
Keypoint Signatures for Fast Learning and
Recognition?

Michael Calonder Vincent Lepetit Pascal Fua

Computer Vision Laboratory, EPFL, Switzerland
Email: {michael.calonder,vincent.lepetit,pascal.fua}@epfl.ch

Abstract. Statistical learning techniques have been used to dramati-
cally speed-up keypoint matching by training a classifier to recognize
a specific set of keypoints. However, the training itself is usually rela-
tively slow and performed offline. Although methods have recently been
proposed to train the classifier online, they can only learn a very lim-
ited number of new keypoints. This represents a handicap for real-time
applications, such as Simultaneous Localization and Mapping (SLAM),
which require incremental addition of arbitrary numbers of keypoints as
they become visible.
In this paper, we overcome this limitation and propose a descriptor that
can be learned online fast enough to handle virtually unlimited numbers
of keypoints. It relies on the fact that if we train a Randomized Tree
classifier to recognize a number of keypoints extracted from an image
database, all other keypoints can be characterized in terms of their re-
sponse to these classification trees. This signature is fast to compute and
has a discriminative power that is comparable to that of the much slower
SIFT descriptor.

1 Introduction

Feature point recognition and matching are crucial for many vision problems,
such as pose estimation or object detection. Most current approaches rely on
local descriptors designed to be invariant, or at least robust, to affine deforma-
tions. Among these, the SIFT descriptor [1] has been shown to be one of the
most effective [2] and its recognition performance can be further enhanced by
affine rectifying the image patches surrounding the feature points [3]. However,
such descriptors are relatively slow and cannot be used to handle large numbers
of feature points in real-time.

Faster SIFT-like descriptors such as SURF [4] achieve 3 to 7-fold speed-ups
by exploiting the properties of integral images. However, it has recently been
shown that even shorter run-times can be obtained without loss in discriminative
power by reformulating the matching problem as a classification problem. This
approach relies on an offline training phase during which multiple views of the
feature points to be matched are used to train a classifier to recognize them

? This work has been supported in part by the Swiss National Science Foundation.

2 M. Calonder, V. Lepetit, P. Fua

based on a few pairwise intensity comparisons [5, 6]. The resulting run-time
computational complexity is much lower than that of SIFT-like descriptors while
preserving robustness to viewpoint and lighting changes. However, this comes
at the cost of an offline training phase that is relatively slow and ill-adapted to
real-time applications, such as Simultaneous Localization and Mapping (SLAM),
which require learning the appearance of new feature points as they become
visible. As a result, real-time algorithms that rely on this approach keep a very
tight bound on the number of keypoints they work with [7].

In this paper, we remove this limitation and show that online learning of
keypoint appearance can be made fast enough for a real-time system to handle
a virtually unlimited number of keypoints. At the heart of our approach that
we will refer to as a Generic Tree (GT) algorithm is the following observation:
If we train a Randomized Tree classifier [5] to recognize a number of keypoints
extracted from an image database, all other keypoints can be characterized in
terms of their response to these classification trees, which we will refer to as their
signature. Because the signature can be computed very fast, the learning becomes
quasi-instantaneous and therefore practical for online applications. We attribute
this desirable behavior to the fact that, assuming the initial set of keypoints is
rich enough, the new keypoints will be similar to some of those initial points
and the signature will summarize these similarities. In other words, we replace
the hand-crafted SIFT descriptor by one that has been empirically learned from
training data to be very selective. Remarkably, this can be done using a fairly
limited number—300 in our experiments—of initial keypoints.

In the remainder of the paper, we first discuss related work. We then describe
our method and compare it against state-of-the-art ones on standard benchmark
images. Finally, we show that it can be integrated into a SLAM algorithm to
achieve real-time performance.

2 Related Work

As discussed in the introduction, state-of-the-art approaches to feature point
matching can be classified into two main classes.

