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1. Introduction

The equations of motion of an adiabatic compressible fluid are given by⎧⎪⎪⎨⎪⎪⎩
∂u

∂t
+ ∇uu = 1

ρ
grad p,

∂ρ

∂t
+ div(ρu)= 0,

∂ S

∂t
+ div(Su)= 0,

(1.1)

where ρ is the mass density, S is the entropy density, and p is the pressure. It was shown in [25]
that this system, as well as its magnetohydrodynamic extension, admit a non-canonical Poisson for-
mulation, that is, Eq. (1.1) can be written as

ḟ = { f ,h},

relative to a Hamiltonian function h. It is of great (mathematical and physical) interest to obtain these
Poisson brackets by a reduction procedure from a canonical Hamiltonian formulation on a cotangent
bundle. In [24], the non-canonical Poisson bracket associated to (1.1) is obtained via Lie–Poisson re-
duction for a semidirect product group involving the diffeomorphisms group of the fluid container
and the space of the advected quantities ρ and S . The Lagrangian formulation of these equations is
given in [17].

In the same spirit, the non-canonical Hamiltonian structure for adiabatic Yang–Mills charged fluids
discovered in [10] is obtained by reduction from a canonical formulation in [8], by using a Kaluza–
Klein point of view involving the automorphism group of the principal bundle of the theory. This
paper gives also the Euler–Poincaré formulation of these equations.

Non-canonical Hamiltonian structures for a wide class of non-dissipative fluid models were de-
rived in [11,14–16], and [12]. These examples include Yang–Mills magnetohydrodynamics, spin glasses,
and various models of superfluids, and involve Lie–Poisson brackets with cocycles. Remarkably, from a
mathematical point of view, the Hamiltonian structures of many of these models are identical. This
Hamiltonian structure together with the corresponding variational principles are studied in more de-
tail, with an application to liquid crystals, in [13]. We will refer to all these models as complex fluids.
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In this paper we show the remarkable property that these Lie–Poisson brackets with cocycles can
also be obtained by Poisson reduction from a canonical Hamiltonian structure. The cocycle in the
Hamiltonian structure appears only after reduction and it is due to the presence of an affine term
added to the cotangent lifted action. The associated reduction process is naturally called affine Lie–
Poisson reduction.

An important example of such an affine action is given by the usual action of the automorphism
group of a principal bundle on the connection forms. As a result, we obtain, in a natural way, covariant
differentials and covariant divergences in the expression of the Poisson brackets and of the reduced
equations. These gauge theory aspects in the case of complex fluids are mathematically and physically
interesting since they represent a bridge to other possible gauge theories in physics.

The new affine Lie–Poisson reduction principle presented in this paper unifies all previous ap-
proaches in the problem of complex fluid dynamics. Eringen and Holm have extensively studied the
roles of auxiliary variables that were Lie algebra valued 1-forms frozen into the fluid flow. In particu-
lar, Holm observed that these variables contribute generalized 2-cocycles in the Lie–Poisson structures
of ideal complex fluids. We implement Holm’s observation as a fundamental principle which, for
physical interactions in complex fluids, is similar to the principle of spontaneous symmetry break-
ing in the coupling of charges and fields in electromagnetism. This new geometrically formulated
principle applies also to Lie algebra valued charges (e.g., spins, Yang–Mills charges, etc.). The present
paper reformulates the theory of complex fluids in the framework of the fundamental principles of
condensed-matter physics. Some results concerning the affine Lie–Poisson reduction and its appli-
cation to Yang–Mills magnetohydrodynamics and superfluids were announced in [9]. It is clear that
other geometric applications in condensed-matter physics are forthcoming, such as micropolar elas-
ticity, for example.

The paper also formulates a parallel theory on the Lagrangian side by extending the Euler–Poincaré
framework for semidirect products developed in [17] to the case of an affine representation of the con-
figuration space Lie group on the vector space whose dual are the convected variables. The resulting
affine Euler–Poincaré reduction is natural in two senses. Firstly, in the case of complex fluids and at the
reduced level, it coincides with that given in [13]. Secondly, in the hyperregular case and through the
Legendre transformation, it is compatible with the affine Lie–Poisson reduction for semidirect prod-
ucts discussed previously. In addition, the Euler–Poincaré formulation immediately leads to analogs of
the Kelvin circulation theorem for complex fluids.

Organization of the paper. The paper is organized as follows. The first third, comprising Sections 2–7,
presents only theoretical results. These are developed and applied to a wide range of examples in the
last Section 8 forming the bulk of the paper.

The theoretical part begins by recalling at the end of this introduction some needed facts about
the Lagrangian and Hamiltonian reductions for semidirect products. It is well known that these pro-
cesses form the basic framework for the geometric formulation of various models of simple fluids. In
Section 2 we present the theory of affine Euler–Poincaré reduction for a general Lie group G acting by
affine representation on a dual vector space V ∗ . This theory is specialized, in Section 3, to the case of
general complex fluids. More precisely, we describe concretely the group G and the cocycle needed in
the affine representation, in order to obtain by reduction the general equations for complex fluids. In
order to carry out the Hamiltonian side of the theory, we need to recall and state some results con-
cerning the reduction of a canonical symplectic structure with a magnetic term. This is the subject of
Section 4, whose principal result states that, under some conditions, reducing a canonical symplectic
form relative to a cotangent lift with an affine term is equivalent to reducing a magnetic symplectic
form relative to the cotangent lift. This observation is used in Section 5 to obtain the theory of affine
Lie–Poisson reduction for a general Lie group G acting by affine representation on a dual vector space
V ∗ . In particular, we compute the associated momentum map and Poisson bracket as well as the sym-
plectic reduced spaces. This theory is also shown to be a particular case of the process of reduction by
stages for nonequivariant momentum maps. In Section 6 we specialize these results to the case of the
group and the cocycle involved in the description of complex fluid dynamics. In particular, we com-
pute the associated Poisson bracket and momentum map. This part constitutes the Hamiltonian side
of the theory developed in Section 3. The Kelvin–Noether theorem is a version of the classical Noether
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conservation law that holds for solutions of the Euler–Poincaré equations. For example, an application
of this theorem to the compressible fluid gives the Kelvin circulation theorem. The generalization of
this result to the case of affine Euler–Poincaré equations is the subject of Section 7.

The rest of the paper is devoted to applications dealing with spin systems and complex fluids,
all of them contained in Section 8. In Section 8.1 we start with the example of spin systems, since
it illustrates the applicability of our theory in a very simple situation that exhibits, nevertheless,
some of the key difficulties of more complicated fluid models. We then treat, in Sections 8.2–8.7,
the examples of Yang–Mills and Hall magnetohydrodynamics for fluids and superfluids as well as
the HVBK dynamics for 4He with vortices. In each case, we formulate in detail the Lagrangian and
Hamiltonian reduction processes as well as the associated Poisson bracket and circulation theorems.
In order to compare fluids and superfluids from a Hamiltonian point of view, we present in Section 8.8
a summary of the models treated so far. In Section 8.9 we study the example of the Volovik–Dotsenko
spin glasses and try to understand, from a Hamiltonian point of view, the passage from a given spin
system to its hydrodynamic analogue. This process allows us to understand mathematically the link
between the two approaches to spin glasses appearing in the current literature. All the Hamiltonian
structures obtained so far by reduction of the canonical structure, coincide with the ones obtained
previously and by various different methods in a series of papers by Holm and Kupershmidt.

In the case of microfluids, treated in Section 8.10, we determine the Lagrangian and Hamiltonian
structure of three models proposed by Eringen, namely, the micropolar, the microstretch, and the
micromorphic models, corresponding to three groups associated to the internal structure of the fluid
particles. Since our theory applies to any group, we can obtain new models of microfluids such as the
anisotropic micropolar or anisotropic microstretch models. In the case of microstretch and micropolar
fluids, we show that the internal degree of freedom can be modeled by the group of invertible or unit
quaternions, respectively. In Section 8.11, we determine and compare the Lagrangian and Hamiltonian
structures of three models of liquid crystals dynamics. We also treat the case of Eringen’s polymeric
liquid crystals and give some information concerning the new model of anisotropic micropolar liquid
crystals.

We close this introduction by recalling some needed facts about Euler–Poincaré and Lie–Poisson
reduction for semidirect products.

Notations for semidirect products. In the Euler–Poincaré reduction for semidirect products (see [17])
one is given a Lie group G and a right representation ρ : G → Aut(V ) of G on the vector space V . As a
set, the semidirect product S = G � V is the Cartesian product S = G × V whose group multiplication
is given by

(g1, v1)(g2, v2)= (
g1 g2, v2 + ρg2 (v1)

)
.

The Lie algebra of S is the semidirect product Lie algebra, s = g� V , whose bracket has the expression

ad(ξ1,v1)(ξ2, v2)= [
(ξ1, v1), (ξ2, v2)

] = ([ξ1, ξ2], v1ξ2 − v2ξ1
)
,

where vξ denotes the induced action of g on V , that is,

vξ := d

dt

∣∣∣∣
t=0
ρexp(tξ)(v) ∈ V .

From the expression for the Lie bracket, it follows that for (ξ, v) ∈ s and (μ,a) ∈ s∗ we have

ad∗
(ξ,v)(μ,a)= (

ad∗
ξ μ+ v � a,aξ

)
,

where aξ ∈ V ∗ and v � a ∈ g∗ are given by

aξ := d

dt

∣∣∣∣
t=0
ρ∗

exp(−tξ)(a) and 〈v � a, ξ〉g := −〈aξ, v〉V ,
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and where 〈·,·〉g :g∗ × g → R and 〈·,·〉V : V ∗ × V → R are the duality pairings.
Lagrangian semidirect product theory.

• Assume that we have a function L : T G × V ∗ → R which is right G-invariant.
• In particular, if a0 ∈ V ∗ , define the Lagrangian La0 : T G → R by La0(v g) := L(v g ,a0). Then La0 is

right invariant under the lift to T G of the right action of Ga0 on G , where Ga0 is the isotropy
group of a0.

• Right G-invariance of L permits us to define l :g × V ∗ → R by l := L|g×V ∗ and hence

l
(
T g R g−1 (v g),ρ

∗
g (a0)

) = L(v g ,a0).

• For a curve g(t) ∈ G , let ξ(t) := T R g(t)−1 (ġ(t)) and define the curve a(t) as the unique solution of
the following linear differential equation with time-dependent coefficients

ȧ(t)= −a(t)ξ(t),

with initial condition a(0)= a0. The solution can be written as a(t)= ρ∗
g(t)(a0).

Theorem 1.1. With the preceding notations, the following are equivalent:

(i) With a0 held fixed, Hamilton’s variational principle

δ

t2∫
t1

La0

(
g(t), ġ(t)

)
dt = 0

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler–Lagrange equations for La0 on G.

(iii) The constrained variational principle

δ

t2∫
t1

l
(
ξ(t),a(t)

)
dt = 0

holds on g × V ∗ , upon using variations of the form

δξ = ∂η

∂t
− [ξ,η], δa = −aη,

where η(t) ∈ g vanishes at the endpoints.
(iv) The Euler–Poincaré equations hold on g × V ∗:

∂

∂t

δl

δξ
= −ad∗

ξ

δl

δξ
+ δl

δa
� a. (1.2)

It is worth noting that there is a remarkable symmetry breaking from L : T G × V ∗ → R to
La0 : T G → R. Whereas the function L is right G-invariant, that is, L(vh g,ρ∗

g−1(a)) = L(vh,a) for all

vh ∈ T G , a ∈ V ∗ , g ∈ G , the Lagrangian La0 is only Ga0 -invariant, that is, La0(vhk) = La0(vh) for all
vh ∈ T G , k ∈ Ga0 . Note, however, that La0 is a Lagrangian function on T G , whereas L is not since it is
not defined on a tangent bundle. The relationship between these two different invariance properties
are dealt with in the previous theorem and the evolution a(t)= ρ∗

g(t)a0 or, equivalently, the equation
ȧ(t)= −a(t)ξ(t), a(0)= a0, that needs to be added to (1.2) in order to get a complete system of equa-
tions for all the unknowns, is exactly due to this symmetry breaking from G to Ga0 . We shall observe
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the same phenomenon throughout the paper when working out the affine reduction theorem on both
the Lagrangian and Hamiltonian sides.

Hamiltonian semidirect product theory. Let S := G � V be the semidirect product defined at the be-
ginning of this section. The lift of right translation of S on T ∗ S induces a right action on T ∗G × V ∗ .
Consider a Hamiltonian function H : T ∗G × V ∗ → R right invariant under the S-action on T ∗G × V ∗ .
In particular, the function Ha0 := H|T ∗G×{a0} : T ∗G → R is invariant under the induced action of the
isotropy subgroup Ga0 := {g ∈ G | ρ∗

ga0 = a0} for any a0 ∈ V ∗ . The following theorem is an easy con-
sequence of the semidirect product reduction theorem (see [24]) and the reduction by stages method
(see [22]).

Theorem 1.2. For α(t) ∈ T ∗
g(t)G and μ(t) := T ∗R g(t)(α(t)) ∈ g∗ , the following are equivalent:

(i) α(t) satisfies Hamilton’s equations for Ha0 on T ∗G.
(ii) The Lie–Poisson equation holds on s∗:

∂

∂t
(μ,a)= −ad∗

( δh
δμ ,

δh
δa )
(μ,a)= −

(
ad∗

δh
δμ

μ+ δh

δa
� a,a

δh

δμ

)
, a(0)= a0,

where s is the semidirect product Lie algebra s = g� V . The associated Poisson bracket is the Lie–Poisson
bracket on the semidirect product Lie algebra s∗ , that is,

{ f , g}(μ,a)=
〈
μ,

[
δ f

δμ
,
δg

δμ

]〉
+

〈
a,
δ f

δa

δg

δμ
− δg

δa

δ f

δμ

〉
.

As on the Lagrangian side, the evolution of the advected quantities is given by a(t)= ρ∗
g(t)(a0).

For example, one can start with a Lagrangian La0 as at the beginning of this section, suppose
that the Legendre transformation FLa0 is invertible and form the corresponding Hamiltonian Ha0 =
Ea0 ◦ FL−1

a0
, where Ea0 is the energy of La0 . Then the function H : T ∗G × V ∗ → R so defined is S-

invariant and one can apply this theorem. At the level of the reduced space, to a reduced Lagrangian
l :g × V ∗ → R we associate the reduced Hamiltonian h :g∗ � V ∗ → R given by

h(μ,a) := 〈μ,ξ〉 − l(ξ,a), μ= δl

δξ
.

Since

δh

δμ
= ξ and

δh

δa
= − δl

δa
,

we see that the Lie–Poisson equations for h on s∗ are equivalent to the Euler–Poincaré equations (1.2)
for l together with the advection equation ȧ + aξ = 0.

Links with reduction by stages. Consider the semidirect product Lie group S = G � V acting by right
translation on its cotangent bundle T ∗ S . An equivariant momentum map relative to the canonical
symplectic form is given by

JR
(
α f , (u,a)

) = T ∗L( f ,u)
(
α f , (u,a)

) = (
T ∗

e L f (α f )+ u � a,a
)
.

Since V is a closed normal subgroup of S , it also acts on T ∗ S and has a momentum map JV : T ∗ S →
V ∗ given by

JV
(
α f , (u,a)

) = a.
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Reducing T ∗ S by V at the value a we get the first reduced space (T ∗ S)a = J−1
V (a)/V . The isotropy

subgroup Ga , consisting of elements of G that leave the point a fixed, acts freely and properly
on (T ∗ S)a and has an induced equivariant momentum map Ja : (T ∗ S)a → g∗

a , where ga is the Lie al-
gebra of Ga . Reducing (T ∗ S)a at the point μa :=μ|ga , we get the second reduced space ((T ∗ S)a)μa =
J−1
a (μa)/(Ga)μa .

Using the Semidirect Product Reduction [24] or the Reduction by Stages Theorem [22], the two-
stage reduced space ((T ∗ S)a)μa is symplectically diffeomorphic to the reduced space (T ∗ S)(μ,a) =
J−1

R (μ,a)/G(μ,a) obtained by reducing T ∗ S by the whole group S at the point (μ,a) ∈ s∗ .
The first symplectic reduced space ((T ∗ S)a,Ωa) is symplectically diffeomorphic to the canonical

symplectic manifold (T ∗G,Ω) and the second reduced space (((T ∗ S)a)μa , (Ωa)μa ) is symplectically
diffeomorphic to the coadjoint orbit (O(μ,a),ω(μ,a)) together with its orbit symplectic form. Note
also that we can consider the right G-invariant Hamiltonian H : T ∗G × V ∗ → R as being the Pois-
son reduction of an S-invariant Hamiltonian H : T ∗ S → R by the normal subgroup {e} × V since
(T ∗ S)/({e}× V )∼= T ∗G × V ∗ . Here the G-action on T ∗G × V ∗ is induced by the lift of right translation
of S . Theorem 1.2 is then a trivial consequence of these observations.

