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The EPDiff equation (or the dispersionless Camassa–Holm equation in one dimension) is a
well-known example of geodesic motion on the Diff group of smooth invertible maps
(diffeomorphisms). Its recent two-component extension governs geodesic motion on the
semidirect product Diff�S F , where F denotes the space of scalar functions. This paper
generalizes the second construction to consider geodesic motion on Diff�S g, where g denotes
the space of scalar functions that take values on a certain Lie algebra (e.g. gZF5so(3)).
Measure-valued delta-like solutions are shown to be momentummaps possessing a dual pair
structure, thereby extending previous results for the EPDiff equation. The collective
Hamiltonians are shown to fit into the Kaluza–Klein theory of particles in a Yang–Mills field
and these formulations are shown to apply also at the continuumpartial differential equation
level. In the continuum description, the Kaluza–Klein approach produces the Kelvin
circulation theorem.
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1. Introduction

(a ) Singular solutions in continuum mechanics

Singular measure-valued solutions arise in the study of many continuum systems. A
famous example of singular solutions in ideal fluids is the point vortex solution for
the Euler vorticity equation on the plane. Point vortices are delta-like solutions that
follow amulti-particle dynamics. In three dimensions one can extend this concept to
vortex filaments or vortex sheets, for which the vorticity is supported on a lower
dimensional submanifold (one- or two-dimensional, respectively) of the Euclidean
space R

3. These solutions form an invariant manifold. However, they are not
expected to be created by fluid motion from smooth initial conditions. Singular
solutions also exist in plasma physics as magnetic vortex lines and in kinetic theory
as single-particle solutions (see Gibbons et al. 2008 for discussion and references).
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D. D. Holm and C. Tronci458
Another well-known fluid model admitting singular solutions is the Camassa–
Holm (CH) equation, which is an integrable Hamiltonian fluid equation describing
shallow-water solitons moving in one dimension (Camassa & Holm 1993). In the
dispersionless limit, the CH solitons are singular solutions whose velocity profile has
a sharp peak at which the derivative is discontinuous. These are the peakon
solutions of the CH equation. In higher dimensions the dispersionless CH equation
is often called EPDiff, which is short for Euler–Poincaré equation on the
diffeomorphisms (Holm et al. 1998; Holm & Marsden 2004). EPDiff also has
applications in other areas such as turbulence (Foias et al. 2001) and imaging
(Holm et al. 2004; Holm et al. submitted b). The EPDiff and the Euler fluid
equations share the important property of being geodesic motions on diffeomorph-
ism groups (Arnold 1997). Moreover, the EPDiff equation has the additional
interesting feature of showing the spontaneous emergence of singular solutions from
any confined initial velocity configuration. In one dimension, this result follows
from the steepening lemma (Camassa & Holm 1993). Recent work has proven that
the singular solutions of EPDiff represent a certain kind of momentum map
(Holm & Marsden 2004). This result answers the fundamental question concerning
the geometric nature of these solutions.

The CH equation in one dimension also possesses a two-component integrable
extension (CH2) (Chen et al. 2006; Falqui 2006; Kuz’min 2007), which represents
geodesic motion on the semidirect product Diff�S F , where F denotes the space of
real scalar functions. This system of equations involves both fluid density and
momentum, and it also possesses singular solutions in the latter variable. CH
peakon solutions form an invariant subspace of CH2 solutions for the case that
the density vanishes identically. A change in the metric allows delta-like
singularities in both variables, not just the fluid momentum, although such a
change may also destroy integrability (Holm et al. submitted b).
(b ) The CH and EPDiff equations

The dispersionless CH equation is a geodesic flow on the infinite-dimensional
Lie group of smooth invertible maps (diffeomorphisms) of either the real line or a
periodic interval. This geodesic flow exhibits the spontaneous emergence of
singularities from any confined smooth initial velocity profile. The CH equation
is a 1C1 partial differential equation for the one-dimensional fluid velocity vector
u as a function of position x2R and time t2R and is written as (Camassa &
Holm 1993)

ut C2kuxK uxxt C3uux Z 2uxuxx Cuuxxx : ð1:1Þ
The present work focuses on the CH equation (1.1) in the dispersionless case for
which kZ0 and considers periodic boundary conditions or sufficiently rapid
decay at infinity, so that boundary terms do not contribute to integrations by
parts. Being geodesic, the CH equation can be recovered from Hamilton’s
principle with a quadratic Lagrangian,

d

ðt1
t 0

LðuÞdt Z 0 with LðuÞZ 1

2

ð
uðxÞð1Kv2xÞuðxÞdx:

In particular, it follows from the Euler–Poincaré variational principle defined on
X(R)ZTeDiff(R), the Lie algebra of the Diff group, consisting of vector fields on
the line (Holm et al. 1998). The corresponding Lie–Poisson Hamiltonian
Proc. R. Soc. A (2009)



459Geodesic flows on semidirect products
formulation follows from the Legendre transform

m Z
dL

du
Z uK uxx0u Z ð1Kv2xÞK1m;

in which m2X
�(R). Here, X�(R) is the space of one-form densities, which are dual

to the vector fields on the line under the L2 pairing. After the Legendre
transformation, the Hamiltonian becomes

HðmÞZ 1

2

ð
mð1Kv2xÞK1m dx0u Z

dH

dm
;

and the corresponding Lie–Poisson form of equation (1.1), with kZ0, is
(Camassa & Holm 1993)

mt Cumx C2uxmZ 0:

The main result for this equation is its complete integrability, which is
guaranteed by its bi-Hamiltonian structure (Camassa & Holm 1993). Another
important feature, called the steepening lemma (Camassa & Holm 1993),
provides the mechanism for the spontaneous emergence of the singular solutions
(the peaked solitons, or peakons mentioned earlier) from any confined initial
velocity distribution.