Those in the first class rely on local descriptors designed to be invariant, or
at least robust, to specific classes of deformations [8, 1]. They often require scale
and rotation estimates provided by a keypoint detector. Among these, the SIFT
descriptor [1], computed from local histograms of gradients, has been shown to
work remarkably well, especially if one rectifies the image patches surrounding
the feature points [2, 3]. We will therefore use it as a benchmark against which we
will compare the performance of our approach. However, it must be noted that,
because the SIFT descriptor is complex, it is also relatively slow to evaluate. On
a modern PC, it takes approximately 1ms per feature point1, which limits the
number of feature points that can be handled simultaneously to less than 50 if
1 Some commercial implementations of SIFT, such as the one by Evolution Robotics,

can be up to 10 times faster by using careful coding and processor extensions, but
those are not easily available. Furthermore, this would not represent a fair compari-

Keypoint Signatures for Fast Learning and Recognition 3

one requires frame-rate performance. SURF [4] is closely related to SIFT and
achieves a 3 to 7-fold speed increase by efficiently using integral images and box
filters to compute the descriptor, which means that from 150 to 350 keypoints
could be handled. By contrast, our approach can compute several thousand
signatures at frame-rate.

Of course, SIFT and SURF are nevertheless effective for well-designed real-
time applications. For example, it has been shown that feature points can be used
as visual words [9] for fast image retrieval in very large image databases [10]. The
feature points are labeled by hierarchical k-means clustering of their SIFT de-
scriptors, which allows to use very many visual words. However, the performance
is measured in terms of the number of correctly retrieved documents rather than
the number of correctly classified feature points. For applications such as pose
estimation or SLAM, the latter criterion is much more important.

A second class of approaches to feature point matching relies on statistical
learning techniques to compute a probabilistic model of the patches surrounding
them. The one-shot approach of [11] uses PCA and Gaussian Mixture Models
but does not account for perspective distortion. Since the set of possible ap-
pearances of patches around an image feature, seen under changing perspective
and lighting conditions, can be treated as a class, it was later shown that a
classifier based on Randomized Trees [12] can be trained to recognize them [5]
independently of pose. This is done using a database of patches that is obtained
by warping keypoints of a reference image by randomly chosen homographies.
The resulting algorithm has very fast run-time performance but requires a com-
putationally training phase that precludes online learning of new feature points.
This limitation has been partially lifted by optimizing the design of the classi-
fier and exploiting the power of modern graphic cards [7], but still only allows
for learning small numbers of new feature points. By contrast, the method we
propose here can learn virtually unlimited numbers of new signatures at a very
small computational cost.

3 Generic Trees

The idea behind our Generic Trees (GTs) method is to take advantage of a
fast classifier to efficiently compute short description vectors, or signatures, for
arbitrary keypoints.

We start from a relatively small set of keypoints that we extracted from
images such as those of Fig. 1. We refer to this set as base set and train a
Randomized Tree classifier to recognize the keypoints in the base set under
arbitrary perspective, scale, and lighting conditions [5]. Given a new keypoint
that is not in the base set, we show below that the classifier responds to it
in a way that is also stable to changes in scale, perspective, and lighting. We
therefore take this response to be the compact and fast-to-compute signature we
are looking for.

son to our own implementation that does not include any such coding but could be
similarly sped-up.

4 M. Calonder, V. Lepetit, P. Fua

Fig. 1. 3 out of 7 landscape images from which the base set of keypoints were extracted.

Fig. 2. Left: Response of trained Randomized Trees to a patch around a keypoint in
the base set, N = 300. The response has typically only one spike. Middle: Response to
a patch of a keypoint that is not in the base set. The response has several peaks which
are stable under viewpoint variation. Right: A typical signature. The thresholding
process of Eq. 2 takes the raw classifier response and sets all values below t to zero.