2. Affine Lagrangian semidirect product theory

Consider the right contragredient representation ρ∗
g−1 of G on the vector space V ∗ . We can form

an affine right representation θg(a) = ρ∗
g−1 (a)+ c(g), where c ∈ F(G, V ∗) is a contragredient repre-

sentation valued right group one-cocycle, that is, it verifies the property c( f g)= ρ∗
g−1 (c( f ))+ c(g) for

all f , g ∈ G . This implies that c(e)= 0 and c(g−1)= −ρ∗
g (c(g)). Note that

d

dt

∣∣∣∣
t=0

θexp(tξ)(a)= aξ + dc(ξ)

and 〈
aξ + dc(ξ), v

〉
V = 〈

dcT (v)− v � a, ξ
〉
g
,

where dc :g → V ∗ is defined by dc(ξ) := Tec(ξ), and dcT : V → g∗ is defined by〈
dcT (v), ξ

〉
g

:= 〈
dc(ξ), v

〉
V .

• Assume that we have a function L : T G × V ∗ → R which is right G-invariant under the affine
action (vh,a) �→ (Th R g(vh), θg(a))= (Th R g(vh),ρ

∗
g−1 (a)+ c(g)).

• In particular, if a0 ∈ V ∗ , define the Lagrangian La0 : T G → R by La0(v g) := L(v g ,a0). Then La0 is
right invariant under the lift to T G of the right action of Gc

a0
on G , where Gc

a0
is the isotropy

group of a0 with respect to the affine action θ .
• Right G-invariance of L permits us to define l :g × V ∗ → R by

l
(
T g R g−1 (v g), θg−1 (a0)

) = L(v g,a0).

• For a curve g(t) ∈ G , let ξ(t) := T R g(t)−1 (ġ(t)) and define the curve a(t) as the unique solution of
the following affine differential equation with time-dependent coefficients

ȧ(t)= −a(t)ξ(t)− dc
(
ξ(t)

)
,

with initial condition a(0)= a0. The solution can be written as a(t)= θg(t)−1 (a0).

Theorem 2.1. With the preceding notations, the following are equivalent:
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(i) With a0 held fixed, Hamilton’s variational principle

δ

t2∫
t1

La0

(
g(t), ġ(t)

)
dt = 0 (2.1)

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) g(t) satisfies the Euler–Lagrange equations for La0 on G.

(iii) The constrained variational principle

δ

t2∫
t1

l
(
ξ(t),a(t)

)
dt = 0 (2.2)

holds on g × V ∗ , upon using variations of the form

δξ = ∂η

∂t
− [ξ,η], δa = −aη− dc(η),

where η(t) ∈ g vanishes at the endpoints.
(iv) The affine Euler–Poincaré equations hold on g × V ∗:

∂

∂t

δl

δξ
= −ad∗

ξ

δl

δξ
+ δl

δa
� a − dcT

(
δl

δa

)
. (2.3)

Proof. The equivalence of (i) and (ii) is true in general.
Next we show the equivalence of (iii) and (iv). Indeed, using the definitions, integrating by parts,

and taking into account that η(t1)= η(t2)= 0, we compute the variation of the integral to be

δ

t2∫
t1

l
(
ξ(t),a(t)

)
dt =

t2∫
t1

(〈
δl

δξ
, δξ

〉
+

〈
δa,

δl

δa

〉)
dt

=
t2∫

t1

(〈
δl

δξ
, η̇− adξ η

〉
−

〈
aη+ dc(η),

δl

δa

〉)
dt

=
t2∫

t1

(〈
− d

dt

δl

δξ
− ad∗

ξ

δl

δξ
,η

〉
−

〈
− δl

δa
� a + dcT

(
δl

δa

)
, η

〉)
dt

=
t2∫

t1

(〈
− d

dt

δl

δξ
− ad∗

ξ

δl

δξ
+ δl

δa
� a − dcT

(
δl

δa

)
, η

〉)
dt

and so the result follows.
Finally we show that (i) and (iii) are equivalent. First note that the G-invariance of L : T G × V ∗ → R

and the definition of a(t) = θg(t)−1 (a0) imply that the integrands in (2.1) and (2.2) are equal. It is
known that all variations δg(t) ∈ T G of g(t) with fixed endpoints induce and are induced by varia-
tions δξ(t) ∈ g of ξ(t) of the form δξ = η̇ − [ξ,η] with η(t) vanishing at the endpoints; the relation
between δg(t) and η(t) is given by η(t)= T R g(t)−1 (δg(t)). See [2] for details.

Thus, if (i) holds, we define η(t)= T R g(t)−1 (δg(t)) for a variation δg(t) with fixed endpoints. Then
if we let δξ(t)= T R g(t)−1 (ġ(t)), we have δξ = η̇− [ξ,η]. In addition, the variation of a(t)= θg(t)−1 (a0)
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is δa(t) = −a(t)η(t) − dc(η(t)). Conversely, if δξ = η̇ − [ξ,η] with η(t) vanishing at the endpoints,
we define δg(t)= T R g(t)(η(t)). This δg(t) is the general variation of g(t) vanishing at the endpoints.
From δa(t) = −a(t)η(t) − dc(η(t)) it follows that the variation of θg(t)(a(t)) = a0 vanishes, which is
consistent with the dependence of La0 only on g(t), ġ(t). �
3. Lagrangian approach to continuum theories of perfect complex fluids

Recall that in the case of the motion of a fluid on an orientable manifold D, the configuration
space is the group G = Diff(D) of all diffeomorphisms of D. In the case of incompressible fluids, one
chooses the subgroup Diffvol(D) of all volume preserving diffeomorphisms, with respect to a fixed
volume form on D. Besides the diffeomorphism group, the other basic object is the vector space V ∗ of
advected quantities on which G acts by representations. Typical advected quantities are, for example,
the mass density, the specific entropy, or the magnetic field. One can obtain the fluid equations by
choosing the appropriate Lagrangian and Hamiltonian functions and by applying the semidirect Euler–
Poincaré or Lie–Poisson reduction processes (Theorems 1.1 and 1.2), see [24] and [17].

The goal of this section is to extend these formulations to the case of complex fluids. At the re-
duced level, the Euler–Poincaré equations for complex fluids are given in [13] (Eqs. (3.23), (3.24),
(3.32) and (3.33)). The two key observations we make regarding these equations are the following.
First, the two equations (3.23) and (3.24) suggest that the configuration manifold Diff(D) has to be
enlarged to a bigger group G in order to contain variables involving the Lie group O of order pa-
rameters. Second, the two advection equations (3.32) and (3.33) suggest that there is a new advected
quantity on which the group G acts by affine representation. Making use of these two observations,
we construct below the appropriate configuration space and the appropriate affine action for the dy-
namics of complex fluids. By using the general process of affine Euler–Poincaré reduction developed
before (Theorem 2.1), we get (a generalization of) the equations given in [13].

Here and in all examples that follow, there are fields different from the velocity field for which we
shall never specify the boundary conditions. We make the general assumption, valid throughout the
paper, that all integrations by parts have vanishing boundary terms, or that the problem has periodic
boundary conditions (in which case D is a boundaryless three-dimensional manifold). Of course, if
one would try to get an analytically rigorous result, the boundary conditions for all fields need to be
carefully specified.

The configuration manifold. Consider a finite-dimensional Lie group O. In applications O will be
called the order parameter Lie group. Recall that in the case of the motion of a fluid on an orientable
manifold D, the configuration space is the group G = Diff(D) of all diffeomorphisms of D. In the
case of complex fluids, the basic idea is to enlarge this group to the semidirect product of groups
G = Diff(D)�F(D,O). Here F(D,O) denotes the group of all mappings χ defined on D with values
in the Lie group O of order parameters. The diffeomorphism group acts on F(D,O) via the right
action

(η,χ) ∈ Diff(D)× F(D,O) �→ χ ◦ η ∈ F(D,O).

Therefore, the group multiplication is given by

(η,χ)(ϕ,ψ)= (
η ◦ ϕ, (χ ◦ ϕ)ψ)

.

Recall that the tangent space to Diff(D) at η is

Tη Diff(D)= {
uη :D → TD

∣∣ uη(x) ∈ Tη(x)D
}
,

the tangent space to F(D,O) at χ is

TχF(D,O)= {
νχ :D → TO

∣∣ νχ (x) ∈ Tχ(x)O
}
.
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A direct computation shows that the tangent map of right translation is

T R(ϕ,ψ)(uη, νχ )= (
uη ◦ ϕ, T Rψ(νχ ◦ ϕ)).

For simplicity we fix a volume form μ on D. Therefore we can identify the cotangent space
T ∗
η Diff(D) with a space of one-forms over η, that is,

T ∗
η Diff(D)= {

mη :D → T ∗D
∣∣ mη(x) ∈ T ∗

η(x)D
}
.

The cotangent space of F(D,O) at χ is naturally given by

T ∗
χF(D,O)= {

κχ :D → T ∗O
∣∣ κχ (x) ∈ T ∗

χ(x)O
}
.

Using these identifications, the cotangent map of right translation is computed to be

T ∗R(ϕ,ψ)(mη, κχ )= J
(
ϕ−1)(mη ◦ ϕ−1, T ∗Rψ◦ϕ−1

(
κχ ◦ ϕ−1)),

where J (ϕ−1) is the Jacobian determinant of the diffeomorphism ϕ−1. The corresponding cotangent
lift, defined by RT ∗

(ϕ,ψ) := T ∗R(ϕ,ψ)−1 , is given by

RT ∗
(ϕ,ψ)(mη, κχ )= J (ϕ)

(
mη ◦ ϕ, T ∗Rψ−1 (κχ ◦ ϕ)).

The Lie algebra g of the semidirect product group is

g = X(D)�F(D,o),

and the Lie bracket is computed to be

ad(u,ν)(v, ζ )= (adu v,adν ζ + dν · v − dζ · u),

where adu v = −[u,v], adν ζ ∈ F(D,o) is given by adν ζ(x) := adν(x) ζ(x), and dν ·v ∈ F(D,o) is given
by dν · v(x) := dν(x)(v(x)).

Using the previous identification of cotangent spaces, the dual Lie algebra g∗ can be identified
with

Ω1(D)× F(D,o∗)

through the pairing

〈
(m, κ), (u, ν)

〉 = ∫
D

(m · u + κ · ν)μ.

The dual map to ad(u,ν) is

ad∗
(u,ν)(m, κ)= (

£££um + (div u)m + κ · dν,ad∗
ν κ + div(uκ)

)
. (3.1)

This formula needs some explanation. The symbol κ · dν ∈Ω1(D) denotes the one-form defined by

κ · dν(vx) := κ(x)
(
dν(vx)

)
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and ad∗
ν κ ∈ F(D,o∗) denotes the o∗-valued mapping defined by

ad∗
ν κ(x) := ad∗

ν(x)

(
κ(x)

)
.

The expression uκ denotes the 1-contravariant tensor field with values in o∗ defined by

uκ(αx) := αx
(
u(x)

)
κ(x) ∈ o∗.

Since uκ is a generalization of the notion of a vector field, we denote by X(D,o∗) the space of all
1-contravariant tensor fields with values in o∗ . In (3.1), div(u) denotes the divergence of the vector
field u with respect to the fixed volume form μ. Recall that it is defined by the condition

(div u)μ= £££uμ.

This operator can be naturally extended to the space X(D,o∗) as follows. For w ∈ X(D,o∗) we write
w = waε

a where (εa) is a basis of o∗ and wa ∈ X(D). We define div :X(D,o∗) → F(D,o∗) by the
equality

div w := (div wa)ε
a.

Note that if w = uκ then

div(uκ)= dκ · u + (div u)κ.

The space of advected quantities. In physical applications, the affine representation space V ∗ of
G = Diff(D)�F(D,O) is a direct product V ∗

1 ⊕ V ∗
2 , where V ∗

i are subspaces of the space of all
tensor fields on D (possibly with values in a vector space). Moreover:

• V ∗
1 is only acted upon by the component Diff(D) of G .

• The action of G on V ∗
2 is affine, with the restriction that the affine term only depends on the

second component F(D,O) of G .

In this way, we obtain the affine representation

(a, γ ) ∈ V ∗
1 ⊕ V ∗

2 �→ (
aη,γ (η,χ)+ C(χ)

) ∈ V ∗
1 ⊕ V ∗

2 , (3.2)

where γ (η,χ) denotes the representation of (η,χ) ∈ G on γ ∈ V ∗
2 , and C ∈ F(F(D,O), V ∗

2 ) satisfies
the identity

C
(
(χ ◦ ϕ)ψ) = C(χ)(ϕ,ψ)+ C(ψ) (3.3)

for all χ,ψ ∈ F(D,O) and ϕ ∈ Diff(D). Note that this is equivalent to say that the representation ρ
and the affine term c of the previous section have the particular form

ρ∗
(η,χ)−1(a, γ )= (

aη,γ (η,χ)
)

and c(η,χ)= (
0,C(χ)

)
.

The infinitesimal action of (u, ν) ∈ g on γ ∈ V ∗
2 induced by the representation of G on V ∗

2 is

γ (u, ν) := d

dt

∣∣∣∣
t=0
γ
(
exp(tu),exp(tν)

) = d

dt

∣∣∣∣
t=0
γ
(
exp(tu), e

)(
e,exp(tν)

)
= d

dt

∣∣∣∣
t=0
γ
(
exp(tu), e

)+ d

dt

∣∣∣∣
t=0
γ
(
e,exp(tν)

) =: γ u + γ ν.
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Therefore, for (v,w) ∈ V 1 ⊕ V 2 and (a, γ ) ∈ V ∗
1 ⊕ V ∗

2 we have

(v,w) � (a, γ )= (v � a + w �1 γ ,w �2 γ ),

where �1 and �2 are associated to the induced representations of the first and second component
of G on V ∗

2 . On the right-hand side, the diamond operation � is associated to the representation
of Diff(D) on V ∗

1 . The space V ∗
1 is naturally the dual of some space V 1 of tensor fields on D. For

example the (p,q) tensor fields are naturally in duality with the (q, p) tensor fields. For a ∈ V ∗
1 and

v ∈ V 1, the duality pairing is given by

〈a, v〉 =
∫
D

(a · v)μ,

where · denotes the contraction of tensor fields.
Since the affine cocycle has the particular form c(η,χ)= (0,C(χ)), we obtain that

dcT (v,w)= (
0,dC T (w)

)
.

For a Lagrangian l = l(u, ν,a, γ ) : [X(D)�F(D,o)] × [V ∗
1 ⊕ V ∗

2 ] → R, the affine Euler–Poincaré equa-
tions (2.3) become ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂

∂t

δl

δu
= −£££u

δl

δu
− (div u)

δl

δu
− δl

δν
· dν + δl

δa
� a + δl

δγ
�1 γ ,

∂

∂t

δl

δν
= −ad∗

ν

δl

δν
− div

(
u
δl

δν

)
+ δl

δγ
�2 γ − dC T

(
δl

δγ

)
,

(3.4)

and the advection equations are

{
ȧ + au = 0,
γ̇ + γ u + γ ν + dC(ν)= 0.

(3.5)

Remark on the duality pairing. We remind the reader that, for simplicity, we have assumed that D
is orientable and we have also fixed a volume form μ ∈Ωn(D). Thus, using the L2 pairing, the dual
space of the Lie algebra X(D) of vector fields is identified with the one-forms Ω1(D). Therefore, the
functional derivative δl/δu is a one-form on D.

The natural dual of X(D) is the space Ω1(D)⊗Den(D) of one-form densities on D. In this general
approach, valid also for non-orientable manifolds, the duality pairing of α ⊗ ω ∈ Ω1(D) ⊗ Den(D)
with u reads ∫

D

(α · u)ω.

Then the functional derivative δl/δu is interpreted as a one-form density on D. The same remark
applies for the dual of vector valued tensors on D, in particular for the Lie algebra F(D,o).

We chose to work on oriented manifolds and to avoid the use of Ω1(D)⊗ Den(D) because this
general case would considerably complicate the writing of various formulas and equations, without
adding any essential new information. We emphasize that all results of this paper are also valid
for non-orientable manifolds by appealing to the usual exterior differential calculus and the Stokes
theorem for twisted k-forms on D (see [1, Supplement 7.2A] for details).
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Basic example. Take V ∗
2 := Ω1(D,o), the space of all one-forms on D with values in o. This space

is naturally the dual of the space V 2 = X(D,o∗) of contravariant tensor fields with values in 0∗ , the
duality pairing being given, for γ ∈Ω1(D,o) and w ∈ X(D,o∗), by

〈γ ,w〉 :=
∫
D

(γ · w)μ,

where γ · w denotes the contraction of tensors. In what follows, we still let V 1 be an arbitrary vector
space. In concrete examples, its dual V ∗

1 is formed by classical advected quantities, such as mass
density, entropy density, or magnetic field, for example.