EPDiff. Except for integrability, these one-dimensional results can be
generalized to two or three dimensions, in which the equation becomes EPDiff,
namely

vtmKu!curlmCVðu$mÞCmðdiv uÞZ 0: ð1:2Þ
The EPDiff Hamiltonian on X

�(R3) arising from this generalization is given by

HðmÞZ 1

2

ð
m$ð1Ka2DÞK1m dxe

1

2
sms2; ð1:3Þ

in which a is the length scale over which the velocity is smoothed relative to the
momentum via the relation

uZ ð1Ka2DÞK1m: ð1:4Þ
The singular solutions in higher dimensions are written in the momentum
representation as

mðx; tÞZ
XN
iZ1

ð
Piðs; tÞdðxKQiðs; tÞÞds; ð1:5Þ

where s is a variable of dimension k!3. These solutions represent moving
filaments or sheets, when s has dimension 1 or 2, respectively.

A further generalization replaces the kernel that defines the norm of kmk in
(1.3) via the relation (1.4) with the general convolution

G �m Z

ð
GðxKx 0Þmðx 0Þdx 0; ð1:6Þ

involving an arbitrary Green’s function, or kernel, G. This generalization
produces the metric,

HðmÞZ 1

2

ð
m$ðG �mÞdxe1

2
sms2

G ; ð1:7Þ
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D. D. Holm and C. Tronci460
which is the Lie–Poisson Hamiltonian for EPDiff (1.2) and is, thus, invariant
under its evolution. The dynamics of (Qi , Pi), with iZ1,., N, for the singular
pulson solutions in (1.5) is given by canonical Hamiltonian dynamics, with
the Hamiltonian

HZ
1

2

X
i;j

ðð
Piðs; tÞ$Pjðs 0; tÞGðQiðs; tÞKQjðs 0; tÞÞds ds 0;

obtained by evaluating the Lie–Poisson Hamiltonian for EPDiff on its singular
solution set.

Theorem 1.1 (Holm & Marsden 2004). The singular solution (1.5 ) is a
momentum map.

To illustrate this theorem, fix a k-dimensional manifold S immersed in R
n and

consider the embedding Qi :S/R
n. Such embeddings form a smooth manifold

Emb(S,Rn), and thus one can consider its cotangent bundle (Qi , Pi)2
T�Emb(S,Rn). Consider Diff(Rn) acting on Emb(S,Rn) on the left by composition
of functions ðgQZg+QÞ and lift this action to T�EmbðS;RnÞ. This procedure
constructs the singular solution momentum map for EPDiff,

J : T�EmbðS;RnÞ/X
�ðRnÞ with JðQ;PÞZ

ð
Pðs; tÞdðxKQðs; tÞÞds:

This construction was extensively discussed in Holm & Marsden (2004), where
proofs were given in various cases. A key result is that the momentum map
constructed in this way is equivariant, which means it is also a Poisson map. This
explains why the coordinates (Q, P) undergo Hamiltonian dynamics. There is
also a right action ðQgZQ+gÞ, whose momentum map corresponds to the
canonical one-form P$dQ on T �Emb.
(c ) The two-component CH system

In recent years, the CH equation has been extended (Chen et al. 2006; Falqui
2006; Kuz’min 2007) in order to combine the integrability property with
compressibility, which introduces a pressure term in the equation for the fluid
momentum. The resulting system (CH2) is a geodesic motion equation on
Diff�S F , given as an Euler–Poincaré equation on the semidirect-product Lie
algebra X�S F . In the general case, the Euler–Poincaré equations are written on
the dual of a semidirect-product Lie algebra g�S V as (Holm et al. 1998)

d

dt

dL

dðx; aÞ ZKad*
ðx;aÞ

dL

dðx; aÞ ðx; aÞ2 g�S V ;

whose components are

d

dt

dL

dx
ZKad�x

dL

dx
C

dL

da
� a; d

dt

dL

da
ZKx

dL

da
;

where the notation xdL/da stands for the (left) Lie algebra action of g on V �.
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461Geodesic flows on semidirect products
The integrable CH2 equations are derived from the following variational
principle on X�S F :

d

ðt1
t 0

Lðu; rÞdt Z 0 with LðuÞZ 1

2

ð
uð1Kv2xÞu dxC

1

2

ð
r2 dx:

Explicitly, the CH2 equations are

rt ZKðruÞx ; utK uxxt ZK3uux C2uxuxx CuuxxxKrrx :

These equations describe geodesic motion with respect to the H 1 metric in u and
the L2 metric in r. Legendre transforming yields the metric Hamiltonian

Hðm; rÞZ 1

2

ð
mð1Kv2ÞK1m dxC

1

2

ð
r2 dx:

Extending to more dimesions and more general metrics (Green’s functions) yields
the Hamiltonian

Hðm; rÞZ 1

2

ðð
mðxÞG1ðxKx 0Þmðx 0Þdnx dnx 0

C
1

2

ðð
rðxÞG2ðxKx 0Þrðx 0Þdnx dnx 0; ð1:8Þ

which represents the two-component extension of EPDiff and is denoted by
EP(Diff�S F ). In three dimensions, the corresponding Lie–Poisson equations
assume the form

rt ZKV$ðruÞ; mt Zu!curlmKVðu$mÞKmðdiv uÞKrVl;

where mZdH/dmZG1�u and rZdH/drZG2�l. These expressions can also be
written in a covariant form by using the Lie derivative £u with respect to the
velocity vector field u2X(Rn) of a one-form density mZm$dx5dnx 2X�ðRnÞ;
whose co-vector components are m. The diamond operator ð�Þ corresponding to
the Lie derivative £u is defined by

hr;K£uliV!V � dhr � l;uiX�!X; ð1:9Þ
where, in the present case, l2V�ZF is a scalar function while r2VZDen is a
density variable and h$,$i is the L2 pairing in the corresponding spaces. In this
notation, one can write the general case for r2V and l2V� as

rt C£urZ 0; mt C£umZ r � l: ð1:10Þ
Specializing the kernel G2 to G2ZDK1 allows this system to be physically

interpreted as an incompressible charged fluid. In this case, r is interpreted as the
charge density, rather than the mass density, and l is the electrostatic
interaction potential, satisfying DlZr for the Coulomb potential. The pure
CH2 case (G2Zd) corresponds to a delta-like interaction potential, which also
appears in the integrable Benney system (Benney 1973; Gibbons 1981). The
application of the full semidirect-product framework to the imaging method
called metamorphosis was studied in Holm et al. (submitted b). The relation
of the latter work to the current investigation will be traced further in the
following sections.
Proc. R. Soc. A (2009)
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(d ) Plan of the paper

This paper follows Holm & Marsden (2004) in studying the singular solutions
of geodesic flows on semidirect-product Lie groups by identifying them with
momentum maps. Here, the new features are: (i) we explain their geometric
nature in the context of the Kaluza–Klein formulation of a particle in a Yang–
Mills field, and (ii) we extend the applications of this approach to systems of
equations governing geodesic flows on semidirect-product Lie groups with a non-
Abelian gauge group.