3.1 Stable Signatures

More formally, every keypoint ui ∈ R2 in the beforementioned base set is
related to exactly one point ki in 3D. Let us start with a set of N points
K = {k1, . . . ,kN}, ki ∈ R3, and refer to N as base size. We then build a classi-
fier based on Randomized Trees that is able to recognize the ki under varying
viewing conditions [5]. Let pi be the patch centered on ui. Then the classifier
provides a function C(pi) mapping a patch pi to a vector in RN . Using the no-
tation C(j)(pi) to refer to the j-th element of the vector C(pi), 1 ≤ j ≤ N , we
can state a special property of C:

C(j)(pi) is

{
large if j = i

small otherwise
.

This is shown in Fig. 2-left for i = 250 and N = 300.
Furthermore, let T (p,Θ) be a transformation of an image patch p under

viewing condition change Θ. Θ typically encodes changes in illumination, view-
point, or scale. If the classifier has been trained well, we can assume that

∀Θ : C(p) ≈ C
(
T (p,Θ)

)
. (1)

Keypoint Signatures for Fast Learning and Recognition 5

When we consider a new 3D-point κ that does not belong to K and center a
patch q on the keypoint corresponding to κ, we can define the signature of the
patch q simply as

signature(q) = C(q).
A patch q′ centered on the keypoint of κ in another image can be written as
T (q,Θ), for some Θ. Under the assumption of Eq. 1, the signature of q′ is equal
to the signature of q because

signature(q′) = C(q′) = C
(
T (q,Θ)

)
= C(q) = signature(q).

In other words, the signature is stable under changes in viewing conditions.

3.2 Sparse Signatures

Because κ is not a member of K, the response of the Trees to the corresponding
patch q, C(q), has typically more than one peak. Such a response is shown in
Fig. 2-Middle. In practice, only few of the values in C(q) are large. We therefore
replace the signature above by one which is much sparser:

signature(q) = th(C(q)) =
[
th(C(1)(q)), . . . , th(C(N)(q))

]>
, (2)

where th(·) is a thresholding function:

th(x) =
{

x if x ≥ t
0 if x < t

. (3)

As shown in Fig. 2-right, most of the values in the signatures are null and
matching reduces to computing the Euclidean distance between two (sparse)
signatures. To this end, efficient approaches exist and we use the best-bin-first
(BBF) algorithm [13] to match signatures.

The threshold t is a free parameter the user has to provide and it depends on
the base size N , because the response of the classifier is normalized. Its impact
on the accuracy and the speed of the classifier will become clear in Section 4.

3.3 Base Set and Trees

As discussed above, we extract the base set from landscape images such as those
of Fig. 1. It is worth noting that we have tried extracting them from other kinds
of images, such as pictures of indoor scenes or animals, which has not resulted
in any appreciable change in the performance of our algorithm. In other words,
our experiments show that we can extract the base set from almost any kind of
image as long as it exhibits enough structure and variety.

In practice, we use the DOG/SIFT feature detector, which typically finds
several thousands of keypoints in each image. To create a base set of size N , we
randomly select N of these keypoints, the only constraint being that they should
be at least 5 pixels away from each other.

We then train a Randomized Trees classifier to recognize the resulting key-
points. Fig. 3 illustrates the response of our GTs to arbitrary patches, given this
classifier. Roughly speaking, computing their signature amounts to finding the
subset of the base set they most resemble to.

6 M. Calonder, V. Lepetit, P. Fua

Fig. 3. The leftmost image of each row represents a patch from a test image. The
remaining images in the same row represent the patches surrounding the 10 keypoints
the test patch looks most similar to according to our Randomized Tree classifier, in
decreasing similarity order.

Fig. 4. Images for the Wall (left) and Light (right) datasets.

4 Results

We first use three publicly available datasets to characterize the behavior of our
GTs and then to compare their performance to SIFT, which is widely acknowl-
edged as one of the most effective descriptor in terms of recognition rate. We
then demonstrate that the GTs can be effectively integrated into a SLAM algo-
rithm. The resulting system has the ability to learn the signatures of a virtually
unlimited number of keypoints and therefore to detect them at every time step
without having to depend on knowing the previous camera pose, thus giving it
great robustness to occlusions and abrupt camera motions.

