively complex preconditions (such as for instance the
constraint that an input tree should be a binary search tree) we could generate
hundreds of assignments within seconds. We believe this technique could be
successfully integrated into tools such as QuickCheck, which may experience
difficulties to satisfy a complex precondition by randomly generating candidate
test cases.

6 Experimental Evaluation

We evaluated our verification system by proving correctness properties for a
number of functional programs, and discovering counterexamples when functions
did not meet their specification. A summary of our evaluation can be seen in
Figure 2, where LOC denotes the number of lines of code, #p. denotes the
number of verification conditions for function invocations with preconditions,
#m. denotes the number of conditions for showing exhaustiveness of pattern
matchings, V/I denotes whether the verification conditions were valid or invalid,
and Time denotes the total running time in seconds to verify all conditions for a
function. The benchmarks were run on a computer equipped with two Pentium
4 processors running at 3 GHz and 2 GB of RAM.2

The ListOperations benchmark contains various common operations on lists,
and we prove for instance that a tail-recursive version of size is functionally
equivalent to a simpler version, that append is associative, or that content, which
computes the set of elements in a list, distributes over append. For associative
lists, we first prove that updating a list l1 with all mappings from another list
l2 yields a new associative list whose domain is the union of the domains of l1
and l2. We then prove the read-over-write property, which states that looking
up the value associated with a key gives the most recently updated value. In our
system, we express this as:

def readOverWrite(l : List, e : Pair, k : Int) : Boolean = (e match {
case Pair(key, value) ⇒

find(updateElem(l, e), k) == (if (k == key) Some(value) else find(l, k))
}) holds

Leon proves this property automatically, sufficiently unrolling all three invoca-
tions of the recursive functions. We prove standard properties of insertion sort
such as the fact that the output of the function sort is sorted, and has the
same size and content as the input list. The function buggySortedIns is similar
to sortedIns, which is responsible for inserting an element into an already sorted
list, except that the precondition that the list should be sorted is missing. On the
2 All the benchmarks are available from http://lara.epfl.ch/~psuter/cav2011/.

http://lara.epfl.ch/~psuter/cav2011/
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Benchmark (LOC) #p. #m. V/I Time function #p. #m. V/I Time

ListOperations (122)
size 0 1 V 0.39 sizeTailRecAcc 1 1 V 0.05
sizesAreEquiv 0 0 V 0.01 sizeAndContent 0 0 V 0.01
reverse 0 0 V 0.07 reverse0 0 1 V 0.04
append 0 1 V 0.05 nilAppend 0 0 V 0.05
appendAssoc 0 0 V 0.11 sizeAppend 0 0 V 0.05
concat 0 0 V 0.04 concat0 0 2 V 0.25
zip 1 2 V 0.15 sizeTailRec 1 0 V 0.02
content 0 1 V < 0.01

AssociativeList (60)
update 0 1 V 0.20 updateElem 0 2 V 0.06
readOverWrite 0 1 V 0.30 domain 0 1 V 0.35
find 0 1 V < 0.01

InsertionSort (86)
size 0 1 V 0.31 sortedIns 1 1 V 0.27
buggySortedIns 1 1 I 0.15 sort 1 1 V 0.13
contents 0 1 V < 0.01 isSorted 0 1 V < 0.01

RedBlackTree (112)
ins 4 1 V 2.02 makeBlack 0 0 V 0.02
add 2 0 V 0.07 buggyAdd 1 0 I 0.32
balance 0 1 V 0.15 buggyBalance 0 1 I 0.09
content 0 1 V < 0.01 size 0 1 V < 0.01
redNHaveBlckC. 0 1 V 0.31 redDHaveBlckC. 0 1 V < 0.01

PropositionalLogic (86)
simplify 0 1 V 0.77 nnf 0 1 V 1.49
wrongCommutative 5 1 I 0.70 simplifyBreaksNNF 0 0 I 0.49
nnfIsStable 0 0 V 0.38 simplifyIsStable 0 0 V 0.20
isSimplified 0 1 V < 0.01 isNNF 0 1 V 0.01
vars 6 1 V 0.14

Fig. 2. Summary of evaluation results

RedBlackTrees benchmark, we proved that the tree implements a set interface
and that balancing, additionnally to producing a balanced tree, preserves the
“red nodes have no black children” property and the contents of the tree. We
also introduced two bugs (forgetting to paint a node black and missing a case
in balancing) and Leon found a concise counterexample in both cases. Finally,
the PropositionalLogic benchmark contains functions manipulating abstract syn-
tax trees of boolean formulas. We proved for instance that applying a negation
normal form transformation twice is equivalent to applying it once, and showed
that our nnf and simplify operations don’t commute (because our simplification
function introduces a negation to eliminate implications).
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