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We derive the closure relation for N polaritons made of three different types of excitons: bosonized excitons,
Frenkel, or Wannier excitons. In the case of polaritons made of Wannier excitons, we show how this closure
relation, which appears as nondiagonal, may reduce to the one of N elementary bosons, the photons, with its
1 /N! prefactor, or to the one of N Wannier excitons, with its �1 /N!�2 prefactor. Widely different forms of
closure relations are thus found depending on the composite bosons at hand. Comparison with closure relations
of excitons, either bosonized or kept composite as Frenkel or Wannier excitons, allows us to discuss the
influence of a reduction in the number of internal degrees of freedom, as well as the importance of the
composite nature of the particles and the existence of fermionic components.
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I. INTRODUCTION

Although it is widely claimed that an even number of
fermions behaves as a boson, this cannot be fully correct due
to a very fundamental reason: replacing a pair of free fermi-
ons by an elementary boson is a drastic alteration of phase
space. This must in particular reflect strongly through closure
relations. We have actually shown1,2 that the closure relation
for N Wannier excitons, which would read

IN
�B� =

1

N! � B̄j1
†
¯ B̄jN

† �v��v�B̄jN
¯ B̄j1

�1�

for bosonized excitons,3,4 i.e., excitons with creation opera-

tors assumed to be such that �B̄j� , B̄j
†�=� j�j is transformed

into

IN
�X� = 	 1

N!

2

� Bj1
†
¯ BjN

† �v��v�BjN
¯ Bj1

�2�

when the exciton composite nature of the Wannier excitons is
kept, i.e., when the commutator �Bj� ,Bj

†� is taken not exactly
equal to � j�j.

The huge prefactor change, from 1 /N! to �1 /N!�2, has
drastic consequences on all sum rules: indeed, the ones in the
exact fermion subspace differ from the ones in the mapped
bosonic subspace, whatever the mapping procedure is. Note
that this difference which exists for N=2 excitons already,
i.e., for a vanishingly small density, destroys the widely
spread belief that bosonization should be valid in the small
density limit at least.

Difference in closure relations has already been shown to
be of practical use; it has allowed us to rederive,1,5 without
calculation, the puzzling factor 1/2 difference we found be-
tween the lifetime of N ground-state excitons and the sum of
their scattering rates toward all the other N-exciton states, as
first derived in Ref. 6 through the explicit calculations of
these two quantities separately. This quite fundamental factor

1/2 difference between composite and elementary excitons
implies that if we manage to construct a bosonization proce-
dure which gives correct scattering rates, we are going to
miss the correct lifetime by a factor of 2; this consequence of
bosonization cannot be seen as a marginal effect, definitely.

The prefactor change from 1 /N! to �1 /N!�2 in the closure
relation of N Wannier exciton states is however not generic
for all composite bosons, as revealed when considering Fren-
kel excitons. Indeed, while Wannier exciton is constructed on
delocalized electron and delocalized hole, so that the corre-
sponding pair has two degrees of freedom, ke and kh, Fren-
kel exciton is made of atomic excitations, its electron and its
hole being on the same site. The corresponding pair thus has
one degree of freedom only, the index n of the atomic site
which is excited. In a recent work,7 we have shown that the
closure relation for N Frenkel excitons has the same 1 /N!
prefactor as the one for N elementary bosons; this is after all
reasonable since Frenkel exciton has one degree of freedom
only, its wave vector Q just as the localized electron-hole
pairs on which they are constructed. On the contrary, in ad-
dition to its center-of-mass momentum Q, Wannier exciton
has a second degree of freedom, namely, its relative motion
index �. The two degrees of freedom ��i ,Qi� of Wannier
exciton i are nothing but the memory of the two degrees of
freedom of the free electrons and free holes, ke and kh, out of
which Wannier exciton is made.

Another composite boson of physical interest is clearly
the polariton;8 being linear combination of one elementary
boson, the photon, and one composite boson made of two
fermions, the exciton, the polariton is a far more complicated
particle; depending on the relative weight of the photon in
the polariton, i.e., the so-called Hopfield coefficients, the po-
lariton can go from a pure elementary boson to a two-
fermion boson. The purpose of this paper is to show how this
appears in the closure relation on N polaritons. When com-
pared to the closure relation of N elementary bosons, N Fren-
kel excitons or N Wannier excitons, the closure relations of N
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polaritons made of bosonized excitons, Frenkel excitons, or
Wannier excitons will allow us to better grasp the fundamen-
tal consequences of fermionic components in composite
bosons.

The paper is organized as follows: in Sec. II, we come
back to the basic idea behind a pair of fermions behaving as
a boson, to emphasize difference between elementary and
composite bosons. We briefly rederive the closure relations
of Wannier and Frenkel excitons with a special focus on the
physical origin of the prefactor change. We also recall some
fundamental results on polaritons.

In Sec. III, we mainly derive the closure relation for N
polaritons made of photons and Wannier excitons. A conve-
nient way to do this is to start from the one in the uncoupled
photon-exciton subspace. Even for N= �2,3 ,4�, the expres-
sions obtained appear at first as rather complicated; in par-
ticular, in contrast with the closure relation for Wannier ex-
citons, they involve nondiagonal terms in polariton
operators. A careful study of these various terms however
makes their physical origin rather clear; since polaritons can
go from pure photons to pure excitons, this fundamental
change has to appear in their closure relation; clearly we
must find the elementary boson prefactor 1 /N! if all polari-
tons are taken as pure photons, and the Wannier exciton pref-
actor �1 /N!�2 if they are taken as pure excitons, the exciton
part of the polaritons appearing explicitly otherwise. We end
this section by studying the effect of the quantum particle
composite nature through polaritons made of bosonized ex-
citons. We also study the effect of fermionic components by
considering polaritons made of Frenkel excitons. In these last
two cases, the closure relation of N polaritons is found to
reduce to the one of N elementary bosons.

In Sec. IV, we compare all the closure relations for com-
posite bosons we now have at hand. This leads us to con-
clude that it is not so much the composite boson nature of the
particles nor their possible fermionic components that deter-
mine the form of their closure relation. Indeed, we find not
only the elementary boson prefactor for very different com-
posite bosons but also very different prefactors with nondi-
agonal terms in the specific case of the closure relation for
polaritons made of Wannier excitons. The totally compact
although rather sophisticated form for the closure relation of
polaritons made of Wannier excitons thus constitutes an im-
portant milestone in our understanding of the many-body
physics of composite quantum particles.