4.1 Performance Evaluation

The three image datasets we used for our experiments –Wall2, Light2, and Foun-
tain3—are depicted by Figs. 4 and 5. The Wall and Light scenes are planar and
the relationship between two images in the database can be expressed by a ho-
mography. By constrast the Fountain scene is fully three-dimensional and we
have access to an accurate laser-scan that can be used to establish explicit one-
to-one correspondences at arbitrary locations.

2 Available at http://www.robots.ox.ac.uk/~vgg/research/affine/.
3 Available at http://cvlab.epfl.ch/~strecha/multiview/.

Keypoint Signatures for Fast Learning and Recognition 7

Fig. 5. Two 1440× 960 images from the Fountain dataset.

Given several images from the same database, we take m ↔ n to indicate
that we use image m as a reference image from which we extract keypoints
that we try to match in image n. For the Wall dataset, we tested 1 ↔ 2 and
1 ↔ 3, corresponding to a change in camera orientation of 20 and 40 degrees,
respectively. From the Light dataset, we tested 1 ↔ 2, 1 ↔ 3, and 1 ↔ 4. From
the Fountain dataset, we used 1 ↔ 2 and 1 ↔ 3.

We define the recognition rate, the main performance criterion, as the ratio
of the number of correct matches to the total number of interest-points in the
reference image. For all tests described in this section, we proceed as follows.
We extract a number of DOG/SIFT keypoints from the reference image and
compute the coordinates of their corresponding points in the test image using
the known geometric relationship between the two. We then compute the SIFT
descriptors and GT signatures for both sets of test points and store them in two
separate test image databases. Matching a point in the reference image then sim-
ply amounts to finding the most similar point in terms of either its descriptor or
its signature in the test image database. Note that not detecting interest-points
in the test image but using geometry instead prevents repeatability problems of
the keypoint detector from influencing our results. Furthermore, since we apply
the same procedure for SIFT and for GTs, we do not favor either technique over
the other.

Signature Length and Base Size There are only two parameters in GTs: The
threshold t and the base size N . t implicitely determines the signature length,
that is, the number of non-zero entries in the signature. This length, in turn, has
a direct impact on the recognition rate. However, it does not impact the time
it takes to compute the descriptor, it only affects the time it takes to match:
The sparser the signature, the less computation is required to compare a given
number of signatures. Hence, t controls the trade-off between the recognition
rate and the computational effort one is willing to make. By contrast, increasing
N slows down both signature computation and matching.

Fig. 6-left shows the distribution of the signature length computed using
1000 keypoints on the Fountain dataset 1 ↔ 2 for t = 0.01. This yields a mean

8 M. Calonder, V. Lepetit, P. Fua

Fig. 6. Left: Typical distribution of the GT signature length. The signatures were
computed for 1000 keypoints from the Fountain image pair 1 ↔ 2. The mean length
is 21.2 with a standard deviation of 3.9. Right: Recognition rate as a function of
normalized signature length for base sizes ranging from 50 to 1805. The normalized
signature length is taken to be the ratio of the number of non-zero entries in the
signature and the base size N .

signature length of 21.2 with standard deviation 3.9. 95% of the signatures have
a length in the range {13, ..., 29} which is a very compact representation. The
recognition rate for this case amounts to 75.4%.

In Fig. 6-right, we plot the recognition rate as a function of the signature
length for different values of N , using the Fountain dataset 1 ↔ 2. We see that
N = 50 is too small to achieve the best possible performance of 87.9%, but
that going beyond N = 300 does not bring any significant improvement. In the
remainder of the paper, we will therefore use N = 300 for our experiments.

Comparing Recognition Rates Fig. 7 illustrates our results on the Wall
database. On the left, we plot the relationship between the signature length
and 1√

t
, which is roughly linear. On the right, we plot the performance of GTs

as a function of 1√
t

for two image pairs and we represent the corresponding
performance of SIFT by a horizontal line. In Fig. 8, we plot similar graphs for
the Fountain and Light datasets. Note that in all cases, GTs rapidly reach their
peak performance as 1√

t
increases, that is, as t decreases. In practice, this means

that as long as t is not taken to be too large, its exact value has little influence
on the algorithm’s recognition performance.

