Motivated by the recent report of broken time-reversal symmetry and zero momentum magnetic scattering in underdoped cuprates, we investigate under which circumstances orbital currents circulating inside a unit cell might be stabilized in extended Hubbard models that explicitly include oxygen orbitals. Using Gutzwiller projected variational wave functions that treat on an equal footing all instabilities, we show that orbital currents indeed develop on finite clusters and that they are stabilized in the thermodynamic limit if additional interactions, e.g., strong hybridization with apical oxygens, are included in the model.