Apart from their very classical use to build polarized targets for particle physics, the methods of dynamic nuclear polarization (DNP) have more recently found application for sensitivity enhancement in high-resolution NMR, both in the solid and in the liquid state. It is often thought that the possible signal enhancement in such applications deteriorates when the DNP is performed at higher fields. We show that for a dissolution-DNP method that uses conventional (2,2,6,6-tetramethylpiperidine 1-oxyl) radicals as the paramagnetic agent, this is not the case for fields up to 5 T. (C) 2008 American Institute of Physics.