First, §2 first shows how this works when considering the Abelian gauge group
of functions F . Momentum maps for the left and right actions of the
diffeomorphisms and the Lie group of gauge symmetry are derived, which recover
the corresponding conservation laws. The key observation is that the collective
Hamiltonian for the singular solution momentum map is a Kaluza–Klein
Hamiltonian, thereby recovering the conservation of the gauge charge. In §3, we
show how this observation extends to the consideration of a non-Abelian gauge
group G for particles carrying a spin-like variable.

Section 4 is devoted to illustrating how the continuum geodesic equations
on semidirect products also arise naturally from a Kaluza–Klein formulation
thereby recovering the Kelvin circulation theorem in the continuum description.
2. The singular solution momentum map for EP(Diff�S F )

Given the semidirect-product Lie–Poisson equations (1.10), a direct substitution
shows that they allow the singular solutions

ðm; rÞZ
XN
iZ1

ð
ðPiðs; tÞ;wiðsÞÞdðxKQiðs; tÞÞdks; ð2:1Þ

where s is a coordinate on a submanifold S of Rn, exactly as in the case of EPDiff.
If dim SZ1, then this corresponds to fluid variables supported on a filament,
while dim SZ2 yields sheets of fluid density and momentum. The dynamics of
(Qi , Pi , wi) is given by

vQiðs; tÞ
vt

Z
X
j

ð
Pjðs 0; tÞG1ðQiðs; tÞKQjðs 0; tÞÞdks 0;

vPiðs; tÞ
vt

ZK
X
j

ð
Piðs; tÞ$Pjðs 0; tÞVQi

G1ðQiðs; tÞKQjðs0; tÞÞdks 0

K
X
j

ð
wiðsÞwjðs0ÞVQi

G2ðQiðs; tÞKQjðs 0; tÞÞdks 0; ð2:2Þ

with vtwi(s)Z0, c i.
Recalling the geometric nature of the pulson solution of EPDiff and following

the reasoning in Holm & Marsden (2004), one can interpret Qi as a smooth
embedding in Emb(S,Rn) and PiZPi$dQi (no sum) as the canonical one-form on
T �Emb(S,Rn) for the ith pulson. In the case of EP(Diff�S F ), the weights wi for
iZ1,., N, are considered as maps wi:S/R

�. That is, the weights wi are
Proc. R. Soc. A (2009)



463Geodesic flows on semidirect products
distributions on S, so that wi2Den(S ), where Den:ZF�. In particular, we
consider the triple

ðQi;Pi;wiÞ2T�EmbðS;RnÞ!DenðSÞ
and prove the following.

Theorem 2.1 (Singular solution momentum map). The singular solutions (2.1)
of the semidirect-product Lie–Poisson equations (1.10) are given by

ðm; rÞZ
XN
iZ1

ð
ðPiðs; tÞ;wiðsÞÞdðxKQiðs; tÞÞdks:

These expressions for (m, r)2X
�(Rn)�S Den(Rn) identify a momentum map

J :!N
iZ1ðT�EmbðS;RnÞ!DenðSÞÞ/X

�ðRnÞ�S DenðRnÞ:
Proof. For convenience, we fix label i and suppress the summations in our

singular solution ansatz. In order to define a momentum map, we first need to
establish a Poisson structure on T �Emb!Den. Since the weights have no
temporal evolution, it is reasonable to propose the canonical Poisson bracket on
the new phase space, so that

fF ;GgðQ;P;wÞd
Xn
kZ1

ð
dF

dQk

dG

dPk

K
dF

dPk

dG

dQk

� �
dks:

Now, if bZ(b1,b0)2X(Rn)�S F (Rn), then the pairing hJ,bi is naturally written as

hJðQ;P;wÞ;biZ
ð

PðsÞ$b1ðQðsÞÞCwðsÞb0ðQðsÞÞð Þdks: ð2:3Þ

Consequently, one can calculate

fF ; hP;b1ðQÞigCfF ; hw; b0ðQÞig

Z

ð
dF

dQ
$b1ðQðsÞÞK db1

dQ

T

$PCw
db0
dQ

� �
$
dF

dP

� �
dks: ð2:4Þ

This may be written equivalently as

fF ; hJ; bigZXb½F �;

in which the vector field Xb has (Q,P, w) components

Xbd b1ðQÞ;K db1

dQ

T

$PCw
db0
dQ

� �
; 0

� �
: ð2:5Þ

This vector field is identified with a Hamiltonian vector field corresponding to
the Hamiltonian

H Z

ð
ðwðsÞb0ðQðsÞÞCPðsÞ$b1ðQðsÞÞÞdksZ hJ; bi:

This Hamiltonian corresponds to compositions of cotangent lifts T �Diff
generated by b1 with fibre translations

tKdðwb0Þ$ðq; pÞdðq; pKw db0Þ;
generated by Kwb0 (note that w is independent of Q, so that d(wb0)Zwdb0).
Thus, Xb is an infinitesimal generator. &
Proc. R. Soc. A (2009)
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(a ) A left group action for the singular solution momentum map

The proof of theorem 2.1 shows that the momentum map J in equation (2.3) is
obtained by the following left action of the semidirect-product group Diff�S F :

