Abstract

Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (similar to 6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye ( Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

Details

Actions