II. ELEMENTARY BOSONS, WANNIER, OR FRENKEL
EXCITONS, POLARITONS

A. Elementary or composite bosons

The creation operator of elementary composite bosons

fulfill both �B̄j�
† , B̄j

†�= B̄j�
† B̄j

†− B̄j
†B̄j�

† =0 and �B̄j� , B̄j
†�=� j�j. If

we now turn to composite particle made of linear combina-
tion of free fermion pairs

Bj
† = �

m,n
�n,m�j�am

† bn
†�v� , �3�

where �j�=Bj
†�v� while �m ,n�=am

† bn
†�v�, where am

† and bn
† cre-

ate the two fermions out of which the composite particle is

made, it is easy to check from the anticommutators of fer-
mion operators, namely, �am�

† ,am
† �=am�

† am
† +am

† am�
† =0 and

�bn�
† ,bn

†�=0, that these composite particles behave as bosons
with respect to the creation operator commutator �Bj�

† ,Bj
†�

=0. This holds both for fermions of different nature, as the
electron and proton of an hydrogen atom, so that �am

† ,bn
†�

=0, and for fermions having the same intrinsic nature, as the
electron and hole of an exciton, so that �am

† ,bn
†�=0, the hole

being a valence electron absence.
By contrast, these composite particles differ definitely

from elementary bosons through the other commutator

�Bj�,Bj
†� = � j�j − Dj�j , �4�

for Bj
†�v� being system eigenstate, so that �v�Bj�Bj

†�v�=� j�j, as
easy to check from �am� ,am

† �=�m�m and �bn� ,bn
†�=�n�n. Again

it should be stressed that Eq. �4� holds both for fermions
having the same or different nature.

The whole purpose of the composite boson many-body
theory we have recently constructed2 is to deal with the
“deviation-from-boson operator” Dj�j, appearing in Eq. �4�,
exactly. It essentially generate the so-called dimensionless

“Pauli scatterings” ��
j2� j2

j1� j1
� for carrier exchanges in the ab-

sence of carrier interaction through

�Dj1�j1
,Bj2

† � = �
j2�
�	 j2� j2

j1� j1

 + �j1� ↔ j2���Bj2�

† . �5�

An entire algebraic strategy, based on commutators such as
Eqs. �4� and �5�, is developed in Ref. 2 and references
therein.

B. Wannier or Frenkel excitons

Since these excitons are both made of fermion pairs while
their closure relations are found to be different, it can be of
interest to briefly recall the physical origin of this difference.

1. Wannier excitons

Wannier excitons exist in semiconductors having excita-
tions well represented by delocalized electrons and delocal-
ized holes. Direct Coulomb processes between one electron
and one hole lead to correlated pairs, the excitons, which can
be in bound or extended states. These excitons, eigenstates of
the semiconductor Hamiltonian, thus form a complete set in
the one-electron hole pair subspace, their closure relation
reading

I1
�X� = �

j

�j��j� = �
j

Bj
†�v��v�Bj �6�

with the sum taken over bound and extended states. Instead
of correlated electron-hole pairs, i.e., excitons, we can also
consider free electron-hole pair states �ke ,kh�=ake

† bkh

† �v�.
They also form a complete set for the one electron-hole pair
subspace, their closure relation reading

M. COMBESCOT AND M. A. DUPERTUIS PHYSICAL REVIEW B 78, 235303 �2008�

235303-2



I1
�e�I1

�h� = �
kekh

�ke,kh��ke,kh� = �
kekh

ake

† bkh

† �v��v�bkh
ake

. �7�

From �j�= I1
�e�I1

�h��j�, we readily find the link between Wannier
exciton creation operators and electron-hole creation opera-
tors

Bj
† = �

kekh

�ke,kh�j�ake

† bkh

† . �8�

We now turn to N pairs. Using the above equation, we can
rewrite the sum in Eq. �2� as

IN
�X� = 	 1

N!

2

�
�k�,�k��

	�
j1

�ke1
� ,kh1

� �j1�

��j1�kh1
,ke1

�
¯ 	�
jN

�keN
� ,khN

� �jN��jN�khN
,keN

�

� ake1

�
† bkh1

�
†

¯ akeN
�

† bkhN
�

† �v��v�bkhN
akeN

¯ bkh1
ake1

. �9�

Due to Eq. �6�, the sum over j1 reduces to �ke1
� ke1

�kh1
� kh1

and

similarly for the other sums. So that

IN
�X� = IN

�e�IN
�h�, �10�

where IN
�e� is the closure relation for N free-electron states,

namely,

IN
�e� =

1

N!��k�
ak1

†
¯ akN

† �v��v�akN
¯ ak1

�11�

and similarly for N free holes. This readily shows that Eq. �2�
is indeed a closure relation for the N electron-hole pair sub-
space, one 1 /N! coming from the N free electrons and the
other 1 /N! coming from the N free holes out of which the N
Wannier excitons are made.

2. Frenkel excitons

Frenkel excitons are rather different than Wannier exci-
tons due to the underlying tight-binding approximation on
which these excitons are based. It makes their creation op-
erator reading as

FQ
† =

1
�NS

�
n=1

NS

eiQ·RnFn
†, �12�

where Fn
†=an

†bn
† creates one electron-hole pair on the same

atomic site Rn, with NS being the number of atomic sites in
the sample.

If we now consider one-electron states, their closure rela-
tion reads I1

�e�=�nan
†�v��v�an, and similarly for one-hole states

reads I1
�h�=�n�bn�

† �v��v�bn�; so that the closure relation for all
the one-electron-hole pair states appears as

I1
�e�I1

�h� = �
n,n�

an
†bn�

† �v��v�bn�an

= �
n

Fn
†�v��v�Fn + �

n�n�

an
†bn�

† �v��v�bn�an. �13�

We then note that states in which electron and hole are not on

the same site have a much higher energy than states Fn
†�v�

due to the electrostatic energy cost to separate electron from
hole in the tight-binding limit.9 Consequently, the closure
relation for the subspace made of the lowest energy electron-
hole states can be reduced to the first term of Eq. �13�. This
phase-space reduction is at the origin of the closure relation
difference between Frenkel and Wannier excitons.

If we now use Eq. �12�, we find due to lattice periodicity

I1
�F� = �

Q
FQ

† �v��v�FQ

=
1

NS
�
nn�

	�
Q

eiQ·�Rn�−Rn�
Fn�
† �v��v�Fn

= �
n

Fn
†�v��v�Fn. �14�

Consequently, I1
�F� is a closure relation for the one-pair states

belonging to the lowest energy subspace, i.e., the one of
physical relevance.

