000161243 001__ 161243
000161243 005__ 20181203022230.0
000161243 02470 $$2ISI$$a000251750300008
000161243 0247_ $$2doi$$a10.1002/num.20243
000161243 037__ $$aARTICLE
000161243 245__ $$aPressure projection Stabilizations for Galerkin approximations of Stokes' and Darcy's problem
000161243 269__ $$a2008
000161243 260__ $$c2008
000161243 336__ $$aJournal Articles
000161243 520__ $$aIn this study, we consider some recent stabilization techniques for the Stokes' problem and show that they are instances of the framework proposed by Brezzi and Fortin in "A minimal stabilisation procedure for mixed finite element methods" (Numer Math 89, (2001) 457). We also propose an analysis for Taylor-Hood elements with discontinuous pressures stabilized using penalization of the interelement pressure jumps. (c) 2007 Wiley Periodicals, Inc.
000161243 6531_ $$aStokes' problem
000161243 6531_ $$afinite element methods
000161243 6531_ $$apressure stabilization
000161243 6531_ $$ainf-sup condition
000161243 6531_ $$aFinite-Element-Method
000161243 6531_ $$aFlow
000161243 6531_ $$aEquations
000161243 700__ $$aBurman, Erik
000161243 773__ $$j24$$q127-143$$tNumerical Methods For Partial Differential Equations
000161243 909C0 $$0252436$$pMATHICSE$$xU12241
000161243 909CO $$ooai:infoscience.tind.io:161243$$particle
000161243 917Z8 $$xWOS-2010-11-30
000161243 937__ $$aEPFL-ARTICLE-161243
000161243 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000161243 980__ $$aARTICLE