ðQðtÞ;PðtÞ;wðtÞÞZ htðQð0ÞÞ;Pð0Þ$ThK1
t ðQð0ÞÞKd wb0ðQð0ÞÞ

� �
;wð0Þ

� �

Z htðQð0ÞÞ;Pð0Þ$VhK1
t ðQð0ÞÞKVðwb0ðQð0ÞÞÞ;wð0Þ

� �

Z tKdðwb0Þ+ht Qð0Þ;Pð0Þ;wð0Þ
� �

;

where (ht, b0)2Diff�S F . It is worth noting that the order of operations in the
composition is not relevant, since

hK1
t +twdb0 Qð0Þ;Pð0Þ;wð0Þ

� �
Z ðht;b0ÞK1ðQð0Þ;Pð0Þ;wð0ÞÞ;

so that ðhK1; b0ÞZðh;Kb0ÞK1 2Diff�S F . This can be easily seen from the
following calculation, where we take wZ1 for simplicity:

ðh; b0ÞK1+ðh;b0Þ$ðQ;PÞZ ðhK1;Kb0Þ$ðhtðQÞ;P$ThK1
t ðQÞCdb0ðQÞÞ

ZT�hK1$ðhtðQÞ;P$ThK1
t ðQÞÞZT�hK1+T�h$ðQ;PÞ

Z ðQ;PÞ:

Consequently, exchanging the order of operations in the composition simply
yields another element of Diff�S F and the arguments above are still valid. Such
group operations are useful in deriving fluid descriptions from kinetic equations,
where the so-called plasma-to-fluid momentum map determines the Hamiltonian
structure of the fluid system (Marsden et al. 1983).

Another important property of the momentum map J in (2.2) is its
equivariance (Marsden & Ratiu 1999), which guarantees that J is also a Poisson
map. In this case, the infinitesimal equivariance of J follows by directly verifying
that the definition below is satisfied:

Xb½hJ ;gi�Z hJ ; adbgi c b;g2X�S F

Theorem 2.2 (Equivariance). The singular solution momentum map J in (2.3),

JðQ;P;wÞZ
ð
ðPðs; tÞ;wðsÞÞdðxKQðs; tÞÞdks;

is infinitesimally equivariant.
(b ) Collective Hamiltonian and Kaluxa–Klein formulation

From the expression of the vector field (2.5), we can immediately write the
equations of motion for Q and P. Moreover, if we insert the singular solution
momentum map into the Hamiltonian (1.8), we recover the following collective
Proc. R. Soc. A (2009)



465Geodesic flows on semidirect products
Hamiltonian HN :!N
iZ1ðT�EmbðS;RnÞ!DenðSÞÞ/R:

HN Z
1

2

XN
i;j

ðð
Piðs; tÞ$Pjðs 0; tÞG1 Qiðs; tÞKQjðs 0; tÞ

� �
dks dks 0

C
1

2

XN
i;j

ðð
wiðsÞwjðs 0ÞG2ðQiðs; tÞKQjðs0; tÞÞdks dks 0:

The corresponding canonical Hamiltonian equations of motion are (2.2).
It is interesting that the collective Hamiltonian allows for a Kaluza–Klein

formulation similar to the usual treatment of a particle in a magnetic field
(Marsden & Ratiu 1999). In order to see this, first, one can observe that the
equations of motion for (Qi , Pi , wi) may be recovered on the Lagrangian side via
the Legendre transform,

V i ZGij
1 Pj ; _q

i
ZGij

2 wj :

This yields the following Lagrangian L :!N
iZ1 TEmbðS;RnÞ!FðSÞð Þ/R:

LN Z
1

2

XN
i; j

ðð
V iðs; tÞ$V jðs 0; tÞG1 Qiðs; tÞKQjðs 0; tÞ

� �
dks dks 0

C
1

2

XN
i; j

ðð
_q
iðsÞ _qjðs 0ÞG2 Qiðs; tÞKQjðs 0; tÞ

� �
dks dks 0;

where Gi with a raised index is the inverse metric associated to Gi. (If Gi is
given by a convolution kernel, then Gi becomes a differential operator.) As our
notation may suggest, we now enlarge our configuration space so that the
Lagrangian LN becomes defined on

TQKK dT EmbðS;RnÞ!FðSÞð ÞZTEmbðS;RnÞ!TFðSÞ
and QKK is called the Kaluza–Klein configuration space. Now, since the
coordinates qi in the Lagrangian LNZL(Qi,V i,qi, _q

i
) are ignorable, its conjugate

momenta wi will be constants of motion. This allows the collective Hamiltonian
to be naturally written in the Kaluza–Klein formulation on T �QKK. In this
framework, it is well known (Ratiu et al. 2005) that the weights wi are another
type of conserved momentum map.

Remark 2.3 (Physical interpretation). The physical system described by the
Kaluza–Klein Hamiltonian HN turns out to be related to the motion of electrical
charges whose mutual interaction is given by the potential term in G2. This
relation is evident by noting that for the case of a single particle, the Hamiltonian

HN reduces to the Kaluza–Klein Hamiltonian H1Z(P2/2)C(w2/2) of a free
charge (Marsden & Ratiu 1999). In the multi-particle case, the momentum of a
single charge is affected not only by the momenta of the remaining particles in
the system, but also by their charges involved in the potential term.
(c ) A right-action momentum map

As shown in §2b, the singular solutions identify a momentum map, which is
determined by a left action of the group Diff(Rn) on Q2Emb(S,Rn), i.e. hQZ
h+Q. However, as in the case of EPDiff, one may also construct a right action by
QhZQ+h, which is defined through the group Diff(S ), rather than Diff(Rn).
Proc. R. Soc. A (2009)
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In order to perform such a construction, we consider the Kaluza–Klein
formulation from §2b, so that the configuration space is now QKKZEmb(S,Rn)!
Den(s). The group Diff(S ) acts on QKK from the right according to�

Qð0Þ; qð0Þ
�
ht Z Qð0Þ+ht; q+ht

� �
:

By standard arguments (Holm & Marsden 2004), the cotangent lift of this action
to T �QKK yields the following.

Theorem 2.4. The map

JSðQ;P; q;wÞZPðsÞ$dQðsÞCwðsÞdqðsÞ ð2:6Þ
is a momentum map

JS : T� EmbðS;RnÞ!FðSÞð Þ/X
�ðSÞ;

corresponding to the cotangent lift of the right action of Diff(S ) on Emb(S,Rn)!
F (S ). This quantity is preserved by the flow generated by the Hamiltonian HN.