We consider for (3.2) the affine representation of Diff(D)�F(D,O) on V ∗
1 ×Ω1(D,o) defined by

(a, γ ) �→ (
aη,Adχ−1 η∗γ + χ−1Tχ

)
, (3.6)

where (η,χ) ∈ Diff(D)�F(D,O), (a, γ ) ∈ V ∗
1 ×Ω1(D,o), and Adχ−1 η∗γ + χ−1Tχ is the o-valued

one-form given by(
Adχ−1 η∗γ + χ−1Tχ

)
(vx) := Adχ(x)−1

(
η∗γ (vx)

)+ χ(x)−1Txχ(vx)

for vx ∈ TxD. One can check that γ (η,χ) := Adχ−1 η∗γ is a right representation of G on V ∗
2 and that

C(χ) = χ−1Tχ verifies the condition (3.3). In fact, (3.6) corresponds to the action of the automor-
phism group of the trivial principal bundle O × D on the space of connections.

For this example we have

γ u = £££uγ , γ ν = −adν γ and dC(ν)= dν,

where adν γ ∈Ω1(D,o) denotes the one-form given by

(adν γ )(vx) := adν(x)
(
γ (vx)

) = [
ν(x), γ (vx)

]
,

and dν ∈Ω1(D,o) is given by dν(vx) := Txν(vx) ∈ o for all vx ∈ TxD.
A direct computation shows that

w �1 γ = (div w) · γ − w · i_ dγ ∈Ω1(D),

w �2 γ = −Tr
(
ad∗
γ w

) ∈ F(D,o∗),

dC T (w)= −div w ∈ F(D,o∗),

where Tr denotes the trace of the o∗-valued (1,1) tensor

ad∗
γ w : T ∗D × TD → o∗, (αx, vx) �→ ad∗

γ (vx)

(
w(αx)

)
.

In coordinates we have Tr(ad∗
γ w) = ad∗

γi
wi . Making use of these computations, the affine Euler–

Poincaré equations (3.4) become⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t

δl

δu
= −£££u

δl

δu
−

(
div u

)
δl

δu
− δl

δν
· dν + δl

δa
� a +

(
div

δl

δγ

)
· γ − δl

δγ
· i_ dγ ,

∂

∂t

δl

δν
= −ad∗

ν

δl

δν
+ div

(
δl

δγ
− u

δl

δν

)
− Tr

(
ad∗
γ

δl

δγ

)
,

(3.7)
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and the advection equations are {
ȧ + au = 0,
γ̇ + £££uγ − adν γ + dν = 0.

These are, up to sign conventions, the equations for complex fluids as given in [13].
We now rewrite these equations using the covariant differentiation associated to a connection.

A one-form γ ∈ Ω1(D,o) can be considered as a connection one-form on the trivial principal O-
bundle O × D → D, namely,

(vx, ξh) ∈ TxD × ThO �→ Adh−1

(
γ (x)(vx)+ T Rh−1 (ξh)

) ∈ o. (3.8)

The covariant differential associated to this principal connection will be denoted by dγ . Therefore, for
a function ν ∈ F(D,o), we have

dγ ν(v) := dν(v)+ [
γ (v), ν

]
. (3.9)

The covariant divergence of w ∈ X(D,o∗) is the function

divγ w := div w − Tr
(
ad∗
γ w

) ∈ F(D,o∗), (3.10)

defined as minus the adjoint of the covariant differential, that is,∫
D

(
dγ ν · w

)
μ= −

∫
D

(
ν · divγ w

)
μ (3.11)

for all ν ∈ F(D,o). Note that the Lie derivative of γ ∈Ω1(D,o) can be written as

£££uγ (v)= d
(
γ (u)

)
(v)+ iudγ (v)

= dγ
(
γ (u)

)
(v)− [

γ (v), γ (u)
] + dγ γ (u,v)− [

γ (u), γ (v)
]

= dγ
(
γ (u)

)
(v)+ iu B(v), (3.12)

where

B := dγ γ = dγ + [γ ,γ ]

is the curvature of the connection induced by γ .
Note also that, using covariant differentiation, we have

w �1 γ = (div w) · γ − w · i_ dγ = (
divγ w

) · γ − w · i_ B.

Therefore, in terms of dγ ,divγ , and B = dγ γ , the equations read⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t

δl

δu
= −£££u

δl

δu
− (div u)

δl

δu
− δl

δν
· dν + δl

δa
� a +

(
divγ

δl

δγ

)
· γ − δl

δγ
· i_ B,

∂

∂t

δl

δν
= −ad∗

ν

δl

δν
− div

(
u
δl

δν

)
+ divγ

δl

δγ
,

(3.13)
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and {
ȧ + au = 0,

γ̇ + dγ
(
γ (u)

) + iu B + dγ ν = 0.

The BBB-representation. In this example we want to reformulate the reduction process as well as the
equations of motion (3.13) in terms of another set of variables, namely, (u, ν,a, B), where B = dγ γ =
dγ + [γ ,γ ] ∈Ω2(D,o) is the curvature of γ , instead of (u, ν,a, γ ). As we shall see below, with this
choice of variables, the action (3.6) becomes linear instead of affine. We shall also assume that the
Lagrangian L, and hence also l, depend on γ only through B . To do this we shall use the standard
Euler–Poincaré reduction for semidirect products (Theorem 1.1).

Indeed, if γ ′ = Adχ−1 η∗γ + χ−1Tχ then we have dγ
′
γ ′ = Adχ−1 η∗dγ γ . Thus the representation

of Diff(D)�F(D,O) on V ∗
1 ⊕Ω2(D,o) is given by

(a, B) �→ (aη,Adχ−1 η∗B).

The associated infinitesimal action of (u, ν) ∈ X(D)�F(D,o) is

(a, B)(u, ν)= (
au, B(u, ν)

) = (au,£££u B − adν B).

The space Ω2(D,o) is, in a natural way, dual to the space Ω2(D,o∗) of 2-contravariant skew-
symmetric tensor fields with values in o∗ . The duality pairing is given by contraction and integration
with respect to the fixed volume form μ. More generally, we can consider the space Ωk(D,o∗) of
k-contravariant skew-symmetric tensor fields with values in o∗ and we can define the divergence
operators, div,divγ :Ωk(D,o∗) →Ωk−1(D,o∗), to be minus the adjoint of the exterior derivatives d
and dγ , respectively. For example, divγ is defined on Ωk(D,o∗) by∫

D

(
dγ α ·ω)

μ= −
∫
D

(
α · divγ ω

)
μ, (3.14)

where α ∈ Ωk−1(D,o) and ω ∈ Ωk(D,o∗). Note that we have used the notations Ω1(D,o∗) =
X(D,o∗) and Ω0(D,o∗)= F(D,o∗).

Using the duality pairing defined before, for (v,b) ∈ V 1 ⊕ Ω2(D,o∗) and (a, B) ∈ V ∗
1 ⊕ Ω2(D,o),

the diamond operation is given by

(v,b) � (a, B)= (v � a + b �1 B,b �2 B),

where

b �1 B = (div b) · i_ B − b · i_ dB ∈Ω1(D)

and

b �2 B = −Tr
(
ad∗

B b
) = −ad∗

Bij
bi j ∈ F(D,o∗).

The Euler–Poincaré equations (1.2) are in this case⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t

δl

δu
= −£££u

δl

δu
− (div u)

δl

δu
− δl

δν
· dν + δl

δa
� a +

(
div

δl

δB

)
· i_ B − δl

δB
· i_ dB,

∂

∂t

δl

δν
= −ad∗

ν

δl

δν
+ δl

δB
�2 B − Tr

(
ad∗

B
δl

δB

)
,

(3.15)
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and the advection equations are

{
ȧ + au = 0,
Ḃ + £££u B − adν B = 0.

We now show that when B is the curvature of the connection γ , that is, B = dγ γ , then the affine
Euler–Poincaré equations (3.13) imply the standard Euler–Poincaré equations (3.15). Define the map

Φ :Ω1(D,o)→Ω2(D,o) by Φ(γ )= dγ γ

and suppose that the Lagrangians l1(u, ν,a, γ ) and l2(u, ν,a, B) are related by

l2
(
u, ν,a,Φ(γ )

) = l1(u, ν,a, γ ).

We have Tγ Φ(α)= dα+[γ ,α]+ [α,γ ] = dγ α and Φ(Adχ−1 η∗γ +χ−1Tχ)= Adχ−1 η∗Φ(γ ). There-
fore, by taking the derivative, the infinitesimal action verifies

Bu + Bν = dγ (γ u + γ ν + dν),

or, explicitly,

£££u B − adν B = dγ (£££uγ − adν γ + dν). (3.16)

This proves that the advection equations for γ imply the one for B . Using the preceding formula and
the definition of the diamond operation we find that

(
divγ b

) �1 γ = −b �1 B and
(
divγ b

) �2 γ + div
(
divγ b

) = −b �2 B,

or, explicitly,

divγ
((

divγ b
)
γ
) − divγ b · i_ B = −div b · i_ B + b · i_ dB and divγ

(
divγ b

) = Tr
(
ad∗

B b
)
.

Using the equality

−divγ
(
δl2

δB

)
◦Φ = δl1

δγ
,

we obtain

δl1

δγ
�1 γ = δl2

δB
�1 B and

δl1

δγ
�2 γ + div

(
δl1

δγ

)
= δl2

δB
�2 B. (3.17)

This proves that the affine Euler–Poincaré equations (3.13) imply the standard Euler–Poincaré equa-
tions (3.15).
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4. Affine and magnetic Lie–Poisson reduction

The goal of this section is to carry out a generalization of the standard process of Lie–Poisson
reduction for Lie groups, which is motivated by the example of complex fluids. The only modification
lies in the fact that the Lie group G acts on its cotangent bundle by a cotangent lift plus an affine term.
The principal result of this section states that, under some conditions, reducing a canonical symplectic
form relative to a cotangent lift with an affine term is equivalent to reducing a magnetic symplectic
form relative to the right cotangent lift. At the reduced level, we obtain affine Lie–Poisson brackets
and affine coadjoint orbits, whose affine terms depend on the affine term in the action.

Consider the cotangent lift RT ∗
g of the right translation R g on a Lie group G . Recall that RT ∗

g is the
right action of G on T ∗G given by

RT ∗
g (α f )= T ∗ R g−1 (α f ).

Consider the map Ψg : T ∗G → T ∗G defined by

Ψg(α f ) := RT ∗
g (α f )+ C g( f ), (4.1)

where C : G × G → T ∗G is a smooth map such that C g( f ) ∈ T ∗
f g G , for all f , g ∈ G . The map Ψg is

seen here as a modification of the cotangent lift by an affine term C . The following lemma gives the
conditions guaranteeing that the map Ψg is a right action.

Lemma 4.1. Consider the map Ψg defined in (4.1). The following are equivalent.

(i) Ψg is a right action.
(ii) For all f , g,h ∈ G, the affine term C verifies the property

C gh( f )= Ch( f g)+ RT ∗
h

(
C g( f )

)
. (4.2)

(iii) There exists a one-form α ∈Ω1(G) such that C g( f )= α( f g)− RT ∗
g (α( f )).

Proof. The equivalence between (i) and (ii) is a direct computation. Suppose that (ii) holds. By setting
f = e in formula (4.2), we obtain that C gh(e) = Ch(g) + RT ∗

h (C g(e)). Therefore we can define the

one-form α by α(g) := C g(e), and we have Ch(g)= α(gh)− RT ∗
h (α(g)). Conversely, suppose that (iii)

holds. Then a direct computation shows that (4.2) holds. �
We denote by C(G) the space of all maps C : G × G → T ∗G , (g, f ) �→ C g( f ) ∈ T ∗

f g G verifying the
property (4.2). Note that given an affine term C ∈ C(G), the one-form α in item (iii), is only deter-
mined up to a right-invariant one-form. Denoting by Ω1

R(G) the space of all right-invariant one-forms
on G , we have an isomorphism between C(G) and Ω1(G)/Ω1

R (G). This space is clearly isomorphic
to the space Ω1

0 (G) of all one-forms α on G such that α(e) = 0. From now on, when we say that
the one-form α is associated to C , we shall always assume that α(e)= 0 which then guarantees the
uniqueness of this one-form.

In order to carry out the symplectic reduction associated to an affine action Ψg of the form (4.1),
we make two crucial observations (see Theorem 4.6).

• Let α ∈Ω1
0 (G) be the one-form associated to Ψg and consider the associated fiber translation tα

on T ∗G defined by

tα(β f ) := β f − α( f ).
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Then tα , viewed as a map from the canonical cotangent bundle (T ∗G,Ωcan) to the magnetic
cotangent bundle (T ∗G,Ωcan − π∗

G dα), is a symplectic map. Moreover, tα is equivariant with re-
spect to the action Ψg on (T ∗G,Ωcan) and the cotangent lift RT ∗

g on (T ∗G,Ω −π∗
G dα).

• Suppose that dα is G-invariant. Then the action Ψg is symplectic relative to the canonical sym-
plectic form Ωcan.

From these observations we conclude that, under some conditions to be specified later on, reducing
the canonical cotangent bundle (T ∗G,Ωcan) relative to an affine action of the form (4.1) is equiva-
lent to reducing the magnetic cotangent bundle (T ∗G,Ωcan − π∗

G dα) relative to the cotangent lift of
right translations. It is therefore useful to recall below some facts about the reduction of magnetic
cotangent bundles.

Some facts about magnetic cotangent bundle reduction. We first recall the following result (The-
orem 7.1.1 in [22]) about the existence of momentum maps associated to cotangent bundles with
magnetic terms.

Theorem 4.2. Let B be a closed two-form on a connected configuration manifold Q . Let Φ : G × Q → Q
be a free and proper right action which leaves the form B invariant. Consider the cotangent lift ΦT ∗

g of the
G-action Φg to the symplectic manifold (T ∗ Q ,Ωcan − π∗

Q B), where Ωcan is the canonical symplectic form
and πQ : T ∗ Q → Q is the cotangent bundle projection. Suppose that there is a smooth map φ : Q → g∗ that
satisfies

iξQ B = d〈φ, ξ〉

for all ξ ∈ g. Then the following hold:

(i) The map J = Jcan − φ ◦ πQ , where Jcan is the standard momentum map for the G-action relative to the
canonical symplectic form, is a momentum map for the cotangent lifted action of G on T ∗ Q with sym-
plectic form Ωcan −π∗

Q B.
(ii) The momentum map is, in general, not equivariant. Its nonequivariance g∗-valued group one-cocycle

σ : G → g∗ is given by

σ(g)= −φ(Φg(q)
)+ Ad∗

g

(
φ(q)

)
, (4.3)

with the right-hand side independent of q ∈ Q . The cocycle identity is

σ(gh)= Ad∗
h

(
σ(g)

)+ σ(h).

Note that the G-invariance of B ensures that the action ΦT ∗
is symplectic relative to the sym-

plectic form Ωcan −π∗
Q B. The momentum map J : T ∗ Q → g∗ is equivariant relative to the right affine

action of G on g∗ given by

θg(λ) := Ad∗
g λ+ σ(g).

We turn now to the particular case when the configuration manifold is a Lie group G and the
action is the cotangent lift of right translation, that is, ΦT ∗

g = RT ∗
g . We first recall from [22, Theo-

rem 7.2.1] the magnetic Lie–Poisson reduction theorem.

Theorem 4.3. Consider a closed G-invariant two-form B on G. The Poisson reduced space for the right cotan-
gent lifted action of G on (T ∗G,Ωcan −π∗

GB) is g∗ with Poisson bracket given by
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{ f , g}B(μ)=
〈
μ,

[
δ f

δμ
,
δg

δμ

]〉
+ B(e)

(
δ f

δμ
,
δg

δμ

)
for f , g ∈ F(g∗).

Note that for a Hamiltonian h :g∗ → R, the corresponding Hamiltonian vector field is given by

Xh(μ)= −ad∗
δh
δμ

μ− B(e)
(
δh

δμ
, ·
)
.

When the magnetic term B is absent, we recover the standard Lie–Poisson bracket on g∗ . In this
particular case, the symplectic reduced spaces J−1

R (μ)/Gμ are symplectically diffeomorphic to the
coadjoint orbits Oμ = {Ad∗

g(μ) | g ∈ G}, where JR is the standard right momentum map for the G-
action relative to the canonical symplectic form and Gμ is the coadjoint isotropy group of μ ∈ g∗ . The
symplectic diffeomorphism is induced by the map

ϕ : J−1
R (μ)→ Oμ, ϕ(αg)= T ∗R g(αg)= Ad∗

g−1 μ.

