000160122 001__ 160122
000160122 005__ 20190316235001.0
000160122 0247_ $$2doi$$a10.1111/j.1365-2818.2008.03107.x
000160122 02470 $$2ISI$$a000262511900018
000160122 037__ $$aARTICLE
000160122 245__ $$aEBSD: a powerful microstructure analysis technique in the field of solidification
000160122 269__ $$a2009
000160122 260__ $$c2009
000160122 336__ $$aJournal Articles
000160122 520__ $$aThis paper presents a few examples of the application of electron back-scatter diffraction (EBSD) to solidification problems. For directionally solidified Al-Zn samples, this technique could reveal the change in dendrite growth directions from < 100 > to < 110 > as the composition of zinc increases from 5 to 90 wt%. The corresponding texture evolution and grain selection mechanisms were also examined. Twinned dendrites that form under certain solidification conditions in Al-X specimens (with X = Zn, Mg, Ni, Cu) were clearly identified as < 110 > dendrite trunks split in their centre by a (111) twin plane. In Zn-0.2 wt% Al hot-dip galvanized coatings on steel sheets, EBSD clearly revealed the preferential basal orientation distribution of the nuclei as well as the reinforcement of this distribution by the faster growth of < 1010 > dendrites. Moreover, in Al-Zn-Si coatings, misorientations as large as 10 degrees mm(-1) have been measured within individual grains. Finally, the complex band and lamellae microstructures that form in the Cu-Sn peritectic system at low growth rate could be shown to constitute a continuous network initiated from a single nucleus. EBSD also showed that the alpha and beta phases had a Kurdjumov-Sachs crystallographic relationship.
000160122 6531_ $$aAluminium alloys
000160122 6531_ $$aEbsd
000160122 6531_ $$aOim
000160122 6531_ $$aperitectic copper alloys
000160122 6531_ $$asolidification
000160122 6531_ $$aDendrite Growth Directions
000160122 6531_ $$aPeritectic Alloys
000160122 6531_ $$aAluminum-Alloys
000160122 6531_ $$aTexture Evolution
000160122 6531_ $$aCu-Sn
000160122 6531_ $$aDiffraction
000160122 6531_ $$aCrystal
000160122 6531_ $$aSystems
000160122 6531_ $$aPhase
000160122 6531_ $$aSelection
000160122 700__ $$aBoehm-Courjault, E.
000160122 700__ $$0240221$$aGonzales, F.$$g167934
000160122 700__ $$0241504$$aJacot, A.$$g101989
000160122 700__ $$aKohler, F.
000160122 700__ $$aMariaux, A.
000160122 700__ $$aNiederberger, C.
000160122 700__ $$aSalgado-Ordorica, M. A.
000160122 700__ $$0241586$$aRappaz, M.$$g106186
000160122 773__ $$j233$$q160-169$$tJournal Of Microscopy-Oxford
000160122 8564_ $$s795881$$uhttps://infoscience.epfl.ch/record/160122/files/E-Boehm-J_Microscopy_2009.pdf$$yPostprint$$zn/a
000160122 909C0 $$0252075$$pLSMX$$xU10337
000160122 909CO $$ooai:infoscience.tind.io:160122$$pSTI$$particle$$qGLOBAL_SET
000160122 917Z8 $$xWOS-2010-11-30
000160122 917Z8 $$x101178
000160122 937__ $$aEPFL-ARTICLE-160122
000160122 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000160122 980__ $$aARTICLE