The last part of the statement follows from the fact that the Hamiltonian HN is
invariant under the cotangent lift of the right action of Diff(S ), which amounts to
the invariance of the integral over S under reparametrization using the change of
variables formula.

Remark 2.5 (Dual pair structures). Upon recalling from Holm & Marsden
(2004) that the term J1:ZP$dQ in (2.6) is a momentum map J1:T

�Emb/X
�(S )

for the right action of Diff(S ), one may construct the same dual pair structure as
in the geometric description of the EPDiff equation. Indeed, we may introduce
the map

JSingðQ;PÞZ
ð
Pðs; tÞdðxKQðs; tÞÞdks;

i.e. the X�-component of the singular solution momentum map J in theorem 2.1.
This is well known (Holm & Marsden 2004) to be a momentum map
JSing:T

�Emb/X
�(Rn) that generates the left leg of the following dual pair picture:

which is the standard dual pair picture associated to the EPDiff equation
(Holm & Marsden 2004). Dual pair structures have been used in Marsden &

Weinstein (1983) to explore the geometric nature of Clebsch variables in fluid
systems. In the present context the variables (Q, P) form the Clebsch
representation associated to the diffeomorphism group Diff(S ). We refer to the
original works (Marsden & Weinstein 1983; Weinstein 1983) for deeper
discussions on the geometric nature of dual pairs.

In the present case, the right-action momentum map JS also takes into
account the extra term J2:Zw dq, which is associated with the space of scalar
functions F (S ). This term is again a momentum map J2:T

�F/X�(S ), which will
be used later in this paper for the construction of another dual pair, associated to
the F �-component of the singular solution momentum map in theorem 2.1.
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3. Extension to anisotropic interactions

This section extends the previous results on singular solutions to the case when
the fluid motion depends on an extra degree of freedom, such as the fluid particle
orientation. This occurs, for example, in the theory of liquid crystals (Holm
2002a; Gay-Balmaz & Ratiu in press). A geometric fluid theory for such systems
is already present in the literature regarding Yang–Mills charged fluids and
quark–gluon plasmas (Gibbons et al. 1982). This work formulates the equations
for the fluid momentum m(x), the mass density r(x) and the charge density
C(x), where the charge is considered as an extra degree of freedom of each fluid
particle. (This is the colour charge in the case of chromo-hydrodynamics for
quark–gluon plasmas.) These equations are written as

vr

vt
Cdiv r

vH

vm

� �
Z 0;

vC

vt
Cdiv C

vH

vm

� �
Z ad�vH=vCC ;

vm

vt
CV$

vH

vm
5m

� �
C V5

vH

vm

� �
$m ZKrV

vH

vr
K C ;V

vH

vC

� �
g�!g

;

9>>>=
>>>;

ð3:1Þ

where C takes values on the dual Lie algebra g
�, whose corresponding coadjoint

operation is denoted by ad�. Thus the charge variable C belongs to the space of
g
�-valued densities, which we denote by

g
�ðRnÞdDenðRnÞ5g

�;

so that C2g
�(Rn). In the following, we use the elementary fact that the space

g
�(Rn) is dual to g(Rn)ZF5g, and we use the same notation for g and g(Rn). The
distinction should be clear from the different contexts.

Now, the equations above are known to possess a Lie–Poisson Hamiltonian
structure dual to the Lie algebra of the semidirect-product Lie group Diff�S (F4g)
(Gibbons et al. 1982). One may also consider geodesic Euler–Poincaré equations
on this semidirect-product Lie group. This problem has already been considered in
Gibbons et al. (2008) in terms of its singular solutions, although not in relation to
momentum maps. For the sake of simplicity, we consider the semidirect product
Diff�S g and denote the corresponding geodesic equations by EP(Diff�S g). (The
commutative case gZF!R reduces to the case studied in §2.)

In order to construct the EP(Diff�S g) equations, one writes a purely quadratic
Hamiltonian

Hðm;CÞZ 1

2

ðð
mðxÞ$G1ðxKx 0Þmðx 0Þdnx dnx 0

C
1

2

ðð
hCðxÞ;G2ðxKx 0ÞCðx 0Þig�!gd

nx dnx 0; ð3:2Þ

which yields the geodesic equations in a covariant form

Ct C£G1�mC Z ad�G2�CC ; mt C£G1�mmZC � ðG2 � CÞ; ð3:3Þ

where the Lie derivative and diamond operations were introduced in §1. In order
to simplify the discussion, one can specialize to the case when particles have an
orientation (or spin) in space and think of the charge density as the distribution
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of the local particle orientation in space, so that C2Den(Rn)5so(3)x
Den(Rn)5R

3 and the Lie bracket is given by the usual cross product. However,
the following result applies in general.

Theorem 3.1. The EP(Diff�S g) equations admit singular solutions of the form

ðm;CÞZ
XN
iZ1

ð
Piðs; tÞ;miðs; tÞð ÞdðxKQiðs; tÞÞdks; ð3:4Þ

associated with the momentum map

J : !
N

iZ1
T� EmbðS;RnÞ!g

�ðSÞð Þ/X
�ðRnÞBS g

�ðRnÞ

Proof. Again, we fix i for convenience and suppress it in the notation.
Substitution of the solution ansatz (3.4) into the EP(Diff�S g) equations yields

vQ

vt
Zb1ðQÞ; vP

vt
ZKP$VQb1K hm;VQb0i;

vm

vt
Z ad�b0m: ð3:5Þ

In order to define a momentum map, first, we need to establish a Poisson
structure on T �Emb!g