When a magnetic term B is present, the existence of a momentum map is not guaranteed, and we
shall use the result of Theorem 4.2. Recall that the infinitesimal generator of ξ for the right action is
the left-invariant extension of ξ ; that is, ξG = ξ L . Suppose that there is a smooth map φ : G → g∗ that
satisfies

iξ L B = d〈φ, ξ〉

for all ξ ∈ g. Since φ is determined by this equation only up to a constant, we can always impose the
condition φ(e)= 0. From Theorem 4.2, the map J = JR −φ ◦πG is a momentum map for the cotangent
lifted action of G on T ∗G with symplectic form Ωcan −π∗

GB. In this case, using the relation (4.3), the
nonequivariance cocycle is simply given by σ = −φ. We denote by G σ

μ the isotropy group of μ relative
to the affine action θg(μ)= Ad∗

g(μ)+ σ(g). The following result (see [22, Theorem 7.2.2]) shows that
the reduction of a magnetic cotangent bundle of a Lie group at a given point μ ∈ g∗ is symplectically
diffeomorphic with the affine coadjoint orbit Oσ

μ passing through μ.

Theorem 4.4. Consider a closed G-invariant two-form B on G, suppose that there is a smooth map φ : G → g∗
that satisfies

iξ L B = d〈φ, ξ〉

for all ξ ∈ g, and consider the momentum map J = Jcan −φ ◦πQ . Then for eachμ ∈ g∗ , the symplectic reduced
space J−1(μ)/Gσμ is symplectically diffeomorphic to

Oσ
μ = {

θg(μ)= Ad∗
g μ+ σ(g)

∣∣ g ∈ G
}
,

the affine orbit through μ. The tangent space at λ= θσg (μ) ∈ Oσ
μ to Oσ

μ is given by

TλOσ
μ = {

ad∗
ξ λ−Σ(ξ, ·) ∣∣ ξ ∈ g

}
,

where Σ(ξ, ·) := −Teσ(ξ)= −B(e)(ξ, ·). The symplectic structure on Oσ
μ has the expression

ω+
B(λ)

(
ad∗

ξ λ−Σ(ξ, ·),ad∗
η λ−Σ(η, ·)) = 〈

λ, [ξ,η]〉−Σ(ξ,η),

which we call the magnetic orbit symplectic form.
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The symplectic diffeomorphism between the symplectic reduced spaces and the affine coadjoint
orbits is constructed as follows. Consider the smooth map ϕ : J−1(μ)→ Oσ

μ defined for αg ∈ J−1(μ)
by

ϕ(αg) := θg−1 (μ)= Ad∗
g−1 μ+ σ

(
g−1).

Then ϕ is Gσμ-invariant and induces a symplectic diffeomorphism

ϕ :
(
J−1(μ)/Gσμ,Ωμ

) → (
Oσ
μ,ω

+
B
)
.

Note that we have ϕ(αg) = T ∗R g(αg). Indeed, since αg ∈ J−1(μ), we have μ = T ∗Lg(αg) − φ(g),
therefore we obtain

ϕ(αg)= Ad∗
g−1 μ+ σ

(
g−1)

= T ∗R g(αg)+ Ad∗
g−1

(
σ(g)

)+ σ
(

g−1)
= T ∗R g(αg).

The general theory of symplectic reduction implies that the affine coadjoint orbits (Oσ
μ,ω

+
B) are

the symplectic leaves of the Poisson manifold (g∗, { , }B), where { , }B denotes the Poisson bracket in
Theorem 4.3.

The following proposition shows that when the magnetic term B is an exact two-form, then
the magnetic cotangent bundle is symplectomorphic to the canonical symplectic cotangent bundle.
Through this symplectomorphism, the cotangent lift is transformed into an affine action. In the par-
ticular case of a Lie group G acting on its cotangent bundle by right cotangent lift, this affine action
is of the form (4.1).

Proposition 4.5. Assume that all the hypotheses of Theorem 4.2 are satisfied and suppose that B = dα. Let
tα : (T ∗ Q ,Ωcan)→ (T ∗ Q ,Ωcan −π∗

Q B) be the fiber translation defined by

tα(βq) := βq − α(q).

Then the following hold:

(i) tα is a symplectic fiber translation.
(ii) The symplectic action Ψ on (T ∗ Q ,Ωcan) induced by ΦT ∗

through the map tα , that is, Ψg := t−1
α ◦Φ ◦ tα

for any g ∈ G, is the affine action given by

Ψg(βq)=ΦT ∗
g (βq)+ C g(q), where C g(q) := α

(
Φg(q)

)−ΦT ∗(
α(q)

)
.

(iii) A momentum map relative to the G-action Ψ on (T ∗ Q ,Ωcan) is given by

Jα = J ◦ tα = Jcan ◦ tα − φ ◦πQ ;

its nonequivariance cocycle equals the nonequivariance cocycle of J.

Proof. (i) See Proposition 6.6.2 in [23].
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(ii) We have

Ψg(βq)= t−1
α

(
ΦT ∗

g

(
tα(βq)

)) = t−1
α

(
ΦT ∗

g

(
βq − α(q)

))
=ΦT ∗

g

(
βq − α(q)

)+ α
(
Φg(q)

)
=ΦT ∗

g (βq)+ α
(
Φg(q)

)−ΦT ∗
g

(
α(q)

)
=ΦT ∗

g (βq)+ C g(q).

(iii) This is a consequence of the fact that Jα = J ◦ tα . The nonequivariance one-cocycle of Jα is

σα(g)= Jα
(
Ψg(βq)

)− Ad∗
g

(
Jα(βq)

)
= J

(
ΦT ∗

g

(
tα(βq)

))− Ad∗
g

(
J
(
tα(βq)

))
= σ(g). �

Note that dα is assumed to be G-invariant. When the one-form α is also G-invariant, then the
affine term C vanishes. Therefore, the most interesting case happens when α is not G-invariant but
dα is.

Affine Lie–Poisson reduction. We apply now the previous results concerning the reduction with mag-
netic terms to our initial problem, that is, the Lie–Poisson reduction of the canonical cotangent bundle
(T ∗G,Ωcan) with respect to an affine action of the form (4.1). We obtain below, as an easy conse-
quence of the previous theorems, the main result of this section.

Theorem 4.6. Consider the symplectic manifold (T ∗G,Ωcan), and the affine action

Ψg(β f ) := RT ∗
g (β f )+ C g( f ),

where C ∈ C(G). Let α ∈Ω1
0 (G) be the one-form associated to Ψg . Then the following hold:

(i) The fiber translation tα : (T ∗G,Ωcan) → (T ∗G,Ωcan − π∗
G dα) is a symplectic map. The action induced

by Ψg on (T ∗G,Ωcan −π∗
G dα) through tα is simply the cotangent lift RT ∗

g .
(ii) Suppose that dα is G-invariant. Then the action Ψg is symplectic relative to the canonical symplectic

form Ωcan .
(iii) Suppose that there is a smooth map φ : G → g∗ that satisfies

iξ L dα = d〈φ, ξ〉

for all ξ ∈ g. Then the map Jα = JR ◦ tα − φ ◦ πG is a momentum map for the action Ψg relative to the
canonical symplectic form. We can always choose φ such that φ(e)= 0. In this case, the nonequivariance
one-cocycle of Jα is σ = −φ .

(iv) The symplectic reduced space (J−1
α (μ)/Gσμ,Ωμ) is symplectically diffeomorphic to the affine coadjoint

orbit (Oσ
μ,ω

+
B), the symplectic diffeomorphism being induced by the Gσμ-invariant smooth map

ψ : J−1
α (μ)→ Oσ

μ, ψ(αg) := Ψg−1 (αg).

Proof. (i) That tα is a symplectic map follows from item (i) in Proposition 4.5. From item (ii) in
Proposition 4.5, we know that the action induced on (T ∗G,Ωcan) by the right cotangent lift on
(T ∗G,Ωcan − π∗

Q dα) through the map tα is the affine action whose affine term is given by α. This
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is precisely the action Ψg . Thus we conclude that Ψg induces the right cotangent lifted action on
(T ∗G,Ωcan −π∗

Q dα).
(ii) When dα is G-invariant, we know that the right cotangent lift is symplectic relative to Ω −

π∗
Q dα. Since tα is symplectic, we conclude the result.

(iii) This follows from items (i) and (ii) in Theorem 4.2. Since φ can be chosen modulo a constant
term, we can impose the condition φ(e)= 0. From the relation (4.3) we obtain the equality φ = −σ .

(iv) The symplectic diffeomorphism tα induces a symplectic diffeomorphism between the reduced
spaces. Therefore, by Theorem 4.4, we obtain that (J−1

α (μ)/Gσμ,Ωμ) is symplectically diffeomorphic
to the affine coadjoint orbit (Oσ

μ,ω
σ
μ), the symplectic diffeomorphism being induced by the map

ψ := ϕ ◦ tα : J−1
α (μ)→ Oσ

μ . We have

ψ(βg)= ϕ
(
tα(βg)

) = T ∗ R g
(
βg − α(g)

) = RT ∗
g−1 (βg)− RT ∗

g−1

(
α(g)

)
= RT ∗

g−1 (βg)+ C g−1 (g)= Ψg(βg),

where in the fourth equality we used the relation C g( f )= α( f g)− RT ∗
g (α( f )). �

The affine coadjoint orbits (Oσ
μ,ω

+
σ ) are symplectic leaves in the affine Lie–Poisson space

(g∗, { , }+σ ), where

{ f , g}+σ (μ)=
〈
μ

[
δ f

δμ
,
δg

δμ

]〉
−Σ

(
δ f

δμ
,
δg

δμ

)
.

Note that this bracket is the Lie–Poisson bracket on the Poisson submanifold g∗ × {1} ⊂ ĝ∗ := g∗ × R,
where ĝ is the one-dimensional central extension of g defined by the cocycle −Σ .

Assume that −Σ integrates to a group two-cocycle B : G × G → R, that is,

−Σ(ξ,η)= d2

dt ds

∣∣∣∣
t=s=0

(
B
(

g(t),h(s)
)− B

(
h(s), g(t)

))
,

where t �→ g(t) and s �→ h(s) are smooth curves through e ∈ G with tangent vectors ξ = dg(t)
dt |t=0 and

η= dh(s)
ds |s=0. Let Ĝ be the central extension of G defined by the two-cocycle B and recall that the Lie

algebra of Ĝ equals ĝ. Then the affine coadjoint orbit Oσ
μ is obtained by usual Lie–Poisson reduction

of T ∗Ĝ relative to the lift of right translation at (μ,1). See [22, §6.2] for more details.

5. Affine Hamiltonian semidirect product theory

This is the Hamiltonian version of Section 2. More precisely, we carry out the Poisson and sym-
plectic reductions of a canonical cotangent bundle (T ∗ S,Ωcan), where S = G � V is the semidirect
product of a Lie group G and a vector space V and where S acts on its cotangent bundle by cotan-
gent lift plus an affine term. We will see that this process is a particular case of the theory developed
in the previous section.

Consider the semidirect product Lie group S := G � V associated to a right representation ρ : G →
Aut(V ). The cotangent lift of the right translation is given by

RT ∗
(g,v)

(
α f , (u,a)

) := T ∗
( f ,u)(g,v)R(g,v)−1

(
α f , (u,a)

)
= (

T ∗
f g R g−1 (α f ), v + ρg(u),ρ

∗
g−1 (a)

)
= (

RT ∗
g (α f ), v + ρg(u),ρ

∗
g−1 (a)

) ∈ T ∗
( f ,u)(g,v)S.
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We modify this cotangent lifted action by an affine term of the form

C(g,v)( f ,u) := (
0 f g, v + ρg(u), c(g)

)
(5.1)

for a group one-cocycle c ∈ F(G, V ∗), that is, verifying the property c( f g)= ρ∗
g−1 (c( f ))+ c(g), as in

Section 2. The resulting affine right action on T ∗ S is therefore given by

Ψ(g,v)
(
α f , (u,a)

) := RT ∗
(g,v)

(
α f , (u,a)

)+ C(g,v)( f ,u)

= (
RT ∗

g (α f ), v + ρg(u),ρ
∗
g−1 (a)+ c(g)

)
. (5.2)

This action is clearly of the form (4.1). We now check that property (4.2) holds. This will prove that
Ψ(g,v) is a right action. Indeed,

C(h,w)
(
( f ,u)(g, v)

)+ RT ∗
(h,w)

(
C(g,v)( f ,u)

)
= C(h,w)

(
f g, v + ρg(u)

)+ RT ∗
(h,w)

(
0 f g, v + ρg(u), c(g)

)
= (

0 f gh,w + ρh
(

v + ρg(u)
)
, c(h)

)+ (
RT ∗

h (0 f g),w + ρh
(

v + ρg(u)
)
,ρ∗

h−1

(
c(g)

))
= (

0 f gh,w + ρh
(

v + ρg(u)
)
, c(h)+ ρ∗

h−1

(
c(g)

))
= (

0 f gh,w + ρh(v)+ ρgh(u), c(gh)
)

= C(gh,w+ρh(v))( f ,u)= C(g,v)(h,w)( f ,u).

In the following lemmas, we compute the one-form α ∈Ω1
0 (S) associated to C and we show that

it verifies the hypotheses of Theorem 4.6. Recall that α is defined by α(g, v) := C(g,v)(e,0).

Lemma 5.1. The one-form α ∈Ω1
0 (S) associated to the affine term (5.1) is given by

α(g, v)
(
ξg, (v,u)

) = 〈
c(g),u

〉
(5.3)

for (ξg , (v,u)) ∈ T(g,v)S. Moreover B := dα is S-invariant and its value at the identity is given by

B(e,0)
(
(ξ,u), (η,w)

) = 〈
dc(ξ),w

〉 − 〈
dc(η),u

〉
. (5.4)

Proof. For (ξg , (v,u)) ∈ T(g,v)S we have α(g, v) := C(g,v)(e,0)= (0g , v, c(g)). Therefore we obtain the
equality α(g, v)(ξg, (v,u))= 〈c(g),u〉. We now prove the right-invariance of dα. For (ξ,u) ∈ s define
the associated right-invariant vector field (ξ,u)R ∈ X(S) by

(ξ,u)R(g, v) := T R(g,v)(ξ,u)= (
ξ R(g), v,ρg(u)

)
,

where ξ R(g) := Te R g(ξ). Note that we have α((ξ,u)R)(g, v)= 〈c(g),ρg(u)〉 = −〈c(g−1),u〉. Therefore

R∗
(g,v)dα(e,0)

(
(ξ,u), (η,w)

)
= dα(g, v)

(
T R(g,v)(ξ,u), T R(g,v)(η,w)

)
= dα(g, v)

(
(ξ,u)R(g, v), (η,w)R(g, v)

)
= d

(
α
(
(η,w)R))(g, v)

(
(η,w)R(g, v)

)− d
(
α
(
(η,w)R))(g, v)

(
(η,w)R(g, v)

)
− α

([
(ξ,u)R , (η,w)R])(g, v)
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= d

dt

∣∣∣∣
t=0
α
(
(η,w)R)(exp(tξ)g, v + ρg(ut)

) − d

dt

∣∣∣∣
t=0
α
(
(ξ,u)R)(exp(tη)g, v + ρg(wt)

)
+ α

(([ξ,η],uη− wξ
)R)

(g, v)

= − d

dt

∣∣∣∣
t=0

〈
c
(

g−1 exp(tξ)−1),w
〉 + d

dt

∣∣∣∣
t=0

〈
c
(

g−1 exp(tη)−1),u
〉

+ α(g, v)
([ξ,η]R(g),ρg(uη− wξ)

)
= 〈

c
(

g−1)ξ + dc(ξ),w
〉 − 〈

c
(

g−1)η+ dc(η),u
〉 − 〈

c
(

g−1),uη− wξ
〉

= 〈
dc(ξ),w

〉 − 〈
dc(η),u

〉 = dα(e,0)
(
(ξ,u), (η,w)

)
,

where in the fourth equality we used the identity

[
(ξ,u)R , (η,w)R] = −[

(ξ,u), (η,w)
]R = −([ξ,η],uη− wξ

)R
,

and for the sixth equality the identity

d

dt

∣∣∣∣
t=0

〈
c
(

g−1 exp(tξ)−1),w
〉 = d

dt

∣∣∣∣
t=0

〈
ρ∗

exp(tξ)

(
c
(

g−1))+ c
(
exp(tξ)−1),w

〉
= −〈

c
(

g−1)ξ + dc(ξ),w
〉
. �

This lemma shows that hypothesis (ii) of Theorem 4.6 is verified. This implies that the action Ψ(g,v)
is symplectic with respect to the canonical symplectic form Ωcan on T ∗ S . We now check hypothe-
sis (iii) of Theorem 4.6. This implies that the action Ψ(g,v) admits a momentum map relative to the
canonical symplectic form.

Lemma 5.2. The map φ : S → s∗ defined by

φ(g, v)= (
dcT (v)− v � c(g),−c(g)

)
,

verifies the property

i(ξ,u)L dα = d
〈
φ, (ξ,u)

〉
,

where (ξ,u)L ∈ X(S) is the left-invariant vector field induced by (ξ,u) ∈ s.