We now turn to two-Frenkel exciton states. The closure
relation for two-electron states reads

I2
�e� =

1

2! � an1

† an2

† �v��v�an2
an1

. �15�

By writing the one for two-hole states as

I2
�h� =

1

2! � bn1�
† bn2�

† �v��v�bn2�
bn1�

=
1

2!bn1

† bn2

† �v��v�bn2
bn1

+ bn2

† bn1

† �v��v�bn1
bn2

+ �
n1�,n2��n1,n2

bn1�
† bn2�

† �v��v�bn2�
bn1�� ,

�16�

the closure relation restricted to the subspace made of two-
electron-hole states with lowest energy reads as

I2
�e�I2

�h� �
1

2!
	 1

2!
2
 �

n1,n2

Fn1

† Fn2

† �v��v�Fn2
Fn1

. �17�

Equation �12� then allows to show that

I2
�F� =

1

2! �
Q1,Q2

FQ1

† FQ2

† �v��v�FQ2
FQ1

=
1

2!

1

NS
2 � 	�

Q1

eiQ1·�Rn1�
−Rn1

��
Q2

eiQ2·�Rn2�
−Rn2

�

�Fn1�

† Fn2�
† �v��v�Fn2

Fn1
. �18�

So that, due again to lattice periodicity, we find

I2
�F� =

1

2! � Fn1

† Fn2

† �v��v�Fn2
Fn1

� I2
�e�I2

�h�. �19�

The same procedure allows us to show that the closure
relation for the lowest energy subspace made of states with
electron and hole on the same site reads7
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IN
�F� =

1

N!��Q�
FQ1

†
¯ FQN

† �v��v�FQN
¯ FQ1

. �20�

We wish to insist on the link which exists between the sub-
space reduction to the lowest energy states �which makes
closure relations like the one of Eq. �17� only approximate�,
and the fact that Frenkel excitons have a 1 /N! prefactor in
their closure relation, instead of a �1 /N!�2 as for Wannier
excitons, these last excitons being made out of the N avail-
able free electrons and N available free holes. The change
from 1 /N! to �1 /N!�2 actually comes from the tight-binding
approximation on which Frenkel excitons are based, and
which dramatically reduces the number of pairs out which
they are constructed.

C. Polaritons

Let us end this section by recalling some useful results on
polaritons.8,10 Polaritons are the exact eigenstates of one pho-
ton coupled to one exciton. A convenient way to write the
photon-semiconductor coupling Wph-sc is

Wph-sc = �
n,j

�nj�n
†Bj + h.c., �21�

where �n
† creates one photon in the eigenmode n, namely,

�n�=�n
†�v� while �nj is the Rabi coupling of this photon to

the exciton j. This form allows us to immediately see that
photons are predominantly coupled to ground-state excitons,
their Rabi coupling being the largest, while the Rabi cou-
pling to free electron-hole pairs is essentially constant for
each allowed transition.

The closure relation for states made of linear combination
of one photon and one exciton,

I1
��� + I1

�X� = �
n

�n��n� + �
j

�j��j� �22�

leads to write one-polariton states as �p�= �I1
���+ I1

�X���p�. This
shows that the polariton creation operator defined by Cp

†�v�
= �p�, reads as linear combination of photon and exciton cre-
ation operators

Cp
† = �

n

�n�p��n
† + �

j

�j�p�Bj
†. �23�

In the same way, by using closure for one-polariton states,
which are eigenstates of the coupled photon-exciton system,
we have

I1
�P� = �

p

�p��p� . �24�

From �n�= I1
�P��n� and �j�= I1

�P��j�, we then find that photon and
exciton creation operators can be written in terms of polari-
tons as

�n
† = �

p

�p�n�Cp
†, �25�

Bj
† = �

p

�p�j�Cp
†. �26�

The prefactors �n � p� and �j � p� are nothing but the so-called
Hopfield coefficients.8,10 For normalized states �p� � p�=�p�p
while �n� �n�=�n�n and �j� � j�=� j�j, these coefficients are
such that

�
n

��n�p��2 + �
j

��j�p��2 = 1. �27�

This shows that polaritons can go from pure photon when
�n � p�=1 to pure exciton when �n � j�=1, i.e., from elementary
boson to two-fermion boson. The purpose of Sec. III is to
show how this possible change shows up in the closure rela-
tion of N polaritons, starting from

I1
�P� = I1

��� + I1
�X�, �28�

which follows from Eqs. �23�, �25�, and �26�.

III. CLOSURE RELATION FOR POLARITON STATES

Equation �24� readily gives the closure relation for N=1
polariton states in terms of polariton operators as

I1
�P� = �

p

Cp
†�v��v�Cp. �29�

Let us now see how this simple form transforms when N
increases. We start with polaritons made of Wannier exci-
tons.

A. Two-polariton states

1. Construction of the two-polariton closure relation

Due to Eq. �23�, the two-polariton state Cp1

† Cp2

† �v� is a
linear combination of two-photon states �n1

† �n2

† �v�, two-
exciton states Bj1

† Bj2
† �v�, and one photon-one exciton states

�n
†Bj

†�v�. So that the closure relation in the two-polariton sub-
space has to be the sum of the ones for these three types of
states, namely,

I2
�P� = I2

��� + I1
���I1

�X� + I2
�X�. �30�

Since photons are elementary bosons their closure relation
reads as Eq. �1�, while in the case of Wannier excitons the
closure relation is given by Eq. �2�; so that these three terms
read as

I2
��� =

1

2! � �n1

† �n2

† �v��v��n2
�n1

, �31�

I1
���I1

�X� =
1

1!
	 1

1!

2

� �n1

† Bj1
† �v��v�Bj1

�n1
, �32�

I2
�X� = 	 1

2!