�. For this purpose, we use the following Poisson bracket
(Gibbons et al. 1982; Montgomery et al. 1984):

fF ;GgðQ;P;mÞd
ð

dF

dQ
$
dG

dP
K

dF

dP
$
dG

dQ

� �
dksK

ð
m;

dF

dm
;
dG

dm

	 
� �
dks; ð3:6Þ

where h$,$i denotes the pairing on g
�!g. Now, if bZ(b1,b0)2X(Rn)�S g(Rn), then

the functional hJ,bi may be defined as

hJðQ;P;mÞ; biZ
ð

hm;b0ðQÞiCP$b1ðQÞð Þdks;

where h$,$i may now denote the pairing on either g
�!g or X

��S g
�!X�S g. (No

confusion should arise from this notation.) At this point, one can calculate the
Poisson bracket using equation (3.6) as, cf. equation (2.4),

fF ; hJ; bigZ
ð

dF

dQ
$b1ðQÞK m;

db0
dQ

� �
C

db1

dQ

T

$P

� �
$
dF

dP

� �
dks

C

ð
ad�

b0
m;

dF

dm

� �
dks: ð3:7Þ

Thus, one can find the Hamiltonian vector field {F,hJ,bi}ZXb[F ], with (Q,P,m)
components

Xbd b1ðQÞ;K m;
db0
dQ

� �
K

db1

dQ

T

$P; ad�
b0
m

� �
:

The first two components of this vector field identify a Hamiltonian vector field
on T �Emb corresponding to the Hamiltonian

H Z

ð
hm;b0ðQÞiCP$b1ðQÞð ÞdksZ hJ; bi;

which generates compositions of cotangent lifts T�Diff generated by b1 with
fibre translations

tKdhm;b0i$ðq; pÞZ ðq; pK hm; db0iÞ;
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generated by Khm,b0i. The third component generates pure coadjoint motion of
the charge variable m on g

� according to

mðtÞ ZAd�
expðKtb0Þm

ð0Þ;

under the action of the Lie groupG whose underlying Lie algebra is g:ZTeG. Thus,
the three-component vector field Xb is an infinitesimal generator. &

Remark 3.2 (Left action). Just as in the case of EP(Diff�S F ), we can write a
similar left group action of Diff�S g on T �Emb!g

�. Indeed, by the arguments in
the proof above, one can see that the momentum map J derives from the
following left action:

QðtÞ;PðtÞ;mðtÞ
� �

Z ht+Q
ð0Þ;Pð0Þ$T hK1

t +Qð0Þ
� �

Kd hm;b0i+Qð0Þ
� �

;Ad�
expðKtb0Þm

ð0Þ
� �

;

where htZexp(tb1)2Diff. The equivariance of J is proved again by direct
verification.
(a ) Kaluza–Klein collective Hamiltonian

As in the isotropic case, again, we see that the collective Hamiltonian

HN Z
1

2

XN
i;j

ðð
PiðsÞ$Pjðs 0ÞG1ðQiðsÞKQjðs 0ÞÞdks dks 0

C
1

2

XN
i;j

ðð
hmiðsÞ;G2ðQiðsÞKQjðs 0ÞÞmjðs 0Þidks dks 0;

obtained by the direct substitution of J(Q,P) in the EP(Diff�S g) Hamiltonian,
allows for a Kaluza–Klein formulation. However, in this case the gauge group is
not Abelian and we need to proceed more carefully. In the Kaluza–Klein picture
of the motion of a coloured particle in a Yang–Mills field, the particle motion is a
geodesic on a principal G-bundle B. The metric on B is G-invariant and its
geodesics are determined by the G-invariant quadratic Hamiltonian on T �B,
where the Poisson bracket is canonical (Montgomery 1984). Specializing to our
case yields

QKK dB Z !
N

iZ1
Emb!Gð Þ

and since the second term in HN is G-invariant, it may be lifted to T�QKK

as follows:

HN ðQi;Pi; g
i; piÞZ

1

2

XN
i;j

ðð
PiðsÞ$Pjðs 0ÞG1ðQiðsÞKQjðs 0ÞÞdks dks 0

C
1

2

XN
i;j

ðð
hpiðsÞ;G2ðQiðsÞKQjðs 0ÞÞpjðs 0Þidks dks 0;
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where pi is the conjugate momentum of the group coordinate gi2G, so that
(gi,pi)2T �G, and h$,$i is now the pairing between the tangent and cotangent
vectors on G. The momentum pi is conserved, since it is conjugate to the cyclic
variable gi. Thus the Hamiltonian HN is Kaluza–Klein and thereby recovers the
conservation of pi. Such a conservation law becomes coadjoint motion on the dual
Lie algebra g

�, such that

_mi Z ad�dHN=dmi
mi ðno sumÞ;

where miZgi
K1

pi c iZ1;.;N (no sum over i ), exactly as happens for the
motion of a rigid body, when GZSO(3). As a consequence of the above
arguments, it is clear how the dynamics (3.5) of the singular solutions is
Hamiltonian with respect to the Poisson bracket in (3.6), which is the sum of a
canonical term and a Lie–Poisson term.
(b ) The right-action momentum map and its implications

One may also consider the right action through the group Diff(S ). Upon
following the same procedure as for the Abelian case, one can find the momentum
map corresponding to the right action of Diff(S ):

JSðQ;P; g; pÞZPðsÞ$dQðsÞChpðsÞ;dgðsÞi2X
�ðSÞ; ð3:8Þ

where the Kaluza–Klein phase space is now

T�QKK ZT�Emb!T�G:

This momentum map is again conserved owing to the evident symmetry of the
Hamiltonian HN under relabelling s by a change of variables.