Proof. We will use the following formulas:

〈
φ(g, v), (ξ,u)

〉 = −〈
c(g),u

〉+ 〈
v, c(g)ξ + dc(ξ)

〉
,

(ξ,u)L(g, v)= T L(g,v)(ξ,u)= (
T Lg(ξ), v,u + vξ

)
,

T R(g,v)−1

(
(ξ,u)L(g, v)

) = (
Adg ξ,ρg−1 (u + vξ)

)
.

By the right-invariance of dα, we have
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i(ξ,u)L dα(g, v)
(
(η,w)L(g, v)

)
= dα(g, v)

(
(ξ,u)L(g, v), (η,w)L(g, v)

)
= dα(e,0)

((
Adg ξ,ρg−1 (u + vξ)

)
,
(
Adg η,ρg−1 (w + vη)

))
= 〈

dc(Adg ξ),ρg−1 (w + vη)
〉 − 〈

dc(Adg η),ρg−1 (u + vξ)
〉

= 〈
T gc

(
T Lg(ξ)

)
,w + vη

〉− 〈
T gc

(
T Lg(η)

)
,u + vξ

〉
.

For the last equality, we use that

ρ∗
g−1

(
dc(Adg ξ)

) = ρ∗
g−1

d

dt

∣∣∣∣
t=0

c
(

g exp(tξ)g−1) = d

dt

∣∣∣∣
t=0

(
c
(

g exp(tξ)
)− c(g)

)
= T gc

(
T Lg(ξ)

)
.

On the other hand we have

d
〈
φ, (ξ,u)

〉
(g, v)

(
(η,w)L(g, v)

)
= d

dt

∣∣∣∣
t=0

〈
φ
(

g exp(tη),wt + ρexp(tη)(v)
)
, (ξ,u)

〉
= d

dt

∣∣∣∣
t=0

− 〈
c
(

g exp(tη)
)
,u

〉+ 〈
wt + ρexp(tη)(v), c

(
g exp(tη)

)
ξ + dc(ξ)

〉
= −〈

T gc
(
T Lg(η)

)
,u

〉+ 〈
w + vη, c(g)ξ + dc(ξ)

〉 + d

dt

∣∣∣∣
t=0

〈
v, c

(
g exp(tη)

)
ξ
〉

= −〈
T gc

(
T Lg(η)

)
,u

〉+ 〈
w + vη, T gc

(
T Lg(ξ)

)〉− 〈
vξ, T gc

(
T Lg(η)

)〉
= 〈

T gc
(
T Lg(ξ)

)
,w + vη

〉 − 〈
T gc

(
T Lg(η)

)
,u + vξ

〉
.

Thus we obtain that

i(ξ,u)L dα = d
〈
φ, (ξ,u)

〉
. �

The momentum map. By item (iii) of Theorem 4.6 and using α ∈ Ω1
0 (S) given by (5.3), we obtain

that a momentum map for the right action Ψ(g,v)(α f , (u,a))= (RT ∗
g (α f ), v +ρg(u),ρ∗

g−1 (a)+ c(g)) is

given by

Jα
(
β f , (u,a)

) = JR
(
tα

(
β f , (u,a)

))− φ( f ,u)

= JR
(
β f ,

(
u,a − c( f )

))− φ( f ,u)

= T ∗L( f ,u)
(
β f ,

(
u,a − c( f )

))− φ( f ,u)

= (
T ∗L f (β f )+ u � (

a − c( f )
)
,a − c( f )

)− (
dcT (u)− u � c( f ),−c( f )

)
= (

T ∗L f (β f )+ u � a − dcT (u),a
)
, (5.5)

with nonequivariance one-cocycle

σ( f ,u)= −φ( f ,u)= (
u � c( f )− dcT (u), c( f )

) ∈ s∗. (5.6)
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Poisson bracket and Hamiltonian vector fields. Using Theorem 4.3 and the expression of B given in
Lemma 5.1, we obtain that the reduced Poisson bracket on s∗ is given by

{ f , g}B(μ,a)=
〈
(μ,a),

[(
δ f

δμ
,
δ f

δa

)
,

(
δg

δμ
,
δg

δa

)]〉
+ B(e,0)

((
δ f

δμ
,
δ f

δa

)
,

(
δg

δμ
,
δg

δa

))
=

〈
μ,

[
δ f

δμ
,
δg

δμ

]〉
+

〈
a,
δ f

δa

δg

δμ
− δg

δa

δ f

δμ

〉
+

〈
dc

(
δ f

δμ

)
,
δg

δa

〉
−

〈
dc

(
δg

δμ

)
,
δ f

δa

〉
.

Given a Hamiltonian function h : s∗ → R, the corresponding Hamiltonian vector field with respect to
the bracket { , }B , is given by

Xh(μ,a)= −ad∗
( δh
δμ ,

δh
δa )
(μ,a)− B(e,0)

((
δh

δμ
,
δh

δa

)
, ·
)

=
(

−ad∗
δh
δμ

μ− δh

δa
� a + dcT

(
δh

δa

)
,−a

δh

δμ
− dc

(
δh

δμ

))
.

The symplectic reduced spaces. By item (iv) of Theorem 4.6, the reduced space(
J−1
α (μ,a)/Sσ(μ,a),Ω(μ,a)

)
is symplectically diffeomorphic to the affine coadjoint orbit (Oσ

(μ,a),ω
+
B). More precisely, we have

Oσ
(μ,a) = {

Ad∗
(g,u)(μ,a)+ σ(g,u)

∣∣ (g,u) ∈ S
}

= {(
Ad∗

g μ+ u � (
ρ∗

g−1 (a)+ c(g)
)− dcT (u),ρ∗

g−1 (a)+ c(g)
) ∣∣ (g,u) ∈ S

}
. (5.7)

Note also that the bilinear form Σ appearing in the formula of the affine orbit symplectic form (see
Theorem 4.4), is given by

Σ
(
(ξ,u), ·) = −T(e,0)σ (ξ,u)= − d

dt

∣∣∣∣
t=0

(
tu � c

(
exp(tξ)

) − dcT (tu), c
(
exp(tξ)

))
= (

dcT (u),−dc(ξ)
)
,

where (ξ,u) ∈ s. The tangent space to the affine coadjoint orbit Oσ
(μ,a) at (λ,b) is equal to

T(λ,b)Oσ
(μ,a) = {

ad∗
(ξ,u)(λ,b)−Σ

(
(ξ,u), ·) ∣∣ (ξ,u) ∈ s

}
= {(

ad∗
ξ λ+ u � b − dcT (u),bξ + dc(ξ)

) ∣∣ (ξ,u) ∈ s
}
.

The symplectic structure on Oσ
(μ,a) is given by

ω+
B(λ,b)

((
ad∗

ξ λ+ u � b − dcT (u),bξ + dc(ξ)
)
,
(
ad∗
η λ+ w � b − dcT (w),bη+ dc(η)

))
= 〈

(λ,b),
[
(ξ,u), (η,w)

]〉−Σ
(
(ξ,u), (η,w)

)
= 〈

λ, [ξ,η]〉+ 〈b,uη− wξ〉 + 〈
dc(η),u

〉 − 〈
dc(ξ),w

〉
. (5.8)

Recall that the affine coadjoint orbits are the symplectic leaves of the Poisson manifold (s∗, { , }B).
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We now apply these results to the main result of this section, that is, the Hamiltonian counterpart
of Theorem 2.1

Consider a Hamiltonian function H : T ∗G × V ∗ → R right invariant under the G-action

(αh,a) �→ (
RT ∗

g (αh), θg(a)
) := (

RT ∗
g (αh),ρ

∗
g−1 (a)+ c(g)

)
. (5.9)

This G-action on T ∗G × V ∗ is induced by the S-action (5.2) on T ∗ S given by

Ψ(g,v)
(
αh, (u,a)

) = RT ∗
(g,v)

(
αh, (u,a)

)+ C(g,v)(h,u)

= (
RT ∗

g (αh), v + ρg(u),ρ
∗
g−1 (a)+ c(g)

)
.

Note also that we can think of this Hamiltonian H : T ∗G × V ∗ → R as being the Poisson reduction
of an S-invariant Hamiltonian H : T ∗ S → R by the normal subgroup {e} × V since (T ∗ S)/({e} × V )∼=
T ∗G × V ∗ .

In particular, the function Ha0 := H|T ∗G×{a0} : T ∗G → R is invariant under the induced action of
the isotropy subgroup Gc

a0
of a0 relative to the affine action θ , for any a0 ∈ V ∗ . Recall that θg(a) :=

ρ∗
g−1 (a)+ c(g) for any g ∈ G and a ∈ V ∗ . The following theorem is a generalization of Theorem 1.2

and is also a consequence of the reduction by stages method for nonequivariant momentum maps,
together with the results obtained in Section 4 and at the beginning of the present section.

Theorem 5.3. For α(t) ∈ T ∗
g(t)G and μ(t) := T ∗

e R g(t)(α(t)) ∈ g∗ , the following are equivalent:

(i) α(t) satisfies Hamilton’s equations for Ha0 on T ∗G.
(ii) The following affine Lie–Poisson equation holds on s∗:

∂

∂t
(μ,a)=

(
−ad∗

δh
δμ

μ− δh

δa
� a + dcT

(
δh

δa

)
,−a

δh

δμ
− dc

(
δh

δμ

))
, a(0)= a0,

where s is the semidirect product Lie algebra s = g� V . The associated Poisson bracket is the following
affine Lie–Poisson bracket on the dual s∗:

{ f , g}B(μ,a)=
〈
μ,

[
δ f

δμ
,
δg

δμ

]〉
+

〈
a,
δ f

δa

δg

δμ
− δg

δa

δ f

δμ

〉
+

〈
dc

(
δ f

δμ

)
,
δg

δa

〉
−

〈
dc

(
δg

δμ

)
,
δ f

δa

〉
.

As on the Lagrangian side, the evolution of the advected quantities is given by a(t)= θg(t)−1 (a0).

Proof. Recall that the momentum map relative to the canonical symplectic form on T ∗ S and to the
action

Ψ(g,v)
(
β f , (u,a)

) = (
RT ∗

g (β f ), v + ρg(u),ρ
∗
g−1 (a)+ c(g)

)
is given by

Jα
(
β f , (u,a)

) = (
T ∗L f (β f )+ u � a − dcT (u),a

)
.

The action Ψ(g,v) of S induces an action of V given by(
β f , (u,a)

) �→ (
β f , (v + u,a)

)
.
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Since V is a closed normal subgroup of S , this action admits a momentum map given by

JV
(
β f , (u,a)

) = a.

Since V is an Abelian group, the coadjoint isotropy group of a ∈ V ∗ is Va = V and the first re-
duced space (T ∗ S)aa = J−1(a)/V is symplectically diffeomorphic to the canonical symplectic mani-
fold (T ∗G,Ωcan). The action Ψ of S on T ∗ S restricts to an action Ψ a of Gc

a � V on J−1
V (a), where

Gc
a := {g ∈ G | ρ∗

g−1 (a) + c(g) = a}. Passing to the quotient spaces, this action induces an action

of Gc
a on (T ∗ S)a , which is readily seen to be the cotangent lifted action of Gc

a on T ∗G . We de-
note by Ja : (T ∗ S)a → (gc

a)
∗ the associated equivariant momentum map, where gc

a is the Lie algebra
of Gc

a . Reducing (T ∗ S)a at the point μa := μ|gc
a , we get the second reduced space ((T ∗ S)a)μa =

J−1
a (μa)/(Gc

a)μa , with symplectic form denoted by (Ωa)μa .
By the Reduction by Stages Theorem for nonequivariant momentum maps, the second reduced

space is symplectically diffeomorphic to the reduced space(
J−1
α (μ,a)/Sσ(μ,a),Ω(μ,a)

)
obtained by reducing T ∗ S by the whole group S at the point (μ,a) ∈ s∗ . Here Sσ(μ,a) denotes the
isotropy group of the affine coadjoint action with cocycle σ given in (5.6).

As shown at the beginning of this section, this reduced space is symplectically diffeomorphic to
the affine coadjoint orbit (

Oσ
(μ,a),ω

+
B
)

endowed with the affine orbit symplectic form described in (5.8). These affine coadjoint orbits are the
symplectic leaves of the Poisson manifold (s∗, { , }B).

Note finally that we can consider the right-invariant Hamiltonian H : T ∗G × V ∗ → R, as coming
from an S-invariant Hamiltonian H : T ∗ S → R.

The theorem is then a consequence of all these observations. �
Reconstruction of dynamics. We give now some details concerning the passage from the reduced
formulation (ii) to the canonical formulation (i). Let (μ(t),a(t)) ∈ g∗ × V ∗ be the solution of the affine
Lie–Poisson equations, with initial condition (μ0,a0). Then the curve α(t) := T ∗R g(t)−1 (μ(t)), where
g(t) ∈ G satisfies the linear ordinary differential equation with time-dependent coefficients

ġ(t)= T R g(t)

(
δh

δμ

)
, g(0)= e,

is the solution of Hamilton’s equations associated to Ha0 on T ∗G and with initial condition α(0)=μ0.
Note that for the curve g(t) defined above, we have a(t)= θg(t)−1 (a0).

The preceding theorem is compatible with Theorem 2.3. Indeed, we can start with a Lagrangian
La0 : T G → R as in Section 2, that is, we have a function L : T G × V ∗ → R which is right G-invariant
under the affine action (vh,a) �→ (Th R g(vh), θg(a))= (Th R g(vh),ρ

∗
g−1 (a)+ c(g)), such that La0(v g)=

L(v g ,a0). Then La0 is right invariant under the lift to T G of the right action of Gc
a0

on G . Suppose
that the Legendre transformation FLa0 is invertible and form the corresponding Hamiltonian Ha0 =
Ea0 ◦ FL−1

a0
, where Ea0 is the energy of La0 . Then the function H : T ∗G × V ∗ → R so defined is S-

invariant and one can apply this theorem. At the level of the reduced space, to a reduced Lagrangian
l :g × V ∗ → R we associate the reduced Hamiltonian h :g∗ � V ∗ → R given by

h(μ,a) := 〈μ,ξ〉 − l(ξ,a), μ= δl

δξ
.



Author's personal copy

204 F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275

Since

δh

δμ
= ξ and

δh

δa
= − δl

δa
,

we see that the affine Lie–Poisson equations for h on s∗ are equivalent to the affine Euler–Poincaré
equations (2.3) for l together with the affine advection equation

ȧ + aξ + dc(ξ)= 0.

6. Hamiltonian approach to continuum theories of perfect complex fluids

This section is the Hamiltonian version of Section 3. Recall that in Section 3 we have applied
Theorem 2.1 to the case of complex fluids. Here we apply the Hamiltonian analogue of this theorem,
namely Theorem 5.3.

Recall that for complex fluids we apply the abstract theory for G = Diff(D)�F(D,O) and V ∗ =
V ∗

1 ⊕ V ∗
2 . The representations of G on V and V ∗ are of the form

ρ(η,χ)(v,w)= (
vη,w(η,χ)

)
and ρ∗

(η,χ)−1 (a, γ )= (
aη,γ (η,χ)

)
.

This implies that the infinitesimal actions of g on V and V ∗ are of the form

(v,w)(u, ν)= (vu,wu + wν) and (a, γ )(u, ν)= (au, γ u + γ ν).

We therefore obtain the diamond operation

(v,w) � (a, γ )= (v � a + w �1 γ ,w �2 γ ).

Since the affine term has the particular form c(η,χ)= (0,C(χ)), we obtain the equalities

dc(u, ν)= (
0,dC(ν)

)
and dcT (v,w)= (

0,dC T (w)
)
.

We now compute some useful expressions in the particular case of complex fluids by using the
general formulas of Section 5.

By Theorem 5.3, we obtain that the affine Lie–Poisson bracket for complex fluids is

{ f , g}(m, κ,a, γ )=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(

ad δ f
δκ

δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

a ·
(
δ f

δa

δg

δm
− δg

δa

δ f

δm

)
μ

+
∫
D

γ ·
(
δ f

δγ

δg

δm
+ δ f

δγ

δg

δκ
− δg

δγ

δ f

δm
− δg

δγ

δ f

δκ

)
μ

+
∫
D

(
dC

(
δ f

δκ

)
· δg

δγ
− dC

(
δg

δκ

)
· δ f

δγ

)
μ.
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The first four terms give the Lie–Poisson bracket on the dual Lie algebra([
X(D)�F(D,o)

]
� [V 1 ⊕ V 2]

)∗ ∼=Ω1(D)× F(D,o∗)× V ∗
1 × V ∗

2 .

The last term is due to the presence of the affine term C in the representation. Since C depends only
on the group F(D,O), this term does not involve the functional derivatives with respect to m.

The symplectic leaves of this bracket are the affine coadjoint orbits in the dual Lie algebra
([X(D)�F(D,o)]� [V 1 ⊕ V 2])∗ . The expression of the tangent spaces and of the affine orbit sym-
plectic forms involves the bilinear form Σ which is defined in this case on [X(D)�F(D,o)]� [V 1 ⊕
V 2] by

Σ
(
(u1, ν1, v1,w1), (u2, ν2, v2,w2)

) = dC(ν2) · w1 − dC(ν1) · w2.