2

� Bj1
† Bj2

† �v��v�Bj2
Bj1

. �33�

To get some confidence in the fact that the sum I2
�P� is

indeed a closure relation for two-polariton subspace, it is
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possible to directly check that with this expression of I2
�P�, we

do have I2
�P�Cp�

† Cp
†�v�=Cp�

† Cp
†�v� for any �p� , p�. This can be

done by first writing Cp�
† and Cp

† in terms of photons and
excitons according to Eq. �23�. We then use the fact that
photon and exciton operators act in different subspaces,
while �v��n2

�n1
�n�

† �n
†�v�=�n2n�n1n�+�n2n��n1n. This readily

gives

I2
���Cp�

† Cp
†�v� =

1

2!
2 �

n1n2

�n1�p���n2�p��n1

† �n2

† �v� , �34�

I1
���I1

�X�Cp�
† Cp

†�v� = �
n1j1

��n1�p���j1�p� + �n1�p��j1�p���

� �n1

† Bj1
† �v� . �35�

To calculate I2
�X�Cp�

† Cp
†�v�, we must remember that due to

Eqs. �4� and �5�, the scalar product of two Wannier excitons
is given by

�v�Bj2
Bj1

Bj�
† Bj

†�v� = � j2j� j1j� + � j2j�� j1j

− �	 j2 j�

j1 j

 − �	 j1 j�

j2 j

 , �36�

while from the two ways to form two excitons out of two
free electron-hole pairs, we do have

�
j1j2

�	 j2 j�

j1 j

Bj1

† Bj2
† = − Bj�

† Bj
†. �37�

Using these two equations, it becomes easy to show that

I2
�X�Cp�

† Cp
†�v� =

1

4
4�

j1j2

�j1�p��j2�p�Bj1
† Bj2

† �v� . �38�

So that, by collecting all the terms of Eqs. �34�, �35�, and
�38�, we end with

I2
�P�Cp�

† Cp
†�v� = �

n1

�n1�p���n1

† + �
j1

�j1�p��Bj1
† �

� �
n2

�n2�p��n2

† + �
j2

�j2�p�Bj2
† ��v� ,

�39�

the RHS being nothing but Cp�
† Cp

†�v� due to Eq. �23�.
We are left with writing the sum in Eq. �30� in terms of

polaritons. Equation �26� gives Bj
† in terms of Cp

†, so that the
exciton-exciton part of I2

�P� readily gives

I2
�X� =

1

4 �
p1�p2�
p1p2

	p1�p1

�X�
	p2�p2

�X� Cp1�
† Cp2�

† �v��v�Cp2
Cp1

, �40�

where 	p�p
�X� physically corresponds to the polariton-exciton

overlap

	p�p
�X� = �p��I1

�X��p� , �41�

I1
�X� being the projector over the one exciton subspace defined

in Eq. �6�. In the same way, by writing �n
† in terms of Cp

†

according to Eq. �25�, and by noting that due to Eq. �22�, the
projector over the one-photon subspace I1

��� can be replaced
by I1

�P�− I1
�X�, we find that the photon-exciton part is made of

two terms

I1
���I1

�X� = �
p1�p1p2

	p1�p1

�X� Cp1�
† Cp2

† �v��v�Cp2
Cp1

− �
p1�p2�
p1p2

	p1�p1

�X�
	p2�p2

�X� Cp1�
† Cp2�

† �v��v�Cp2
Cp1

, �42�

while the photon-photon part is made of three terms

I2
��� =

1

2 �
p1p2

Cp1

† Cp2

† �v��v�Cp2
Cp1

−
1

2
2 �

p1�p1p2

	p1�p1

�X� Cp1�
† Cp2

† �v��v�Cp2
Cp1

+
1

2 �
p1�p2�
p1p2

	p1�p1

�X�
	p2�p2

�X� Cp1�
† Cp2�

† �v��v�Cp2
Cp1

. �43�

By collecting these three contributions, we find that I2
�P�,

when written in terms of polariton operators, reduces to two
terms only, namely,

I2
�P� =

1

2 �
p1p2

Cp1

† Cp2

† �v��v�Cp2
Cp1

−
1

4 �
p1�p2�
p1p2

	p1�p1

�X�
	p2�p2

�X� Cp1�
† Cp2�

† �v��v�Cp2
Cp1

�44�

the terms with one polariton-exciton overlap 	p�p
�X� canceling

exactly.

2. Analysis of the two-polariton closure relation

Before going further, let us physically analyze in detail
the two-polariton closure relation �44�. If all polaritons were
just photons, the projector on exciton subspace would give
zero, I1

�X��p�=0; so that the closure relation would reduce to
its first term, namely, 1 /2�Cp1

† Cp2

† �v��v�Cp2
Cp1

, this term
having the same 1/2 prefactor as the one of the closure rela-
tion for two elementary bosons. In the same way, if all the
polaritons were only excitons, their projections on the exci-
ton subspace would give I1

�X��p�= �p�; so that 	p�p
�X� =�p�p.

Their closure relation would then read �1 /2
−1 /4��Cp1

† Cp2

† �v��v�Cp2
Cp1

; we recover the closure relation
of two Wannier excitons with its 1/4 prefactor. Since polari-
tons are partly photon and partly exciton, the closure relation
for polaritons has to include the exciton fraction of these
polaritons explicitly. This appears through the matrix ele-
ments 	p�p

�X� which allow us to go from the closure relation of
pure photons with its 1/2 prefactor to the closure relation of
pure Wannier excitons with its 1/4 prefactor.

It can be of interest to note that this closure relation for
polaritons could as well be written in terms of projections
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over the photon subspace, instead of projections over the
exciton subspace. Due to Eq. �28�, these two projections are
linked by

	p�p
��� = �p��I1

����p� = �p�p − 	p�p
�X� . �45�

Using this relation, we can rewrite closure relation �44� in
terms of 	p�p

��� ’s as

I2
�P� =

1

4 �
p1p2

Cp1

† Cp2

† �v��v�Cp2
Cp1

+
1

2 �
p1�p1p2

	p1�p1

��� Cp1�
† Cp2

† �v��v�Cp2
Cp1

−
1

4 �
p1�p2�
p1p2

	p1�p1

���
	p2�p2

��� Cp1�
† Cp2�

† �v��v�Cp2
Cp1

. �46�

This second form of the closure relation for two-polariton
states turns out to be less compact than Eq. �44� which uses
	p�p

�X� since it contains three terms instead of two. It however
allows us to readily see that, if all the polaritons were pure
excitons, i.e., if all the 	p�p

��� ’s give zero, we get the closure
relation for two Wannier excitons with its 1/4 prefactor. Note
that Eq. �46� also allows to recover that if all polaritons were
pure photons, i.e., if all the 	p�p

��� ’s reduce to �p�p, the closure
relation reduces to �1 /4+1 /2−1 /4� �Cp1

† Cp2

† �v��v�Cp2
Cp1

,
with the same 1/2 prefactor as the one for two elementary
bosons.