Remark 3.3 (Kelvin–Noether theorem). Upon seeking a Kelvin–Noether
theorem for the non-Abelian system, one recognizes that this system does not
provide any conserved density variable that could be used to construct the loop
integral of a differential one form. For this purpose, it suffices to fix a weight
w2Den(S ) preserved by the flow to obtain the following circulation theorem:

d

dt#gt

wK1ðsÞðPðsÞ$dQðsÞChpðsÞ;dgðsÞiÞZ 0:

In the Abelian case, the group and its Lie algebra are identified. Moreover the
weight w is intrinsically given by the singular solution (2.1) and one has w(s)Z
p(s). Thus, upon denoting q(s)Zg(s), the Kelvin–Noether theorem reduces to

d

dt#gt

wK1ðsÞ PðsÞ$dQðsÞCwðsÞdqðsÞð Þ

Z
d

dt#gt

wK1ðsÞPðsÞ$dQðsÞCdq
� �

Z
d

dt#gt

wK1ðsÞPðsÞ$dQðsÞZ 0:

As in §2, it is interesting to note that the momentum map JS for relabelling
symmetry by the right action is determined by the sum J1CJ2 of two distinct
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momentum maps, one for Diff and the other for the gauge symmetry,

J1ðQ;PÞZPðsÞ$dQðsÞ J1 : T
�Emb/X

�ðSÞ;

J2ðg; pÞZ hpðsÞ; dgðsÞi J2 : T
�G/X

�ðSÞ:
These momentum maps have the same target space, but different image spaces.
Now, since the pairing hp(s),dg(s)i is invariant under the (left or right) G-action
by cotangent lifts, it is possible to re-express it as

hpðsÞ; dgðsÞiZ hgK1p; gK1VsgidsehmðsÞ;AAðsÞidsZ hmðsÞ;AðsÞi;
for mZgK1p and a g-valued one form A(s)ZgK1dgZAA(s)ds (i.e. a pure gauge
connection). This result does not depend on the particular choice of left or right
G-action, since the invariance property is not affected by this choice.
Consequently, with the definitions m:ZgK1p and A:ZgK1dg one may rewrite J2 as

J2ðg; pÞZ hpðsÞ; dgðsÞiZ hmðsÞ;AðsÞi:
The momentum map J2 can now be used to construct another dual pair,

describing the geometry of the dynamics of the gauge charge m. Indeed, it is well
known (Marsden & Ratiu 1999) that the expression mZgK1pZ:JR(g, p) is a
momentum map JR:T

�G/g
� associated to cotangent lifts of right translation.

One may use this map to construct the following dual pair picture:

According to the general definition (Weinstein 1983), a pair of momentum

maps h� !$$
J1 P $$%

J2
g� is called a dual pair if and only if KerTJ1 and KerTJ2 are

symplectically orthogonal to one another. As explained in Holm & Marsden

(2004), a necessary condition for h� !$$
J1 P $$%

J2
g� to be a dual pair is that each Lie

group Gi associated to Ji acts transitively on the level sets of Jk, with ksi. Now,
Diff(S ) acts transitively on the level sets of JRZmðsÞ, owing to the
parametrization freedom. Moreover, the action of G(S ) on the level sets of J2

is transitive too, since it is given by cotangent lifts. Thus, similar arguments to
those in Holm & Marsden (2004) allow one to conclude that the above dual pair
is properly defined.
4. Kaluza–Klein equations for semidirect products

As we have seen from the previous sections, the Kaluza–Klein construction explains
how collective motion on semidirect-product Lie groups arises under the singular
solution momentum map. In this section, we extend the Kaluza–Klein formulation
to continuum equations on a semidirect-product Lie group. The resulting equations
apply to the method of metamorphosis in the problem of matching shapes
using active templates in imaging science (Holm et al. submitted b). In this
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application, the zero level set of the momentum map for the right action plays a
crucial role. Below we shall present only the non-Abelian case and the specialization
to Abelian groups is always possible.

From the theory of semidirect-product reduction (Holm et al. 1998), one
knows that the reduced Lagrangian L : X�S g/R arises form an invariant
function Lðh; _h; g; _gÞ on TðDiff �S GÞ. The reduction process underlying the
continuum dynamics on X�S g proceeds as follows:

T Diff�S Gð Þ=Gð Þ=Diffx TDiff!TG=Gð Þ=DiffxX!g=DiffxX�S g:

However, for G-invariant Lagrangians on X�S g, we may interpret the dynamics
as occurring on the space X!TG, so that the Kaluza–Klein Lagrangian

LKK : X!TG/R;

with ðg; _gÞ2TG and h2Diff is written after the right reduction by Diff as

Lð _hhK1; ghK1; _ghK1ÞZLKKðu;n; nÞZ
1

2

ð
uQ1u dnxC

1

2

ð
hQ2n; ni dnx;

with definitions ud _hhK1, ndghK1 and nZ _ghK1. Now, since such a Lagrangian
is also G-invariant, then one may write

LKKðu; nK1n;nK1nÞZLðu;cÞ;
where nZghK1 2G as before and Lðu;cÞ, with cZnK1n, is the Lagrangian on
X�S g. The Legendre transformation of this Lagrangian produces the Hamiltonian
H(m, C) in (3.2). This construction yields the conservation of the conjugate
variable pZdLKK=dn along the flow of the group of diffeomorphisms, since n is an
ignorable coordinate. The reduction process involved in such a system proceeds
as follows:

T Diff�S Gð Þ=Diffx TDiff=Diffð Þ! TG=Diffð ÞxX! TG=Diffð Þ;
where TG is the group of tangent lifts of G, which is itself acted on by the
diffeomorphisms. Thus, again, the two Lagrangians L and LKK may be derived
from the same unreduced Lagrangian L. consequently, the geodesic motion on
semidirect-product Lie groups of the kind Diff�S G always possesses a Kaluza–
Klein construction.
(a ) Application to metamorphosis

Lagrangian formulations on Diff�S G have recently been considered in Holm
et al. (submitted b), where the whole theory is extensively studied in the context
of imaging science. The Euler–Poincaré equations corresponding to a Lagrangian
L(u, n, n) carrying the cyclic variable nZghK1 2G are found to be

v

vt
C£u

� �
dL

du
ZK

dL

dn
;dn

� �
;

v

vt
C£u

� �
dL

dn
Z 0;

v

vt
C£u

� �
n Z n;

9>>>=
>>>;

ð4:1Þ
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in which the last equation arises from the partial time derivative of the definition
nZghK1 2G. These equations imply that the Legendre-transformed variable
pZdL=dn is preserved by the flow, which does not occur in the general case, when
L depends also on n.