GTs perform a bit better than SIFT on the Light dataset, slightly worse on
the Wall dataset, and almost identically on the Fountain dataset. In other words,
in terms of recognition performance, GTs and SIFT are almost equivalent.

Comparing Computation Times Performing a completely fair comparison
between the SIFT and GTs is non-trivial. SIFT re-uses intermediate data from
the keypoint extraction to compute canonic scale and orientations and the de-
scriptors, while Randomized Trees only require keypoint locations and can there-
fore work with arbitrary detectors. On the other hand, the distributed SIFT C

Keypoint Signatures for Fast Learning and Recognition 9

Fig. 7. Wall dataset results. Left: Signature length as a function of 1√
t
. The relation-

ship is roughly linear. Right: Recognition rates as a function of 1√
t

. The top curve
corresponds to image pair 1 ↔ 2, the lower one to 1 ↔ 3. The horizontal lines denote
the corresponding SIFT results.

code is not optimized for the very last cycle4. However, the level of optimization
of our GT code being roughly comparable, we regard this as a fair comparison.
In [6], the authors detail what makes the original Trees much faster at classifi-
cation in comparison to SIFT. The arguments they put forth carry directly over
to the GTs.

Here we compare the CPU time SIFT and GTs require to compute the de-
scriptors.5 Postprocessing steps are excluded, in particular matching, it can be
done efficiently for both SIFT descriptors and GT signatures as discussed in
Section 3. The times are given in Fig. 9 for 1000 SIFT keypoints on the Foun-
tain dataset. Overall, we obtain a 35-fold speedup for the GTs with respect to
SIFT. Note that it would not make much sense to compare only the time for
feature vector computation of SIFT against the total time of GTs since SIFT
cannot forgo the preprocessing stage that computes the orientation and scale of
the features. However, to ensure fairness, we added a “virtual” amount of time
on the GT side to account for the time spent by an efficient detection algorithm
such as FAST [14] to detect 1000 interest-points.

As discussed earlier, faster SIFT-like detectors such as SURF [4] have been
proposed and yield a 3 to 7-fold speed increase, which still leaves GTs with a 5
to 11-fold speed advantage.

10 M. Calonder, V. Lepetit, P. Fua

Fig. 8. Left: Recognition rates as a function of 1√
t

for the Fountain dataset. The top
curve corresponds to image pair 1 ↔ 2 and the lower one to 1 ↔ 3. Right: Recognition
rates as a function of 1√

t
for the Light dataset. The three curves correspond to image

pairs 1 ↔ 2, 1 ↔ 3, and 1 ↔ 4. The horizontal lines denote the corresponding SIFT
results.

4.2 SLAM using Generic Trees

In this section we demonstrate that GTs can increase the robustness of a Visual
SLAM system. Their role is twofold. We first use them to bootstrap the system
by localizing the camera with respect to a known planar pattern in the scene.
Second, we incrementally train a second set of GTs to recognize new landmarks
reconstructed by the system. They make the system robust against severe distur-
bances such as complete occlusion or strong shaking of the camera, as evidenced
by the smoothness of the recovered camera trajectory in Fig. 10.

For simplicity, we use a FastSLAM [15, 16] approach with a single particle to
model the distribution over the camera trajectory. This is therefore a simplified
version of FastSLAM, but our GTs are sufficiently powerful to make it robust.

As discussed above, we use two different sets of GTs. We will refer to the
first set as “Offline GTs”, that we trained offline to recognize keypoints on the
planar pattern. It is visible in the first frame of the sequence to bootstrap the
system and replaces the four fiducials used by many other systems. We show the
initialization process in Fig. 10 (a). This increases the flexibility of our system
since we can use any pattern we want provided that it is textured enough. The
second set of GTs, the “Online GTs”, are incrementally trained6 to recognize
the 3D landmarks the SLAM system discovers and reconstructs.