A third possibility is to use the difference between the
exciton and photon weights of the polariton, namely,

	p�p = �p���I1
�X� − I1

�����p� . �47�

Equations �45� and �47� then give the closure relation for
two-polariton states, Eq. �44�, as

I2
�P� =

7

16 �
p1p2

Cp1

† Cp2

† �v��v�Cp2
Cp1

−
1

8 �
p1�p1p2

	p1�p1
Cp1�

† Cp2

† �v��v�Cp2
Cp1

−
1

16 �
p1�p2�
p1p2

	p1�p1
	p2�p2

Cp1�
† Cp2�

† �v��v�Cp2
Cp1

. �48�

In the case of two-dimensional �2D�-microcavity polaritons,
these equations could then be further simplified in terms of
the explicit Hopfield coefficients for the upper and lower
polariton branches, as done in Ref. 10.

B. Three- and four-polariton states

According to Eq. �23�, the three-polariton state
Cp�

† Cp�
† Cp2

† �v� contains states with three photons, states with
two photons and one exciton, states with one photon and two
excitons, and states with three excitons. So that the sum

I3
�P� = I3

��� + I2
���I1

�X� + I1
���I2

�X� + I3
�X� �49�

is a closure relation for three-polariton states.
Equations �2� and �26� readily give the closure relation for

states made of three excitons as

I3
�X� = 	 1

3!

2

�
�j�

Bj1
† Bj2

† Bj3
† �v��v�Bj3

Bj2
Bj1

= 	 1

3!

2

�
�p�

	p1�p1

�X�
	p2�p2

�X�
	p3�p3

�X� Cp1�
† Cp2�

† Cp3�
† �v��v�Cp3

Cp2
Cp1

.

�50�

If we now turn to the closure relation in the subspace made
of three-photon states, Eq. �25� allows us to write it as

I3
��� =

1

3!��n�
�n1

† �n2

† �n3

† �v��v��n3
�n2

�n1

=
1

3!��p�
	p1�p1

���
	p2�p2

���
	p3�p3

��� Cp1�
† Cp2�

† Cp3�
† �v��v�Cp3

Cp2
Cp1

.

�51�

By using Eq. �45� to write 	p�p
��� in terms of 	p�p

�X� and by
relabeling the bold indices, this I3

��� operator can be rewritten
as a sum of terms with zero, one, two, and three 	p�p

�X�

I3
��� =

1

3! � Cp1

† Cp2

† Cp3

† �v��v�Cp3
Cp2

Cp1

−
1

3!
3 � 	p3�p3

�X� Cp1

† Cp2

† Cp3�
† �v��v�Cp3

Cp2
Cp1

+
1

3!
3 � 	p2�p2

�X�
	p3�p3

�X� Cp1

† Cp2�
† Cp3�

† �v��v�Cp3
Cp2

Cp1

−
1

3! � 	p1�p1

�X�
	p2�p2

�X�
	p3�p3

�X� Cp1�
† Cp2�

† Cp3�
† �v��v�Cp3

Cp2
Cp1

.

�52�

If we now perform the same kind of transformations for the
closure relation of states made of two photons and one exci-
ton, namely,

I2
���I1

�X� =
1

2!
	 1

1!

2

� �n1

† �n2

† Bj1
† �v��v�Bj1

�n2
�n1

�53�

and for states made of one photon and two excitons, namely,

I1
���I2

�X� =
1

1!
	 1

2!

2

� �n1

† Bj1
† Bj2

† �v��v�Bj2
Bj1

�n1
�54�

we find that the closure relation for three polaritons which
correspond to states made of three photons, two photons, and
one exciton, one photon and two excitons, and three exci-
tons, reads in terms of polariton operators as
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I3
�P� =

1

3! � Cp1

† Cp2

† Cp3

† �v��v�Cp3
Cp2

Cp1

−
1

4 � 	p1�p1

�X�
	p2�p2

�X� Cp1�
† Cp2�

† Cp3

† �v��v�Cp3
Cp2

Cp1

+
1

9 � 	p1�p1

�X�
	p2�p2

�X�
	p3�p3

�X� Cp1�
† Cp2�

† Cp3�
† �v��v�Cp3

Cp2
Cp1

.

�55�

We note that as for I2
�P�, given in Eq. �44�, I3

�P� does not
contain term linear in polariton-exciton overlap 	p�p

�X� . We
also note that the sum of the three prefactors, namely,
�1 /3!−1 /4+1 /9� is equal to �1 /3!�2, as for three Wannier
excitons. Indeed, if all polaritons were pure excitons, I1

�X��p�
would be equal to �p� for all p, so that we should find the
closure relation for three-exciton states with its �1 /3!�2 pref-
actor. In the same way, we see that, if all polaritons were
pure photons, their projection I1

�X��p� on the exciton subspace
would reduce to zero; so that I3

�P� would reduce to its first
term—which is nothing but the closure relation of three pho-
tons, i.e., three elementary bosons. Contributions to the clo-
sure relation of polaritons which are partly photon and partly
exciton are far more complicated; they have to contain the
excitonic weight of these polaritons explicitly, as seen from
Eq. �55�.

If we now consider four-polariton states and follow a
similar procedure, we find a term with no polariton-exciton
overlap 	p�p

�X� , its prefactor being �1/4!�, no term with one
	p�p

�X� , a term with two 	p�p
�X� , its prefactor being �−1 /8�, a term

with three 	p�p
�X� , its prefactor being 1/9, and a term with four

	p�p
�X� , its prefactor being −15 / �4!�2. Although these prefactors

are individually not physically meaningful, their sum �1 /4!
−1 /8+1 /9−15 / �4!�2� reduces to �1 /4!�2 as expected for
four Wannier excitons; here again, we go from prefactor
�1 /4!� for four polaritons being pure photons, as obtained
with the term having zero 	p�p

�X� , to �1 /4!�2 for four polaritons
being pure Wannier excitons, when all the 	p�p

�X� are equal to
1.

C. N-polariton states made of Wannier excitons

We keep using the same procedure and start from the sum
of closure relations in the subspace made of N photons, �N
−1� photons and one exciton, �N−2� photons and two exci-
tons, and so on, up to the subspace made of N excitons
solely. This leads to

IN
�P� = �

k=0

N

Ik
���IN−k

�X� . �56�

According to Eqs. �1� and �2�, we can rewrite the closure
relation products as

Ik
���IN−k

�X� =
1

k!
	 1

�N − k�!

2

SN
�k� �57�

in which we have set

SN
�k� = �

�i��j�
�i1

†
¯ �ik

† Bjk+1

†
¯ BjN

† �v��v�BjN
¯ Bjk+1

�ik
¯ �i1

.