For a Hamiltonian h = h(m, κ,a, γ ) :Ω1(D) × F(D,o∗) × V ∗
1 × V ∗

2 → R, the affine Lie–Poisson
equations of Theorem 5.3 become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −£££ δh

δm
m − div

(
δh

δm

)
m − κ · d

δh

δκ
− δh

δa
� a − δh

δγ
�1 γ ,

∂

∂t
κ = −ad∗

δh
δκ

κ − div

(
δh

δm
κ

)
− δh

δγ
�2 γ + dC T

(
δh

δγ

)
,

∂

∂t
a = −a

δh

δm
,

∂

∂t
γ = −γ δh

δm
− γ

δh

δκ
− dC

(
δh

δκ

)
.

(6.1)

As explained in the previous section, when the reduced Hamiltonian h is defined by a Lagrangian
l through the Legendre transformation

h(m, κ,a, γ )= 〈
(m, κ), (u, ν)

〉 − l(u, ν,a, γ ), (m, κ)=
(
δl

δu
,
δl

δν

)
,

we have

δh

δm
= u,

δh

δκ
= ν,

δh

δa
= − δl

δa
,

δh

δγ
= − δl

δγ
.

Using these equalities, we see directly that the affine Lie–Poisson equations (6.1) are equivalent to the
affine Euler–Poincaré equations (3.4), together with the advection equations (3.5).

Using formula (5.5), the momentum map of the affine right action of the semidirect product
[Diff(D)�F(D,O)]� [V 1 ⊕ V 2] on its cotangent bundle is computed to be

Jα
(
mη, κχ , (v,w), (a, γ )

)
= (

T ∗η ◦ mη + T ∗χ ◦ κχ + v � a + w �1 γ , T ∗Lχ ◦ κχ + w �2 γ − dC T (w), (a, γ )
)
.

In this formula we need to elaborate on the meaning of the expression T ∗χ ◦ κχ ∈Ω1(D). Thus, by
definition, for any ux ∈ TxD we set 〈(T ∗χ ◦ κχ )(x),ux〉 := 〈T ∗

xχ(κχ (x)),ux〉 = 〈κχ (x), Txχ(ux)〉. In this
last expression, recall that κχ :D → T ∗O covers χ :D → O.

By the general theory, the nonequivariance cocycle of Jα is given by σ = −φ, where φ is computed
(using Lemma 5.2) to be
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φ :
[
Diff(D)�F(D,O)

]
� [V 1 ⊕ V 2] →Ω1(D)× F(D,o∗)× V ∗

1 × V ∗
2 ,

φ(η,χ, v,w)= (
dcT (v,w)− (v,w) � c(η,χ),−c(η,χ)

)
= (−w �1 C(χ),dC T (w)− w �2 C(χ),0,−C(χ)

)
.

One can also compute the momentum map J(a0,γ0) appearing in the proof of Theorem 5.3 at the
second stage of reduction. It is associated to the cotangent lifted action of the isotropy group(

Diff(D)�F(D,O)
)
(a0,γ0)

= {
(η,χ)

∣∣ (a0η,γ0(η,χ)+ C(χ)
) = (a0, γ0)

}
on the canonical cotangent bundle T ∗(Diff(D)�F(D,O)). It is given by

J(a0,γ0)(mη, κχ )= (T ∗η ◦ mη + T ∗χ ◦ κχ , T ∗Lχ ◦ κχ ). (6.2)

Basic example. As in the example given in Section 3, we consider the particular case when V ∗
2 =

Ω1(D,o) and the affine representation is

(a, γ ) �→ (
aη,Adχ−1 η∗γ + χ−1Tχ

)
. (6.3)

Recall that in this particular case we have

γ u = £££uγ = dγ
(
γ (u)

) + iudγ γ ,

γ ν = −adν γ , dC(ν)= dν, and dC T (w)= −div(w).

The diamond operations are given by

w �1 γ = (
divγ w

) · γ − w · i_ dγ γ and w �2 γ = −Tr
(
ad∗
γ w

)
.

The affine Lie–Poisson equations (6.1) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −£££ δh

δm
m − div

(
δh

δm

)
m − κ · d

δh

δκ
− δh

δa
� a

−
(

divγ
δh

δγ

)
γ + δh

δγ
· i_ dγ γ ,

∂

∂t
κ = −ad∗

δh
δκ

κ − div

(
δh

δm
κ

)
− divγ

δh

δγ
,

∂

∂t
a = −a

δh

δm
,

∂

∂t
γ = −dγ

(
γ

(
δh

δm

))
− i δh

δm
dγ γ − dγ

δh

δκ
.

(6.4)

So we recover, by a reduction from a canonical situation, Eqs. (3.44) of [13], up to sign conventions,
as well as their Hamiltonian structure. In matrix notation and with respect to local coordinates we
have ⎡⎢⎢⎣

ṁi
κ̇a

ȧ
γ̇ a

i

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
mk∂i + ∂kmi κb∂i (� � a)i ∂ jγ

b
i − γ b

j,i

∂kκa κc Cc
ba 0 δb

a∂ j − Cb
caγ

c
j

a�∂k 0 0 0
γ a

k ∂i + γ a
i,k δa

b∂i + Ca
cbγ

c
i 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
(δh/δm)k

(δh/δκ)b

δh/δa

(δh/δγ ) j
b

⎤⎥⎥⎦ . (6.5)
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This matrix appears in [16, formula (2.26a)] and in [13, formula (3.46)] as the common Hamiltonian
structure for various hydrodynamical systems. For another derivation of this Hamiltonian structure
based on reduction see [3].

The associated affine Lie–Poisson bracket is

{ f , g}(m, κ,a, γ )=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(

ad δ f
δκ

δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

a ·
(
δ f

δa

δg

δm
− δg

δa

δ f

δm

)
μ

+
∫
D

[(
dγ

δ f

δκ
+ £££ δ f

δm
γ

)
· δg

δγ
−

(
dγ

δg

δκ
+ £££ δg

δm
γ

)
· δ f

δγ

]
μ. (6.6)

The momentum map is computed to be

Jα
(
mη, κχ , (v,w), (a, γ )

)
= (

T ∗η ◦ mη + T ∗χ ◦ κχ + v � a + (
divγ w

) · γ − w · i_ dγ γ , T ∗Lχ ◦ κχ + divγ w, (a, γ )
)
.

The B-representation. As on the Lagrangian side, we consider the case where the Hamiltonian is
given in terms of the curvature B = dγ γ . Recall that the affine representation of Diff(D)�F(D,O)
on a connection one-form on the trivial principal O-bundle O × D → D induced by γ ∈Ω1(D,o) is

γ (η,χ) := Adχ−1 η∗γ + χ−1Tχ.

It induces the linear representation

B(η,χ) := Ad∗
χ−1 η

∗B

on the curvature B = dγ γ . The Lie–Poisson reduction for semidirect products (see Theorem 1.2) gives
the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −£££ δh

δm
m − div

(
δh

δm

)
m − κ · d

δh

δκ
− δh

δa
� a − div

δh

δB
· i_ B + δh

δB
· i_ dB,

∂

∂t
κ = −ad∗

δh
δκ

κ − div

(
δh

δm
κ

)
+ Tr

(
ad∗

B
δh

δB

)
,

∂

∂t
a = −a

δh

δm
,

∂

∂t
B = −£££ δh

δm
B + ad δh

δκ
B.

(6.7)
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Using formulas (3.17), we can prove, as on the Lagrangian side, that the Lie–Poisson equations (6.7)
are compatible with the affine Lie–Poisson equations (6.4). In matrix notation and with respect to
local coordinates, the Lie–Poisson equations read⎡⎢⎢⎣

ṁi
κ̇a

ȧ
Ḃa

i j

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
mk∂i + ∂kmi κb∂i (� � a)i Mb

ikl
∂kκa κcCc

ba 0 −Cb
ca Bc

kl
a�∂k 0 0 0
Na

ijk Ca
cb Bc

i j 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
(δh/δm)k

(δh/δκ)b

δh/δa
(δh/δB)kl

b

⎤⎥⎥⎦ ,
where

Mb
ikl = −Bb

kl,i + ∂k Bb
il − ∂l B

b
ik and Na

ijk = Ba
ij,k + Ba

kj∂i − Ba
ki∂ j .

As before, we recover by a reduction from a canonical cotangent bundle, the Hamiltonian struc-
tures appearing in [16, formula (2.28)] and [13, p. 152], and we have explained in which sense this
matrix is Lie–Poisson, as already noted in these papers. More precisely, we have found the Lie group
which corresponds to the Lie algebra underlying this Hamiltonian structure. This group is given by[

Diff(D)�F(D,O)
]
�

[
V 1 ⊕ Ω2(D,o∗)

]
,

where Diff(D)�F(D,O) acts on Ω2(D,o)= [Ω2(D,o∗)]∗ by the representation

B �→ Adχ−1 η∗B,

and where the space V ∗
1 is only acted upon by the subgroup Diff(D).

The Lie–Poisson bracket is computed to be

{ f , g}(m, κ,a, B)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(

ad δ f
δκ

δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

a ·
(
δ f

δa

δg

δm
− δg

δa

δ f

δm

)
μ

+
∫
D

[
(£££ δ f

δm
B − ad δ f

δκ
B) · δg

δB
− (£££ δg

δm
B − ad δg

δκ
B) · δ f

δB

]
μ.

Using formulas (3.16) and

δ f

δγ
= −divγ

δ f

δB
,

we obtain that the map

(m, ν,a, γ ) �→ (m, ν,a,dγ γ )

is a Poisson map relative to the affine Lie–Poisson bracket { , } given in (6.6) and the Lie–Poisson
bracket associated to the B-representation.



Author's personal copy

F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275 209

7. The circulation theorems

The Kelvin–Noether theorem is a version of the Noether theorem that holds for solutions of the
Euler–Poincaré equations. For example, an application of this theorem to the compressible adiabatic
fluid gives the Kelvin circulation theorem

d

dt

∮
γt

u� =
∮
γt

T ds,

where γt ⊂ D is a closed curve which moves with the fluid velocity u, T = ∂e/∂s is the temperature,
and e, s denote respectively the specific internal energy and the specific entropy. The Kelvin–Noether
theorem associated to Euler–Poincaré reduction for semidirect products is presented in [17]. We now
adapt this result to the case of affine Euler–Poincaré reduction.

Kelvin–Noether theorem. We work under the hypotheses and the notations of Section 2. Let C be
a manifold on which G acts on the left and suppose we have an equivariant map K :C × V ∗ → g∗∗ ,
that is, for all g ∈ G , a ∈ V ∗ , c ∈ C , we have〈

K
(

gc, θg(a)
)
,μ

〉 = 〈
K(c,a),Ad∗

g μ
〉
,

where gc denotes the action of G on C , and θg is the affine action of G on V ∗ .
Define the Kelvin–Noether quantity I :C × g × V ∗ → R by

I(c, ξ,a) :=
〈
K(c,a),

δl

δξ
(ξ,a)

〉
.

The same proof as in [17] yields the following result.

Theorem 7.1. Fixing c0 ∈ C , let ξ(t),a(t) satisfy the affine Euler–Poincaré equations (2.3) and define g(t) to
be the solution of ġ(t)= T R g(t)ξ(t) and, say, g(0)= e. Let c(t)= g(t)c0 and I(t) := I(c(t), ξ(t),a(t)). Then

d

dt
I(t)=

〈
K
(
c(t),a(t)

)
,
δl

δa
� a − dcT

(
δl

δa

)〉
.

As we will see in the applications, some examples do not admit a Lagrangian formulation. Nev-
ertheless, a Kelvin–Noether theorem is still valid for the Hamiltonian formulation. Keeping the same
notations as before, the Kelvin–Noether quantity is now the mapping J :C × g∗ × V ∗ → R defined by

J (c,μ,a) := 〈
K(c,a),μ

〉
,

and we have the following result.

Theorem 7.2. Fixing c0 ∈ C , let μ(t),a(t) satisfy the affine Lie–Poisson equations of Theorem 5.3 and define
g(t) to be the solution of

ġ(t)= T R g(t)

(
δh

δμ

)
, g(0)= e.

Let c(t)= g(t)c0 and J (t) := J (c(t),μ(t),a(t)). Then

d

dt
J (t)=

〈
K
(
c(t),a(t)

)
,− δh

δa
� a + dcT

(
δh

δa

)〉
.
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This result follows from the reconstruction of dynamics as described in Section 5. Of course, when
the Hamiltonian h comes from a Lagrangian by Legendre transformation, then this theorem is a corol-
lary of Theorem 7.1.

In the case of dynamics on the group G = Diff(D), the standard choice for the equivariant map K
is

〈
K(c,a),m

〉 := ∮
c

1

ρ
m, (7.1)

where c ∈ C = Emb(S1,D), the manifold of all embeddings of the circle S1 in D, m ∈ Ω1(D), and
ρ is advected as ( Jη)(ρ ◦ η). There is a generalization of this map in the case of the group G =
Diff(D)�F(D,O), see §7 in [8]. Therefore, Theorems 7.1 and 7.2 can be applied in the case of the
affine Euler–Poincaré and Lie–Poisson equations (3.4) and (6.1). Nevertheless we shall not use this
point of view here and we apply the Kelvin–Noether theorem only to the first component of the
group G , namely the group Diff(D), and we obtain the following result.

Theorem 7.3. Consider the affine Euler–Poincaré equations for complex fluids (3.4). Suppose that one of the
linear advected variables, say ρ , is advected as ( Jη)(ρ ◦ η). Then, using the map (7.1), we have

d

dt

∮
ct

1

ρ

δl

δu
=

∮
ct

1

ρ

(
− δl

δν
· dν + δl

δa
� a + δl

δγ
�1 γ

)
,

where ct is a loop in D which moves with the fluid velocity u.
Similarly, consider the affine Lie–Poisson equations for complex fluids (6.1). Suppose that one of the linear

advected variables, say ρ , is advected as ( Jη)(ρ ◦ η). Then, using the map (7.1), we have

d

dt

∮
ct

1

ρ
m =

∮
ct

1

ρ

(
−κ · d

δh

δκ
− δh

δa
� a − δh

δγ
�1 γ

)
,

where ct is a loop in D which moves with the fluid velocity u, defined by the equality

u := δh

δm
.

γ -circulation. The γ -circulation is associated to the equation

∂

∂t
γ + £££uγ = −dν + adν γ .

Let ηt be the flow of the vector field u, let c0 be a loop in D and let ct := ηt ◦ c0. Then, by change of
variables, we have

d

dt

∮
ct

γ = d

dt

∮
c0

η∗
t γ =

∮
c0

η∗
t (γ̇ + £££uγ )=

∮
c0

η∗
t (−dν + adν γ )=

∮
ct

adν γ ∈ o.
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8. Applications

8.1. Spin systems

We thank D. Holm for challenging us with this example as a simple model for many applications.
It illustrates the applicability of Theorems 2.1 and 5.3 in a very simple situation that exhibits, nev-
ertheless, some of the key difficulties of more complicated fluid models. Let D be a manifold and O
a Lie group thought of as the “order parameters” of some fluid model. Take G = F(D,O) � χ and
V ∗ =Ω1(D,o) � γ . Consider the affine G-representation on V ∗ given by

θχ (γ ) := Adχ−1 γ + χ−1Tχ.

This is simply the gauge transformation of the connection on the trivial principal O-bundle O ×D →
D induced by γ (see (3.8)). The associated diamond operation is given by

w � γ = −Tr
(
ad∗
γ w

)
.

Since c(χ)= χ−1Tχ we obtain, as in the case of complex fluids,

dc(ν)= dν and dcT (w)= −div w.

As before, we use the notations ν ∈ F(D,o) and w ∈ X(D,o∗). The affine Euler–Poincaré equations
(2.3) become

∂

∂t

δl

δν
= −ad∗

ν

δl

δν
+ divγ

δl

δγ
, (8.1)

where (ad∗
ν κ)(x)= ad∗

ν(x)(κ(x)). The evolution equation for γ is

∂

∂t
γ + dγ ν = 0.

Similarly, the affine Lie–Poisson equations of Theorem 5.3 become⎧⎪⎪⎨⎪⎪⎩
∂

∂t
κ = −ad∗

δh
δκ

κ − divγ
δh

δγ
,

∂

∂t
γ + dγ

δh

δκ
= 0.

(8.2)

In the particular case D = R3 and O = SO(3), this system of equations appears in the context of
the macroscopic description of spin glasses, see Eqs. (28) and (29) in [6] and references therein. See also
Eqs. (3.9), (3.10) in [18], system (1) in [19] and references therein for an application to magnetic media.
In this context, the variable κ is interpreted as the spin density, ν is the infinitesimal spin rotation, and
the curvature dγ γ is the disclination density.