4 In the author’s words: ”[SIFT was] implemented as efficiently as possible while still
maintaining intuitive code”.

5 All experiments were run on a Single-Threaded 2 GHz Intel Xeon machine.
6 In this context, to train simply means computing the signature and adding it to the

database.

Keypoint Signatures for Fast Learning and Recognition 11

Task Time

Gaussian pyramid 1434 ms

DOG pyramid 277.4 ms

Feature scales 0.2362 ms

Feature orientations 91.34 ms

Assemble final descriptor 339.2 ms

Total time 2142 ms

(a) SIFT

Task Time

Keypoint detection (est’d) 5 ms

Compute base distribution 33.21 ms

Thresholding 1.217 ms

Total time 39.43 ms

(b) GTs

Fig. 9. Total time and time required by substeps in SIFT and GTs. The entry Keypoint
detection in (b) has been added to make the comparison more fair. The value was
estimated from [14].

Our complete algorithm goes through the following steps:

1) Initialize the camera pose and some landmarks by detecting a known pattern
using the Offline GTs.

2) Detect keypoints and match them using the Offline and Online GTs against
the known landmarks.

3) Estimate the camera pose from these correspondences using a P3P algo-
rithm and RANSAC [17]. The estimated pose is refined via a non-linear
optimization.

4) Refine the location estimates of the inlier landmarks using an Extended
Kalman filter.

5) Create new landmarks. Choose a number of detected keypoints that do not
belong to any landmark in the map and initialize the new landmarks with a
large uncertainty along the line of sight and a much smaller uncertainty in
the camera’s lateral directions.

6) Retrain GTs with good matches from 2) and the new landmarks.
7) Loop to step 2.

With this system we demonstrate that both smooth tracking and recovery
from complete failure can be naturally integrated by employing GTs for the
matching task.

The reconstructed trajectory in Fig. 10 (f) shows only tiny jags at the order
of a few millimeters and appears as smooth as a trajectory that was estimated
in a filtered approach to SLAM, e.g. MonoSLAM [18, 19]. This is especially
noteworthy as the camera’s state is re-estimated from scratch in every frame
and there is no such thing as a motion model.7 At the same time, this is a
strong indication for an overall correct operation, since an incorrect map induces
an unstable state estimation and vice versa. In total the system mapped 724

7 Other systems commonly use a motion model to predict the feature location in the
next frame and accordingly restrict the search area for template matching.

12 M. Calonder, V. Lepetit, P. Fua

Fig. 10. GTs applied to SLAM. (a) Initialization: The pattern at the top is detected
in the image yielding initial landmarks and pose. (b-e) Four images from the sequence,
which features both partial/total occlusions, strong camera shaking, and motion blur.
(f) The reconstructed trajectory and landmarks. The latter are depicted as cubes cen-
tered around the current state of the corresponding EKF. Note how smooth the trajec-
tory is, given the difficulties the algorithm had to face. The rectangular box corresponds
to a true object in the scene and was inserted manually in order to support the visual
inspection of the scene.

Keypoint Signatures for Fast Learning and Recognition 13

landmarks and ran stable over all 2554 frames of the sequence. A few frames are
shown in Fig. 10 (b–e).

Recently, [7] presented a system that is also capable of recovering from com-
plete failure. They achieved robustness with a hybrid combination between tem-
plate matching and a modified version of Randomized Trees. However, their map
typically contains one order of magnitude fewer landmarks and there has been
no indication that the modified Trees will still be capable of handling a larger
number of interest-points.