�58�

We then use Eqs. �25� and �26� to rewrite photon and exciton
operators in terms of polaritons. This leads to

SN
�k� = �

�p���p�
	�

i=1

k

	pi�pi

��� 
	 �
j=k+1

N

	pj�pj

�X� 

�Cp1�

†
¯ CpN�

† �v��v�CpN
¯ Cp1

. �59�

We can now choose to only keep 	p�p
�X� , or 	p�p

��� , or to intro-
duce their difference 	p�p.

1. N-polariton closure relation in terms of exciton weights

To get the closure relation for N polaritons in terms of
exciton weights, we rewrite 	p�p

��� as �p�p−	p�p
�X� using Eq.

�45�. By relabeling the bold indices, we end with a closure
relation for N polariton states which has the same structure
as the one previously found, with terms a priori having
�0,1 ,2 , . . . ,N� polariton-exciton overlaps 	p�p

�X� .

IN
�P� =

1

N! � Cp1

†
¯ CpN

† �v��v�CpN
¯ Cp1

+ 
N
�1� � 	p1�p1

�X� Cp1�
† Cp2

†
¯ CpN

† �v��v�CpN
¯ Cp2

Cp1

+ 
N
�2� � 	p1�p1

�X�
	p2�p2

�X�

�Cp1�
† Cp2�

† Cp3

†
¯ CpN

† �v��v�CpN
¯ Cp3

Cp2
Cp1

+ ¯

+ 
N
�N� � 	p1�p1

�X�
	p2�p2

�X�
¯ 	pN� pN

�X�

�Cp1�
†
¯ CpN�

† �v��v�CpN
¯ Cp1

. �60�

The above equation already shows one important feature of
the closure relation for N polaritons made of Wannier exci-
tons compared to the photon one written in Eq. �1� and the
Wannier exciton one written in Eq. �2�; IN

�P�, except for its
first term, is not diagonal with respect to polariton operators,
the term with n overlaps having n polaritons changing from
state p to state p�.

The prefactors 
N
�n� in this sum follow from the prefactors

of closure relations in the independent photon-exciton sub-
spaces and the various relabeling of bold indices. The pref-
actor of the term with one 	p�p

�X� is found to reduce to zero
whatever N is, in agreement with what we previously found,
since its general form reads


N
�1� = −

CN
1

N!
+

CN−1
0

�N − 1�!
	 1

1!

2

= 0 �61�

where CN
n =N ! /n ! �N−n�! is the number of ways to choose n

overlaps among N. If we now consider the prefactor of the
term with two 	p�p

�X� , it reads
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N
�2� =

CN
2

N!
−

CN−1
1

�N − 1�!
	 1

1!

2

+
CN−2

0

�N − 2�!
	 1

2!

2

= −
1

22�N − 2�!
�62�

In the same way, the prefactor of the term with three 	p�p
�X� ,

reads


N
�3� = −

CN
3

N!
+

CN−1
2

�N − 1�!
	 1

1!

2

−
CN−2

1

�N − 2�!
	 1

2!

2

+
CN−3

0

�N − 3�!
	 1

3!

2

= −
1

32

1

�N − 3�!
�63�

and the prefactor of the term with four 	p�p
�X� is found to be


N
�4� =

CN
4

N!
−

CN−1
3

�N − 1�!
	 1

1!

2

+
CN−2

2

�N − 2�!
	 1

2!

2

−
CN−3

1

�N − 3�!
	 1

3!

2

+
CN−4

0

�N − 4�!
	 1

4!

2

= −
15

�4!�2

1

�N − 4�!
. �64�

The above results agree with the ones we previously found.
While 
N

�2� and 
N
�3� would lead to guess a rather simple form

for 
N
�n�, its value with n=4 actually shows that this is not so.

It is however possible to put 
N
�n� in a compact form in the

following way. For general n, the prefactor 
N
�n� of the terms

with n overlaps 	p�p
�X� reads due to the various prefactors of

the closure relations for photons and excitons, and the pos-
sible relabeling of bold indices as


N
�n� = �

p=0

n

�− 1�n−pCN−p
n−p 1

�N − p�!	 1

p!

2� . �65�

By writing CN
n as N ! /n ! �N−n�!, this leads to


N
�n� =

�− 1�n

�N − n�! �p=0

n
�− 1�p

�n − p�!	 1

p!

2

=
�− 1�n

�N − n� ! n!
F�− n,1;1� , �66�

where F�� ,
 ;z� is the degenerate hypergeometric function
�or confluent hypergeometric function of the first kind11,12�
defined as

F��,
;z� = 1 +
�




z

1!
+

��� + 1�

�
 + 1�

z2

2!
+ ¯ . �67�

Since F�0,1 ;1�=1, we readily find 
N
�0�=1 /N!. In the same

way, F�−1,1 ;1�=0 leads to 
N
�1�=0, while F�−2,1 ;1�=

−1 /2 leads to 
N
�1�=−1 / �4�N−2�!�, and so on.

Equation �60� shows that if all the polaritons were pure
photons, i.e., if all the 	p�p

�X� ’s are equal to 0, the closure
relation would have the prefactor 1 /N! of N elementary
bosons. In order to show that the closure relation IN

�P� reduces
to the one of N Wannier excitons, with its prefactor �1 /N!�2,
if all the polaritons were pure excitons, i.e., if all the 	p�p

�X� ’s

are equal to 1, we must show, as explicitly checked for N
= �2,3 ,4�, that the sum of all prefactors appearing in Eq. �60�
reduces to �1 /N!�2, namely,

1

N!
+ �

n=1

N


N
�n� = 	 1

N!

2

, �68�

We first note that, using Eq. �66�, this equation also reads
ZN=1 /N!, where

ZN = �
n=0

N

�− 1�nCN
n �

p=0

n

�− 1�p
Cn

p

p!
. �69�

To show that ZN=1 /N!, we first note that �n=0
N �p=0

n

=�p=0
N �n=p

N while CN
n Cn

p=CN
pCN−p

n−p which follows from the defi-
nition of CN

n . This allows us to rewrite ZN as

ZN = �
p=0

N
�− 1�p

p!
CN

p �
n=p

N

�− 1�nCN−p
n−p . �70�

To go further, we set n�=n− p in the last term and note that

�1 − x��N−p� = �
n�=0

N−p

�− 1�n�CN−p
n� xn�.