In the general case, one may obtain the dynamics directly from a constrained
variational principle dSZ0 with

S Z

ð
Lðu;n; nÞC p;

vn

vt
C£unKn

� �	 

dt;

where the angle bracket denotes the L2 pairing. Stationary variations produce

0Z dS Z

ð
dL

du
Kp � n; du

� �
C dp;

vn

vt
C£unKn

� �
C

dL

dn
Kp; dn

� �	

C
dL

dn
K

vp

vt
C£†up; dn

� �

dt; ð4:2Þ

in which the diamond operator ð�Þ is defined via the natural generalization of
(1.9) and £u with the superscript dagger denotes the L2 adjoint of the Lie
derivative so that, in particular, h£†up; dniZhp; £udni. The standard Euler–
Poincaré theory for the case that n is a scalar function and its dual p is a density
then implies the following system after a brief calculation:

v

vt
C£u

� �
dL

du
Kp � n

� �
Z 0;

v

vt
C£u

� �
dL

dn
Z

dL

dn
;

dL

dn
Z p;

v

vt
C£u

� �
n Z n:

9>>>=
>>>;

ð4:3Þ

System (4.3) possesses an exchange symmetry between the variables ðn; nÞ2TG
and their dual variables ðdL=dn; dL=dnÞ2TG�, and it satisfies the following
proposition.

Proposition 4.1. System (4.3) is equivalent to system (4.1) when dL=dnZ0.

Proof. This proposition follows from a direction calculation using the chain
rule for the diamond operation and substituting the last three equations in
system (4.3), namely

0Z
v

vt
C£u

� �
dL

du
Kp � n

� �
Z

v

vt
C£u

� �
dL

du
K

dL

dn
� nKp � n:

When n is a scalar and p is a density, then Kp � nZhp;dni and setting dL=dnZ0
recovers the first equation in the system (4.1). &

Remark 4.2. The Legendre transformation of the constrained Lagrangian
defines the Hamiltonian

Hðm; p; nÞZ hm;uiChp; niKLðu; n; nÞ; ð4:4Þ
in terms of the fibre derivatives

md
dL

du
and pd

dL

dn
: ð4:5Þ
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(b ) The Kelvin circulation theorem

Proposition 4.1 allows the Kelvin circulation theorem for these semidirect-
product systems, with dL=dnZ0, to be expressed in two ways, upon introducing
a conserved density variable r, satisfying

v

vt
C£u

� �
rZ 0:

On the one hand, the first equation in the system (4.1) and the general theory of
dynamics on semidirect-product Lie groups (Holm et al. 1998) imply that

d

dt#gt

m

r
ZK#

gt

1

r
hp;dni; ð4:6Þ

where gt is a closed loop moving with the flow of the velocity vector field. On the
other hand, the first equation in the system (4.3) implies that the Kelvin
circulation theorem may also be expressed as

d

dt#gt

1

r
ðmChp;dniÞZ 0; ð4:7Þ

where the sum mtotdmChp;dni is the total momentum. This circulation
theorem for the total momentum is the natural extension to the continuum
description of formula (3.8) for preservation of the right-invariant momentum
map. The two circulation laws (4.6) and (4.7) are shown to be equivalent in
the following.

Proposition 4.3. The two forms of the Kelvin circulation theorem in equations
(4.9) and (4.10) are equivalent.

Proof. This statement is recovered by observing that ðv=vtC£uÞ p;dnh iZ p; dnh i.
This proposition extends the arguments in §2 to the non-Abelian case in the

continuum fluid description. &

Remark 4.4. The zero level set of the total momentum, cf. equation (3.8),

mChp; dniZ 0; ð4:11Þ
is preserved by the first equation in the system (4.1). The preservation of zero
total momentum is a key step in the metamorphosis approach using active
templates in imaging science, because the zero value is imposed by the
requirement that an initial image would evolve to match a prescribed final
image at a certain end-point in time (Holm et al. submitted b).

The zero level set condition (4.11) for the total momentum imposes the relation

mZKhp;dni: ð4:12Þ
This is the equivariantmomentummap obtained from the cotangent lift of the right
action of Diff on the gauge group G, defined by

hm;uig�!g Z hp � n;uig�!g ZKhp; £uniT�G : ð4:13Þ
Thus, the zero level set condition (4.11) for the total momentum is itself a
momentummap.This particularmomentummap also appears in the application of
the classical Clebsch method of introducing canonical variables for fluid dynamics
(e.g. Holm & Kupershmidt 1983).
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5. Conclusions and open questions

We have shown how continuum equations on a certain class of semidirect-
product Lie groups allow for singular solution momentum maps arising from the
left action of diffeomorphisms on the G-bundle EmbðS;RnÞ!GðSÞ. On the other
hand, the right action on Emb!G has been shown to yield another momentum
map that recovers the Kelvin–Noether theorem.

These results arose from the observation that the collective dynamics on
Emb!G was generated by a Kaluza–Klein Hamiltonian, thereby recovering the
conservation of a gauge charge from a cyclic coordinate in the gauge group G.

The Kaluza–Klein construction for the collective motion was implemented in
the continuum description by considering the semidirect product Diff�S G as the
product of the diffeomorphisms with a gauge group G. The Kaluza–Klein
construction implies the Kelvin–Noether theorem.

An important open question is whether the singular solutions (2.1) and (3.4)
emerge from smooth initial conditions. This question is being pursued elsewhere
(Holm et al. submitted a).

Another open question concerns more general semidirect products. In fact, the
present discussion has considered only semidirect products of the Diff group with
G-valued scalar functions. However, in physical applications, one may also find
semidirect products of the form Diff�S T , where T denotes tensor fields in
physical space. The most important example is probably ideal magnetohy-
drodynamics, where T is the space of exact two forms (cf. Holm et al. 1998; Holm
2002b). The dynamics on such products differs substantially from the cases
considered here and deserves further investigation.

We are grateful to David Ellis, François Gay-Balmaz, Andrea Raimondo, Tudor Ratiu, Alain
Trouvé and Laurent Younes for their stimulating discussions. This work was partially supported
by the Royal Society Wolfson Research Merit Award.
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Holm, D. D., Ó Náraigh, L. & Tronci, C. Submitted a. Singular solutions of a modified two-
component Camassa–Holm equation. (http://arxiv.org/abs/0809.2538)
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