Abstract

The performances of kriging, stochastic simulations and sequential self-calibration inversion are assessed when characterizing a non-multiGaussian synthetic 2D braided channel aquifer. The comparison is based on a series of criteria such as the reproduction of the original reference transmissivity or head fields, but also in terms of accuracy of flow and transport (capture zone) forecasts when the flow conditions are modified. We observe that the errors remain large even for a dense data network. In addition some unexpected behaviours are observed when large transmissivity datasets are used. In particular, we observe an increase of the bias with the number of transmissivity data and an increasing uncertainty with the number of head data. This is interpreted as a consequence of the use of an inadequate multiGaussian stochastic model that is not able to reproduce the connectivity of the original field. (c) 2007 Elsevier Ltd. All rights reserved.

Details

Actions