For x=1 this shows that the sum over n in Eq. �70� reduces
to �Np. So that Eq. �70� leads to

ZN =
CN

N

N!
=

1

N!
�71�

as necessary to prove Eq. �68�. Hence we recover the closure
relation for Wannier exciton �2� if all the polaritons were
pure excitons.

We thus conclude that although the closure relation for N
polariton states written in Eq. �60� is definitely far more
complicated than the one for N elementary bosons or for N
Wannier excitons, it is yet compact. From it, we can recover
expressions such as Eqs. �1� and �2� with prefactors 1 /N!
and �1 /N!�2 when considering polaritons as pure photons or
as pure Wannier excitons. However, since polaritons have a
mixed nature, as seen through the projection I1

�X��p� which for
most polaritons differs from 0 and �p�, the general form of
the closure relation for N polariton states �60� has to be more
complicated than the one of N photons or N Wannier exci-
tons; in particular most of its terms are nondiagonal with
respect to polariton operators.

2. N-polariton closure relation in terms of photon weights

To get the closure relation for N polaritons in terms of
photon weights, we just have to rewrite in Eq. �59� 	p�p

�X� as
�p�p−	p�p

��� in order to only keep projectors I1
��� over the pho-

ton subspace. The closure relation for N-polariton states then
appears as
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IN
�P� = �

n=0

N


̃N
�n� �

�p���p�
	�

i=1

N−n

	pi�pi

��� 

�Cp1�

†
¯ Cpn�

† Cpn+1

†
¯ CpN

† �v��v�CpN
¯ Cp1

. �72�

Prefactors 
̃N
�n� are similar to prefactors 
N

�n� in the closure
relation Eq. �60� when written in terms of exciton weights,
except that p! and �N− p�! are exchanged, as reasonable due
to their physical origin. They precisely read


̃N
�n� = �

p=0

n

�− 1�n−pCN−p
n−p 1

p!
	 1

�N − p�!

2

. �73�

This immediately shows that 
̃N
�0�= �1 /N!�2; so that Eq. �73�

readily gives a closure relation with the Wannier exciton
prefactor if all polaritons were excitons, i.e., if all 	p�p

��� re-
duce to zero.

As for 
N
�n�, it is actually possible to write 
̃N

�n� in a similar
way in terms of hypergeometric functions, according to


̃N
�n� =

�− 1�n

�N − n�! �p=0

n

�− 1�p 1

p ! �N − p� ! �n − p�!

=
�− 1�n

N ! �N − n� ! n!
U�− n,1 − n + N;1�

=
�− 1�n

N ! �N − n� ! n!
G�− n,− N;− 1� , �74�

where the hypergeometric function U�a ,c ;z�, also called
confluent hypergeometric function of the second kind,11,12 is
linked to the function G�� ,� ;z� introduced by Landau13

G��,�;z� = 1 +
��

1 ! z
+

��� + 1���� + 1�
2 ! z2 + ¯ �75�

through U�a ,c ;z�=z−aG�a ,a+1−c ;−z�.
In the same way as for Eq. �68�, it is possible to show that

	 1

N!

2

+ �
n=1

N


̃N
�n� =

1

N!
�76�

in order to go from the �1 /N!�2 prefactor of Wannier excitons
to the 1 /N! prefactor of elementary bosons.

3. N-polariton closure relation in terms of weight differences

The closure relation for N polaritons in terms of weight
differences, which is an alternative to Eqs. �60� and �72�, can
be derived by using the weight difference 	p�p defined in Eq.
�47�. This projector difference is quite interesting since it
treats on an equal footing the excitonic weight and the pho-
tonic weight of the polariton; therefore, we expect prefactors
equivalent to 
N

�n� or 
̃N
�n�, in Eqs. �60� or �72�, to be some-

what intermediate between 1 /N! and �1 /N!�2.
By writing 	p�p

��� as ��p�p−	p�p� /2 and 	p�p
�X� as ��p�p

+	p�p� /2, we see that, in Eq. �59�, the first product on i
�respectively, the second product on j�, contains Ck

l �respec-
tively, CN−k

m � terms that appear with exactly l �respectively, m�
factors of the type −	p�p �respectively, +	p�p�, the other

products involving trivial �p�p. By relabeling the �p�� and �p�
indices in every term of sum �59�, we find, after commuta-
tions of the corresponding Cpj�

† and Cpj
operators, that all

these terms look identical and have a �p�p for the last �l
+m� indices. Using them to simplify the sums, we get

SN
�k� =

1

2N�
l=0

k

�
m=0

N−k

�− 1�lCk
l CN−k

m �
�p���p�

	�
i=1

l+m

	pi�pi

�Cp1�

†
¯ Cpl+m�

† Cpl+m+1

†
¯ CpN

† �v��v�CpN
¯ Cp1

.

�77�

We now come back to IN
�P� defined in Eqs. �56� and �57�, and

substitute Eq. �77�. By interchanging summations
�k=0

N �l=0
k �m=0

N−k as �l=0
N �m=0

N−l �k=l
N−m, we can group all terms in

the following way

IN
�P� =

1

2N�
l=0

N

�
m=0

N−l

�
k=l

N−m
�− 1�l

l ! �k − l� ! �N − k� ! m ! �N − k − m�!

� �
�p���p�

	�
i=1

l+m

	pi�pi

�Cp1�

†
¯ Cpl+m�

† Cpl+m+1

†
¯ CpN

† �v��v�CpN
¯ Cp1

. �78�

By introducing n��l+m�, we finally get after simplification
of all indices

IN
�P� = �

n=0

N

N
�n� �

�p���p�
	�

i=1

n

	pi�pi

�Cp1�

†
¯ Cpn�

† Cpn+1

†
¯ CpN

† �v��v�CpN
¯ Cp1

, �79�

which is an alternative form for the closure relation given in
Eqs. �60� and �72�, but written in terms of weight differences
	p�p. N

�n� in this sum appear as the following series:

N
�n� =

�− 1�n

2NN!
CN

n �
l=0

n
�− 1�l

l!
Cn

l F�n − N,1 + l;− 1� �80�

of degenerate hypergeometric function F�� ,
 ;z� defined in
Eq. �67�. Unfortunately, we could not find for them expres-
sions as compact as Eq. �66� for 
N

�n�, or Eq. �74� for 
̃N
�n�. We

can however check that for N=2, Eq. �80� leads to the factors
7 /16,−1 /8,−1 /16 obtained in Eq. �48�. This form of closure
relation is the relevant one when the polaritons of interest are
half photons and half excitons, as in the case of 2D micro-
cavity polaritons close to zone center when the photon de-
tuning is very small �c.f. Ref. 10�.