The system successfully passed a rough but quantitative validation step.
First, we checked the relative accuracy for reconstructed pairs of 3D points and
we found an error between 3.5 to 8.8% on their Euclidean distances. Second, the
absolute accuracy was assessed by choosing two world planes A1 and A2 parallel
to the ground plane. They are shown in Fig. 10 (a). We then measured their
z-coordinates z∗k, k = {1, 2}, by hand and computed for each of them the RMS
error

ek =
(

1
|R|

∑
R(zi − z∗k)2

) 1
2

with R = {(xi, yi, zi) ∈ L | xi ∈ [xmin, xmax], yi ∈ [ymin, ymax]}.

{x, y}min,max are the plane bounds and L is the set of all landmarks. We found
e1 = 7 mm and e2 = 10 mm. Given that the camera is at roughly 0.6 to 1.4 m
from the points under consideration, this represents a good accuracy.

5 Conclusion and Future Work

We have proposed a method that combines the strengths of two fundamentally
different approaches to patch recognition. On one hand, the SIFT descriptor [1]
established a good reputation regarding accuracy at the expense on computation
time. On the other hand, statistical learning based approaches were found to be
very fast at runtime but need an offline training phase.

The Generic Trees presented in this work achieve both speed and robustness
to perspective and illumination changes by computing a signature based on
the response of a statistical classifier trained using a small set of keypoints. In
our current implementation, this set has neither been engineered nor selected to
achieve maximal performance. We therefore see a large potential for improvement
by seeking to optimize our choice of base keypoints.

References

1. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. International
Journal of Computer Vision 20 (2004) 91–110

2. Mikolajczyk, K., Schmid, C.: A Performance Evaluation of Local Descriptors. In:
Conference on Computer Vision and Pattern Recognition. (2003) 257–263

3. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffal-
itzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors. Inter-
national Journal of Computer Vision 65 (2005) 43–72

14 M. Calonder, V. Lepetit, P. Fua

4. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
European Conference on Computer Vision. (2006)

5. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 28 (2006) 1465–1479

6. Ozuysal, M., Fua, P., Lepetit, V.: Fast Keypoint Recognition in Ten Lines of
Code. In: Conference on Computer Vision and Pattern Recognition, Minneapolis,
MI (2007)

7. Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In: International
Conference on Computer Vision. (2007)

8. Schmid, C., Mohr, R.: Local Grayvalue Invariants for Image Retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 530–534

9. Sivic, J., Zisserman, A.: Video Google: Efficient visual search of videos. In: Toward
Category-Level Object Recognition. Volume 4170 of LNCS. Springer (2006) 127–
144

10. Nister, D., Stewenius, H.: Scalable Recognition with a Vocabulary Tree. In: Con-
ference on Computer Vision and Pattern Recognition. (2006)

11. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE
Transactions on Pattern Analysis and Machine Intelligence 28 (2006) 594–611

12. Amit, Y., Geman, D.: Shape Quantization and Recognition with Randomized
Trees. Neural Computation 9 (1997) 1545–1588

13. Beis, J., Lowe, D.: Shape Indexing using Approximate Nearest-Neighbour Search
in High-Dimensional Spaces. In: Conference on Computer Vision and Pattern
Recognition, Puerto Rico (1997) 1000–1006

14. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:
European Conference on Computer Vision. (2006)

15. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM: A factored solu-
tion to the simultaneous localization and mapping problem. In: Proceedings of the
AAAI National Conference on Artificial Intelligence, Edmonton, Canada, AAAI
(2002)

16. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: An improved
particle filtering algorithm for simultaneous localization and mapping that provably
converges. In: Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence (IJCAI), Acapulco, Mexico, IJCAI (2003)

17. Fischler, M., Bolles, R.: Random Sample Consensus: A Paradigm for Model Fitting
with Applications to Image Analysis and Automated Cartography. Communica-
tions ACM 24 (1981) 381–395

18. Davison, A.J.: Real-Time Simultaneous Localisation and Mapping with a Single
Camera. ICCV 02 (2003) 1403

19. Davison, A.J., Reid, I.D., Molton, N.D., Stasse, O.: Monoslam: Real-time single
camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence 29
(2007) 1052–1067