Interesting choices for the Lagrangian are

l⊥(ν,γ )= 1

2

∫
D

∥∥[ν,γ ]∥∥2
μ, l‖(ν,γ )= 1

2

∫
D

∥∥k(ν,γ )
∥∥2
μ,

and

lSG(ν,γ )= ε

2

∫
D

‖ν‖2μ− ρ

2

∫
D

‖γ ‖2μ. (8.3)
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In the expression of the Lagrangian l⊥ , [ν,γ ] denotes the o-valued one-form on D given by vx �→
[ν(x), γ (x)(vx)] ∈ o. The norm is associated to the metric (gk), on the vector bundle of o-valued
one-forms on D, induced by a Riemannian metric g on D and by an Ad-invariant inner product k
on o. More precisely, the metric (gk) on the vector bundle of o-valued k-forms on D is given in
the following way. The Riemannian metric g induces a Riemannian metric g on the vector bundles
ΛkD → D of exterior k-forms on D. For αx, βx ∈Λk(D,o)x , we can write αx = αa fa and βx = βa fa ,
where { fa} is a basis of o and αa, βa ∈ (Λk M)x . So we define

(gk)x(αx, βx) := kab g
(
αa, βb),

where kab := k( fa, fb). This construction is independent of the basis. If the manifold is taken to be R

and if O = SO(3), then the Lagrangian l⊥ reads

l⊥(ν,γ )= 1

2

∞∫
−∞

‖ν × γ ‖2μ.

This choice is reminiscent of the Skyrme model, a nonlinear topological model of pions in nuclear
physics (see [26]).

In the expression of the Lagrangian l‖ , k(ν,γ ) denotes the one-form on D given by vx �→
k(ν(x), γ (x)(vx)). The norm is taken relative to the Riemannian metric g on D.

Interestingly, when the Lagrangians l⊥ or l‖ are used, the affine Euler–Poincaré equations (8.1)
simplify to

∂

∂t

δl

δν
= div

δl

δγ
, (8.4)

where on the right-hand side we have the usual divergence operator in R3.
In the expression of the Lagrangian lSG , we used the symbols ε and ρ for the constants of sus-

ceptibility and the rigidity. The norms are respectively associated to the inner product k and to the
metric (gk). The associated Hamiltonian reads

hSG(κ,γ )= 1

2ε

∫
D

‖κ‖2μ+ ρ

2

∫
D

‖γ ‖2μ,

and is used, with O = SO(3), in the context of the macroscopic description of spin glasses, see expres-
sion (26) in [6]. In this case the affine Lie–Poisson equation (8.2) reads⎧⎪⎪⎨⎪⎪⎩

∂

∂t
κ = −ρ divγ �,

∂

∂t
γ + 1

ε
dγ κ� = 0,

(8.5)

where γ � ∈ X(D,o∗) and κ� ∈ F(D,o) are associated to γ and κ via the metrics.
More general expressions, such as

h(κ,γ )= 1

2ε

∫
D

‖κ‖2μ+ 1

2ε1

∫
D

‖κ‖4μ+ ρ

2

∫
D

‖γ ‖2μ+ ρ1

2

∫
D

‖γ ‖4μ+ q

2

∫
D

‖κ · γ ‖2μ,

are used in the theory of magnetic media, see e.g. Eq. (3) in [19].
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Lagrangian reduction. Consider a Lagrangian

L : TF(D,O)×Ω1(D,o)→ R, L = L(νχ ,γ )

such that, for all ψ ∈ F(D,O) we have

L
(
T Rψ ◦ νχ ,Adψ−1 γ +ψ−1Tψ

) = L(νχ ,γ ).

Let χ be a curve in F(D,O) and consider the curve ν := T Rχ−1 ◦ χ̇ . For γ0 ∈Ω1(D,o) consider the
solution γ of the equation

∂

∂t
γ + dγ ν = 0,

with initial condition γ0. This solution is given by γ = Adχ γ0 + χ Tχ−1. Then, by Theorem 2.1, χ is
a solution of the Euler–Lagrange equations associated to Lγ0 if and only if ν is solution of (8.1). Note
that in the special case γ0 = 0, the evolution of γ is given by the important relation

γ = χ Tχ−1

and the disclination density vanishes, that is, dγ + [γ ,γ ] = 0. This hypothesis is usually assumed in
the examples treated in [6] and [19], and is referred to as the Maurer–Cartan constraint. Recall that
the vanishing of the curvature is preserved by the flow of (8.2). In our approach the variable χ can
be interpreted as the Lagrangian evolution of the spin.

Hamiltonian reduction. Consider a Hamiltonian

H : T ∗F(D,O)×Ω1(D,o)→ R, H = H(κχ ,γ )

such that, for all ψ ∈ F(D,O) we have

H
(
T ∗Rψ−1 ◦ κχ ,Adψ−1 γ +ψ−1Tψ

) = H(κχ ,γ ).

Then, by Theorem 5.3, a curve κχ ∈ T ∗F(D,O) is a solution of the Hamilton equations associated
to Hγ0 if and only if the curve

κ := T ∗Rχ ◦ κχ
is a solution of the affine Lie–Poisson equation (8.2).

The associated affine Lie–Poisson bracket is given by

{ f , g}(κ,γ )=
∫
D

κ ·
(

ad δ f
δκ

δg

δκ

)
μ+

∫
D

(
dγ

δ f

δκ
· δg

δγ
− dγ

δg

δκ
· δ f

δγ

)
μ.

Thus, we have recovered the Poisson bracket of [6], by reduction of the canonical structure. The
momentum map is

Jα
(
κχ , (w, γ )

) = (
T ∗Lχ ◦ κχ + divγ w, γ

)
and the reduced symplectic spaces are affine coadjoint orbits in (F(D,o)�Ω1(D,o))∗ . Using for-
mula (5.7), we obtain that they are given by

Oσ
(κ,γ ) = {(

Ad∗
χ κ + divθχ (γ ) w, θχ (γ )

) ∣∣ (χ,w) ∈ F(D,O)�X(D,o∗)
}
.
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8.2. Yang–Mills magnetohydrodynamics

Magnetohydrodynamics models the motion of an electrically charged and perfectly conducting
fluid. In the balance of momentum law, one must add the Lorentz force of the magnetic field created
by the fluid in motion. In addition, the hypothesis of infinite conductivity leads one to the conclusion
that magnetic lines are frozen in the fluid, i.e. that they are transported along the particle paths. This
hypothesis leads to the equation

∂

∂t
B + £££u B = 0.

This model can be extend to incorporate non-Abelian Yang–Mills interactions and is known under the
name of Yang–Mills magnetohydrodynamics; see [14] for a derivation of this model. Recall that for
Yang–Mills theory, the field B is seen as the curvature of a connection A on a principal bundle. Clearly
the connection A represents the variable γ in the general theory developed previously, on which the
automorphism group acts by affine transformations. This shows that the abstract formalism developed
previously is very natural in the context of Yang–Mills theory. Note that there is a more general
model of fluid motion with Yang–Mills charged particles, namely the Euler–Yang–Mills equations. The
Hamiltonian structure of these equations is given in [10], see also [8] for the associated Lagrangian
and Hamiltonian reductions.

As remarked in [16], at the reduced level, the Hamiltonian structure of Yang–Mills magnetohy-
drodynamics is given by the matrix (6.5). In this paragraph we carry out the corresponding affine
Lie–Poisson reduction.

The group G is chosen to be the semidirect product of the diffeomorphism group with the group of
O-valued function on D, that is, G = Diff(D)�F(D,O). The order parameter Lie group O represents
here the symmetry group of particle interaction. For example, O = S1 corresponds to electromagnetism,
O = SU(2) and O = SU(3) correspond to weak and strong interactions, respectively. The advected
quantities are the mass density ρ , the specific entropy s, and the potential of the Yang–Mills field A.
Therefore, we set

a = (ρ, s) ∈ V ∗
1 = F(D)× F(D) and A = γ ∈Ω1(D,o).

The action of (η,χ) ∈ G on (ρ, s) ∈ V ∗
1 is the usual right representation of the fluid relabeling group

on the mass density and entropy. It is given by

(ρ, s)(η,χ)= (
Jη(ρ ◦ η), s ◦ η).

The right affine action of (η,χ) ∈ G on A ∈Ω1(M,o) is given, as in the example (6.3), by

A �→ Adχ−1 η∗ A + χ−1Tχ.

Since the variable κ ∈ F(D,o∗) is interpreted as the gauge-charge density, we use the notations
Q ∈ F(D,o∗)= T ∗

0F(D,O) and Qχ ∈ T ∗
χF(D,O).

The Hamiltonian H(ρ,s,A) : T ∗(Diff(D)�F(D,O))→ R is given by

H(ρ,s,A)(mη, Qχ )= 1

2

∫
D

1

ρ
‖mη‖2μ+

∫
D

ρe
(
ρ
(

Jη−1), s
)
μ

+ 1

2

∫
D

∥∥dA A · Tη−1
∥∥2
( Jη)μ, (8.6)

where e denotes the specific internal energy, the norm in the first term is associated to a Riemannian
metric g on D, and the norm in the third term is associated to the metric (gk), on the vector bundle
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of o-valued k-forms on D, induced by the metric g and by an Ad-invariant inner product k on o. For
details see Section 8.1.

The metric (gk) can be used to identify Ωk(D,o∗) and its dual Ωk(D,o), by raising and lowering
indices. Through this identification, the operators div and divA act also on Ωk(D,o). The Hamiltonian
H(mη, Qχ ,ρ, s, A) is invariant under the right action of (ϕ,ψ) given by

(mη, Qχ ,ρ, s, A)

�→ (
Jϕ(mη ◦ ϕ), Jϕ(T ∗ Rψ−1 ◦ Qχ ◦ ϕ), Jϕ(ρ ◦ ϕ), s ◦ ϕ,Adψ−1 ϕ∗ A +ψ−1Tψ

)
.

Therefore, the hypotheses of Theorem 5.3 are satisfied and the reduced Hamiltonian h :Ω1(D) ×
F(D,o∗)× V ∗

1 × V ∗
2 → R is given by

h(m, Q ,ρ, s, A)= 1

2

∫
D

1

ρ
‖m‖2μ+

∫
D

ρe(ρ, s)μ+ 1

2

∫
D

∥∥dA A
∥∥2
μ,

where the norms are respectively associated to the metrics g and (gk). We now compute the affine
Lie–Poisson equations (6.4) associated to this Hamiltonian. The functional derivatives are

u := δh

δm
= 1

ρ
m�, ν := δh

δQ
= 0

and

δh

δρ
= −1

2
‖u‖2 + e + ρ

∂e

∂ρ
,

δh

δs
= ρ

∂e

∂s
,

δh

δA
= −divA dA A,

where divA is defined by (3.14). The advection equations are

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
s + ds(u)= 0,

∂

∂t
A + dA(A(u)

)+ iu B = 0.

The equation for the gauge charge is

∂

∂t
Q = −div(Q u)+ divA divA dA A = −div(Q u).

Indeed, for all f ∈ F(D,o) we have∫
D

k
(
divA divA dA A, f

)
μ=

∫
D

(gk)
(
dA A,dAdA f

)
μ=

∫
D

(gk)
(

B, [B, f ])μ= 0,

where we used the equality dAdA f = [B, f ] for B = dA A and the fact that, in an orthonormal frame
with respect to g , we have

(gk)
(

B, [B, f ]) = Ba
ij[B, f ]b

i jkab = Ba
ij[Bij, f ]bkab

= k
(

Bij, [Bij, f ]) = −k
([Bij, Bij], f

) = 0.

This proves that divA divA dA A = 0.
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Using the advection equation for ρ we obtain the equality

(
∂

∂t
m + £££um + (div u)m

)�
= ρ

(
∂

∂t
u + ∇uu + ∇uT · u

)
.

We also have

−
(
δh

δρ
� ρ + δh

δs
� s

)�
= ρ

2
grad‖u‖2 − ρ grad e − ρ grad

(
ρ
∂e

∂ρ

)
+ ρ

∂e

∂s
grad s

= ρ
(∇uT · u

)− ρ grad

(
ρ
∂e

∂ρ

)
− ρ

∂e

∂ρ
gradρ

= ρ
(∇uT · u

)− grad

(
ρ2 ∂e

∂ρ

)
and

δh

δA
�1 A =

(
divA δh

δA

)
A − δh

δA
· i_ dA A

= 0 + (gk)
(
divA dA A, i_ dA A

)
.

Therefore we obtain that the first line of (6.4) becomes

∂

∂t
u + ∇uu = − 1

ρ

(
grad p + (gk)

(
i_ B,divA B

)�)
,

where B = dA A and p = ρ2 ∂e
∂ρ . In summary, we have obtained the equations of Yang–Mills magneto-

hydrodynamics

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = − 1

ρ

(
grad p + (gk)

(
i_ B,divA B

)�)
, B = dA A,

∂

∂t
Q + div(Q u)= 0,

∂

∂t
A + dA(A(u)

)+ iu B = 0,

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
s + ds(u)= 0.

(8.7)

We now treat the particular case of magnetohydrodynamics, that is, the case O = S1. In order to
recover the standard equations we suppose that D is three-dimensional. In this case we can define
the magnetic potential A := A� ∈ X(D) and the magnetic field B := (�B)� ∈ X(D). Since the group is
Abelian, covariant differentiation coincides with usual differentiation and the equality dA A = B reads
curl A = B. Using the identities (div B)� = − curl B and (iu B)� = B × u we obtain

g(i_ B,div B)� = −(i(div B)� B)� = B × curl B.

Suppose that all particles have mass m. The electric charge q is such that Q = ρ q
m , therefore the

equation for Q in (8.7) becomes

∂

∂t
q + dq(u)= 0.
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If we suppose that at time t = 0 all the particles have the same charge, then this charge remains
constant for all time. By making use af these remarks and hypotheses, Eqs. (8.7) become⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = − 1

ρ
(grad p + B × curl B), B = curl A,

∂

∂t
A + grad

[
g(A,u)

]+ B × u = 0,

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
s + ds(u)= 0.

(8.8)

Thus, we have recovered the equations for magnetohydrodynamics.
Turning back to the general case and using Theorem 5.3, we obtain the following result.

Hamiltonian reduction for Yang–Mills magnetohydrodynamics. A smooth path (mη, Qχ ) ∈
T ∗[Diff(D)�F(D,O)] is a solution of Hamilton’s equations associated to the Hamiltonian H(ρ0,s0,A0)

given in (8.6) if and only if the curve(
ρu�, Q

) =: (m, Q ) := J
(
η−1)(mη ◦ η−1, T ∗Rχ◦η−1

(
Qχ ◦ η−1))

is a solution of the system (8.7) with initial conditions (ρ0, s0, A0).
The evolution of the advected quantities is given by

ρ = J
(
η−1)(ρ0 ◦ η−1), s = s0 ◦ η−1,

A = Adχ◦η−1 η∗ A0 + (
χ ◦ η−1)T

(
χ−1 ◦ η−1) = η∗

(
Adχ A0 + χ Tχ−1).

This theorem is interesting from two points of view. Firstly, it allows us to recover the non-canonical
Hamiltonian structure given in [16] by a reduction from a canonical cotangent bundle. Secondly,
it generalizes to the non-Abelian case the Hamiltonian reduction for magnetohydrodynamics given
in [24].

The associated affine Lie–Poisson bracket is that given in (6.6), where the third term takes the
explicit form∫

D

ρ

(
d
(
δ f

δρ

)
δg

δm
− d

(
δg

δρ

)
δ f

δm

)
μ+

∫
D

s

(
div

(
δ f

δs

δg

δm

)
− div

(
δg

δs

δ f

δm

))
μ.

Since the Hamiltonian depends on A only through its curvature, the equations can be formulated
using the B-representation. One simply replaces the equation for A by those for its curvature B ,
namely,

∂

∂t
B + £££u B = 0.

In particular, we obtain that the force term (gk)(i_ B,divA B)� depends only on the curvature B and
not on the connection one-form A.

In the particular case of magnetohydrodynamics, the evolution equation of B reads

∂

∂t
B + curl(B × u)= 0.

In the general case of Yang–Mills magnetohydrodynamics, the Kelvin–Noether theorem gives

d

dt

∮
ct

u� =
∮
ct

T ds −
∮
ct

1

ρ
(gk)

(
i_ B,divA B

)
,
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and the γ -circulation gives

d

dt

∮
ct

A = 0,

where ct is a loop which moves with the fluid velocity u, that is, ct = ηt ◦ c0.

8.3. Hall magnetohydrodynamics

As we will see, Hall magnetohydrodynamics does not require the use of the affine Lie–Poisson
reduction developed in this paper. However, in view of the next paragraph about superfluids, we
quickly recall here from [11] the Hamiltonian formulation of these equations. We will obtain this
Hamiltonian structure by a Lie–Poisson reduction for semidirect products, associated to the direct
product group G := Diff(D)× Diff(D). The advected quantities are

(ρ, s;n) ∈ F(D)× F(D)× F(D).