D. Effects of fermionic components in polaritons

In order to better grasp the importance of fermionic com-
ponents in the closure relation of composite bosons, let us
add two more closure relations to the four we already have at
hand, namely, the ones for bozonized excitons, Wannier ex-
citons, Frenkel excitons, and polaritons made of Wannier ex-
citons. These are the ones for polaritons made of bosonized
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excitons and polaritons made of Frenkel excitons. We are
going to show that, in these two cases, in spite of the com-
posite nature of the quantum particles, the closure relation is
just the one of N elementary bosons.

In order to make things simpler, we restrict the derivation
of these closure relations to the case of two-polariton states.

The closure relation I2
�P̄� for two polaritons P̄ either made of

Frenkel excitons, or made of bosonized excitons, reads as

I2
���+ I1

���I1
�B̄�+ I2

�B̄�. This leads to

I2
�P̄� =

1

2! � �n1

† �n2

† �v��v��n2
�n1

+ � �n1

† B̄j1
† �v��v�B̄j1

�n1

+
1

2! � B̄j1
† B̄j2

† �v��v�B̄j2
B̄j1

. �81�

Let us stress that, when compared to Eq. �30�, the prefactor
of the last term is 1 /2! instead of �1 /2!�2 due to the closure
relation of the excitons on which these polaritons are con-
structed. If we now write these photon and exciton operators
in terms of polaritons by using the closure relation for one-

polariton states, namely, I1
�P̄�=��p̄��p̄�, we find that I2

�P̄� also
reads

I2
�P̄� =

1

2! � �	p1�p1

���
	p2�p2

��� + 2	p1�p1

���
	p2�p2

�X� + 	p1�p1

�X�
	p2�p2

�X� �

�C̄p1�
† C̄p2�

† �v��v�C̄p2
C̄p1

. �82�

After relabeling �p2� , p2� into �p1� , p1� in half of the second
term, the factor in parenthesis reveals products of �	p�p

���

+	p�p
�X� � which all reduce to �p� � p�=�p�p. So that the closure

relation for two such polariton states

I2
�P̄� =

1

2! � C̄p1

† C̄p2

† �v��v�C̄p2
C̄p1

�83�

reduces to the one of N=2 elementary bosons. A similar
result is found for the closure relation for N polaritons con-
structed on bosonized excitons or on Frenkel excitons.

IV. DISCUSSION

We end this paper by comparing and discussing the dif-
ferent expressions of closure relations for composite bosons
we have obtained. Let us first list them for clarity.

�i� The closure relation for N elementary bosons is diag-
onal and has a 1 /N! prefactor.

�ii� The closure relation for N Frenkel excitons has the
same form and the same 1 /N! prefactor.

�iii� The closure relation for N polaritons made of
bosonized excitons has the same form and the same 1 /N!
prefactor.

�iv� The closure relation for N polaritons made of Frenkel
excitons has the same form and the same 1 /N! prefactor.

�v� The closure relation for N Wannier excitons has the
same form but a �1 /N!�2 prefactor.

�vi� The closure relation for N polaritons made of Wannier
excitons has a more complicated form with nondiagonal

terms in polariton operators and prefactors which depend on
the photon or exciton fractions in the polaritons of interest.
This closure relation however reduces to the one of N pho-
tons with its diagonal form and its 1 /N! prefactors when all
polaritons are seen as pure photons, while it reduces to the
one of N Wannier excitons, with its �1 /N!�2 prefactor when
all polaritons are seen as pure Wannier excitons.

The closure relation for Wannier excitons, is, in some
sense, the most interesting one since it has the same simple
diagonal form of elementary bosons, but a huge prefactor
change �1 /N!�2 instead of �1 /N!�. This seems to indicate that
the internal structure of composite bosons must be quite im-
portant for the closure relation prefactor. However, we
should not be too fast in driving such a conclusion. Indeed,
the fact that the closure relation for N Frenkel excitons in
contrast has the 1 /N! prefactor of elementary bosons just
proves that for other composite bosons which are also made
of two fermions, the closure relation prefactor may still be
identical to the one of elementary bosons. For Frenkel exci-
tons, we have shown that this is linked with the degree of
freedom reduction occurring when constructing the relevant
phase space for fermion pairs out of which these excitons are
made.

Further along this line, the fact that the closure relations
for N Frenkel excitons, for N polaritons made of bosonized
excitons and for N polaritons made of Frenkel excitons all
have the 1 /N! prefactor of elementary bosons, proves that
the composite nature of the bosons made of fermion pairs
possibly mixed with photons is not a determining factor for
difference in closure relation prefactors.

With respect to compositeness, polariton made of Wannier
excitons which is linear combination of photons and free
electron-hole pairs, corresponds to a far more complex com-
posite object because it can vary from pure photon to pure
Wannier exciton; so that, depending on the relative weight of
Wannier exciton in the polariton, we do have a composite
quantum particle made of linear combination of photons and
free electron-hole pairs or just a photonlike elementary par-
ticle. This leads to a closure relation having a far more com-
plicated form although fully compact in terms of polariton-
exciton �or polariton-photon� overlaps.

To conclude, we have constructed the closure relation for
N polariton states, starting from the ones for subspaces cor-
responding to p photons and �N− p� excitons, with 0� p
�N, out of which these N polaritons are made. When polari-
tons are constructed on Wannier excitons made of free elec-
trons and holes, with a closure relation having a prefactor
�1 /N!�2 instead of 1 /N! as for elementary bosons, we find
that the closure relation for N polaritons depends explicitly
on the weight of the exciton in the polariton for both its form
and its prefactor. This is rather reasonable since if all polari-
tons were pure photons, the closure relation prefactor should
be 1 /N!, while if they all were pure excitons, we must re-
cover the one for N Wannier excitons with its �1 /N!�2 pref-
actor. In contrast, the closure relation for polaritons made of
bosonized excitons or Frenkel excitons simply is the one of
N elementary bosons.

The fact that, unlike all the other closure relations we
have up to now obtained, the closure relation for N polaritons
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made of Wannier excitons is nondiagonal in polariton opera-
tors outlines the inherent complexity of the internal structure
of Wannier exciton polaritons as composite bosons. Most
notably, as for the lifetime of N-Wannier exciton states due

to Coulomb scatterings,6 the complex structure of the closure
relation for Wannier exciton polaritons is going to induce
noticeable differences with elementary bosons in all physical
quantities involving sum rules.
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