The variables ρ and s are, as before, the mass density and the specific entropy, on which only the first
diffeomorphism group acts as

(ρ, s) �→ (
( Jη)(ρ ◦ η), s ◦ η).

The variable n is the electron charge density, on which only the second diffeomorphism group acts as

n �→ ( Jξ)(n ◦ ξ).

By Lie–Poisson reduction, for a Hamiltonian h = h(m,ρ, s;n,n) defined on the dual Lie algebra([
X(D)�

(
F(D)× F(D)

)]× [
X(D)�F(D)

])∗ ∼= [
Ω1(D)× F(D)× F(D)

] × [
Ω1(D)× F(D)

]
,

we obtain the coupled Lie–Poisson equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −£££ δh

δm
m − div

(
δh

δm

)
m − δh

δρ
� ρ − δh

δs
� s,

∂

∂t
ρ = −div

(
δh

δm
ρ

)
,

∂

∂t
s = −ds

(
δh

δm

) (8.9)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t
n = −£££ δh

δn
n − div

(
δh

δn

)
n − δh

δn
� n,

∂

∂t
n = −div

(
δh

δn
n

)
.

(8.10)

Here m is the total momentum density of the fluid and, as will be discussed below, n is interpreted
as the momentum density associated to the electron fluid velocity v := δh/δn.

From the second Lie–Poisson system we obtain that the evolution of n/n is given by

∂

∂t
(n/n)= −£££ δh

δn
(n/n)− grad

δh

δn
. (8.11)
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The Hamiltonian for Hall magnetohydrodynamics is

h(m,ρ, s;n,n) := 1

2

∫
D

1

ρ

∥∥∥∥m − aρ

R
A

∥∥∥∥2

μ+
∫
D

ρe(ρ, s)μ+ 1

2

∫
D

‖dA‖2μ, (8.12)

where the one-form A, defined by

A := R
n

n
∈Ω1(D),

is the magnetic vector potential, the constants a, R are respectively the ion charge-to-mass ratio and the
Hall scaling parameter, and the norms are taken with respect to a fixed Riemannian metric g on D.
The functional derivatives are computed to be

u := δh

δm
= 1

ρ
m� − a

R
A�,

δh

δρ
= −1

2
‖u‖2 − a

R
A · u + e + ρ

∂e

∂ρ
,

δh

δs
= ρ

∂e

∂s
,

and

v := δh

δn
= −aρ

n
u − R

n
(div B)�,

δh

δn
= aρ

n2
n · u + R

n2
n · (div B)� = − 1

R
A · v, B := dA.

Recall from (3.14) that div is defined on Ωk(D) as the negative of the adjoint of the exterior differen-
tial d on Ωk(D). However, the metric g on D gives an identification of Ωk(D) with Ωk(D) and hence
we can regard div as defined also on Ωk(D). It follows that on Ωk(D) we have div = −δ, where δ is
the usual codifferential induced by g and d.

The variable v is interpreted as the electron fluid velocity. The advection equations for ρ, s, and n
are given by

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
s + ds(u)= 0, and

∂

∂t
n + div(nv)= 0.

Using the expression of v in terms of u we obtain that div(nv) = −a div(ρu) (since B = dA implies
that div((div B)�)= 0) which proves that

∂

∂t
(aρ + n)= 0.

Thus, if we assume that aρ0 + n0 = 0 for the initial conditions, we have aρ + n = 0 for all time.
Using the definition of A and (8.11), we obtain that the equation for A is given by

∂

∂t
A = −iv B.

Using the equations for A and ρ , we obtain the following equation for u:

∂

∂t
u + ∇uu = − 1

ρ

(
grad p − aρ

R
(iv−u B)�

)
, p = ρ2 ∂e

∂ρ
.
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Suppose that the initial conditions ρ0 and n0 verify the equality aρ0 +n0 = 0. As we have seen above,
the equality remains valid for all times, and we obtain v = u + R

aρ (div B)� . Using this, the equations
above simplify and we obtain the system

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = − 1

ρ

(
grad p − (i(div B)� B)�

)
,

∂

∂t
ρ = −div(ρu),

∂

∂t
s = −ds(u),

∂

∂t
A = −iu B − R

aρ
i(div B)� B.

(8.13)

When D is three-dimensional, we can define the magnetic potential A := A� and the magnetic field
B := (�B)� . In this case the previous equations read

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = − 1

ρ
(grad p + B × curl B),

∂

∂t
ρ = −div(ρu),

∂

∂t
s = −ds(u),

∂

∂t
A = u × B + R

aρ
B × curl B.

(8.14)

These are the classical equations of Hall magnetohydrodynamics. Note that we can pass from the
equations for magnetohydrodynamics to those for Hall magnetohydrodynamics by simply replacing
the advection law for A by Ohm’s law. In terms of the magnetic field B , one simply replaces the
advection law

∂

∂t
B + £££u B = 0,

where u is the fluid velocity, by the equation

∂

∂t
B + £££v B = 0,

where v is the electron fluid velocity.
In fact, the Hamiltonian h given in (8.12), is the value at the identity of the right-invariant Hamil-

tonian H(mη,ρ, s;nξ ,n)= H(ρ,s;n)(mη;nξ ), where

H(ρ,s;n) : T ∗(Diff(D)× Diff(D)
) → R

is given by

H(ρ,s;n)(mη;nξ )= 1

2

∫
D

∥∥∥∥mη − aρ
nξ ◦ ξ−1 ◦ η
n ◦ ξ−1 ◦ η

∥∥∥∥2

μ+
∫
D

ρe
(
ρ Jη−1, s

)
μ

+ R2

2

∫
D

∥∥∥∥d
(

nξ ◦ ξ−1

n ◦ ξ−1

)∥∥∥∥2

μ.
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Hamiltonian reduction for Hall magnetohydrodynamics. Suppose that aρ0 + n0 = 0. A curve
(mη,nξ ) ∈ T ∗(Diff(D) × Diff(D)) is a solution of Hamilton’s equations associated to H(ρ0,s0;n0) if
and only if the curve

(m,n) := (
J
(
η−1)(mη ◦ η−1), J

(
ξ−1)(nξ ◦ ξ−1))

is a solution of Eqs. (8.13) where A := R
n n = − R

aρ n, since aρ + n = 0. Moreover the evolution of the
advected quantities is given by

ρ = J
(
η−1)(ρ0 ◦ η−1), s = s0 ◦ η−1, n = J

(
ξ−1)(n0 ◦ ξ−1).

Let us assume from now on that the initial conditions ρ0 and n0 are related by aρ0 +n0 = 0. We have
seen that this implies that aρ + n = 0. From the relations above we conclude the interesting result
that the action of ξ−1 ◦η fixes n0, that is, J (ξ−1 ◦η)(n0 ◦ ξ−1 ◦η)= n0. Conversely, given this relation
and the condition aρ0 + n0 = 0, it is easily seen that aρ + n = 0.

The Lie–Poisson bracket associated to these equations is clearly the sum of two Lie–Poisson brack-
ets associated to the semidirect products Diff(D)� [F(D)× F(D)] and Diff(D)�F(D).

The Kelvin–Noether theorem associated to the variable m gives

d

dt

∮
ct

(
u� + a

R
A

)
=

∮
ct

T ds,

which can be rewritten as

d

dt

∮
ct

u� =
∮
ct

T ds +
∮
ct

1

ρ
i(div B)� B,

where ct is a loop which moves with the fluid velocity u, that is, ct = ηt ◦ c0. The Kelvin–Noether
theorem associated to the variable n gives

d

dt

∮
dt

A = 0,

where dt is a loop which moves with the electron fluid velocity v, that is, dt = ξt ◦ d0.

8.4. Multivelocity superfluids

Superfluidity is a rare state of matter encountered in few fluids at extremely low temperatures.
Such materials exhibit strange behavior such as the lack of viscosity, the ability to flow through very
small channels that are impermeable to ordinary fluids, and the fact that it can form a layer whose
thickness is that of one atom on the walls of the container in which it is placed. In addition, the
rotational speed of a superfluid is quantized, that is, the fluid can rotate only at certain values of the
speed. Superfluidity is considered to be a manifestation of quantum mechanical effects at macroscopic
level. Typical examples of superfluids are 3He, whose atoms are fermions and the superfluid transition
occurs by Cooper pairing between atoms rather than electrons, and 4He, whose atoms are bosons and
the superfluidity is a consequence of Bose–Einstein condensation in an interacting system.

For example, at temperatures close to absolute zero, a solution of 3He and 4He has its hydrody-
namics described by three velocities: two superfluid velocities v1

s ,v2
s and one normal fluid velocity vn .

If other kinds of superfluids are present, one needs to introduce additional superfluid velocities. For a
history of the equations considered below and the Hamiltonian structure for multivelocity superfluids
see [15].
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The two-fluid model. We first treat the two-fluid model, that is, the case of one superfluid velocity vs

and one normal-fluid velocity vn . Remarkably, this Hamiltonian structure can be obtained by affine
Lie–Poisson reduction, with order parameter Lie group O = S1. In this paragraph we also carry out
the corresponding Lagrangian formulation, by applying the general theory of affine Euler–Poincaré
reduction to the semidirect product group Diff(D)�F(D, S1).

The linear advected quantity is the entropy density S on which a diffeomorphism η acts as

S �→ ( Jη)(S ◦ η).

The affine advected quantity is the superfluid velocity vs , on which the element (η,χ) ∈ Diff(D)�
F(D, S1) acts as

vs �→ (
η∗v�s + dχ

)�
.

This action is simply the affine representation (3.6) for the Lie group O = S1. Here, the advected
quantity vs is a vector field and not a one-form, since it represents a velocity and hence formula (3.6)
was changed accordingly. As will be seen, in this formalism, the mass density does not appear as an
advected quantity in the representation space V ∗; it is a momentum, that is, one of the variables in
the dual Lie algebra g∗ =Ω1(D)× F(D).

The reduced Lagrangian for superfluids is l : [X(D)�F(D)]� [F(D)⊕ X(D)] → R given by

l(vn, ν, S,vs) := 1

2

∫
D

ρ‖vn‖2μ+
∫
D

(ρν)μ−
∫
D

ε(ρ, S,vs − vn)μ, (8.15)

where vn is the velocity of the normal flow. The internal energy density ε is seen here as a function of
three variables ε = ε(ρ, S, r) : R ×R × TD → R. The norm in the first term is taken relative to a fixed
Riemannian metric g on D. Note that for superfluids it is more convenient to work with the internal
energy and entropy per unit volume and not per unit mass as in the preceding examples. We make the
following definitions:

μchem := ∂ε

∂ρ
(ρ, S,vs − vn) ∈ F(D), T := ∂ε

∂ S
(ρ, S,vs − vn) ∈ F(D),

p := ∂ε

∂r
(ρ, S,vs − vn) ∈Ω1(D).

The interpretation of the quantities μchem, T , and p is obtained from the following thermodynamic
derivative identity for the internal energy (superfluid first law):

d
(
ε(ρ, S,vs − vn)

) =μchemdρ + T dS + p · ∇_ (vs − vn) ∈Ω1(D),

where ∇ denotes the Levi-Civita covariant derivative associated to the metric g . The function μchem is
the chemical potential, T is the temperature, and p is the relative momentum density. The mass density ρ
is the function ρ = ρ(vn, ν, S,vs) defined implicitly by the condition

μchem := ∂ε

∂ρ
(ρ, S,vs − vn)= 1

2
‖vn‖2 + ν. (8.16)

Therefore, ρ is not a variable in this approach. By the implicit function theorem, the relation above
defines a unique function ρ , provided the function ε verifies the condition

∂2ε

∂ρ2
(r, s, vx) �= 0, for all (r, s, vx) ∈ R × R × TD. (8.17)
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The affine Euler–Poincaré equations for the two-fluid model. Using the definition (8.16) of the func-
tion ρ , we compute below the functional derivatives of l. We have

δl

δvn
= ρv�n + 1

2
‖vn‖2 ∂ρ

∂vn
+ ν

∂ρ

∂vn
−μchem

∂ρ

∂vn
+ p = ρv�n + p =: m,

δl

δν
= 1

2
‖vn‖2 ∂ρ

∂ν
+ ρ + ν

∂ρ

∂ν
−μchem

∂ρ

∂ν
= ρ,

δl

δS
= 1

2
‖vn‖2 ∂ρ

∂ S
+ ν

∂ρ

∂ S
−μchem

∂ρ

∂ S
− T = −T ,

δl

δvs
= 1

2
‖vn‖2 ∂ρ

∂vs
+ ν

∂ρ

∂vs
−μchem

∂ρ

∂vs
− p = −p.

Using the affine Euler–Poincaré equations (3.13), we obtain the following equations for ρ, S , and vs:

∂

∂t
ρ + div

(
ρvn + p�

) = 0,
∂

∂t
S + div(Svn)= 0,

∂

∂t
vs + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ (

ivn dv�s
)� = 0.

The last equation can be rewritten as

∂

∂t
vs + ∇vs vs = −grad

(
μchem − 1

2
‖vs − vn‖2

)
+ (

ivs−vn dv�s
)�
. (8.18)

When D is three-dimensional, the last term reads(
ivs−vn dv�s

)� = (
�dv�s

)� × (vs − vn)= curl vs × (vs − vn)= (vn − vs)× curl vs.

Using the equality

−ρd
(
μchem − 1

2
‖vn‖2

)
− SdT = −dp − p · ∇_ vs + m · ∇_ vn,

where p := −ε(ρ, S,vs − vn)+μchemρ + ST is the Euler pressure law, the equation for m is computed
as follows:

∂

∂t
m = −£££vn m − div(vn)m − ρd

(
μchem − 1

2
‖vn‖2

)
− SdT − div

(
p�

)
v�s + dv�s

(
_,p�

)
= −£££vn m − div(vn)m + m · ∇_ vn − dp − p · ∇_ vs − div

(
p�

)
v�s + dv�s

(
_,p�

)
= −∇vn m − div(vn)m − dp − ∇p�v�n − div

(
p�

)
v�n

= −Div T,

where T is the (1,1) superfluid stress tensor defined by

T := vn ⊗ m + p� ⊗ v�s + pδ,

δ is the Kronecker (1,1) tensor, and Div is the divergence of a (1,1) tensor, defined as the trace of
the bilinear map

(α, v) �→ ∇v T(α, _) ∈Ω1(D).
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In coordinates, we have

Ti
j = vi

nm j + pivsj + pδi
j

and

(Div T) j = (∇T)i
ji = ∂iT

i
j + Tl

jΓ
i

il − Ti
lΓ

l
i j .

The equations for superfluid dynamics are therefore given by

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −Div T,

∂

∂t
ρ + div

(
ρvn + p�

) = 0,
∂

∂t
S + div(Svn)= 0,

∂

∂t
vs + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ (

ivn dv�s
)� = 0,

(8.19)

where

T := vn ⊗ m + p� ⊗ v�s + pδ, and p := −ε(ρ, S,vs − vn)+μchemρ + ST .

Thus we have recovered Eqs. (1a)–(1d) in [15], in the particular case of the two-fluid model. By
Legendre transformation of the reduced Lagrangian (8.15), we obtain the reduced Hamiltonian

h(m,ρ, S,vs)= −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(m · vn)μ+
∫
D

ε(ρ, S,vs − vn)μ, (8.20)

where vn = vn(m,ρ, S,vs) is the vector field defined by the implicit condition

m − ρv�n = ∂ε

∂r
(ρ, S,vs − vn)=: p. (8.21)

By the implicit function theorem, the above relation defines a unique vector field vn , provided the
function ε verifies the condition that

ux �→ ∂2ε

∂r2
(r, s, vx) · ux − rux

is a bijective linear map. If (8.17) holds, then this condition is equivalent to saying that the Legendre
transformation is invertible. Of course, the functions l and h are the values at the identity of the
corresponding unreduced right-invariant Lagrangian and Hamiltonian L(vη, νχ , S,vs)= L(S,vs)(vη, νχ )
and H(mη,ρχ , S,vs)= H(S,vs)(mη,ρχ ), where

L(S,vs) : T
(
Diff(D)�F

(
D, S1)) → R and H(S,vs) : T ∗(Diff(D)�F

(
D, S1)) → R.

Lagrangian reduction for superfluids. A curve (η,χ) ∈ Diff(D)�F(D, S1) is a solution of the Euler–
Lagrange equations associated to the Lagrangian L(S0,vs0) if and only if the curve

(vn, ν) := (
η̇ ◦ η−1, (T Rχ−1 χ̇ ) ◦ η−1)

is a solution of the superfluids equations (8.19) with initial conditions (S0,vs0).
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The evolution of the advected quantities is given by

S = J (η−1)
(

S0 ◦ η−1) and vs = (
η∗

(
v�s0 + dχ−1))�.

Note that the evolution of the superfluid vorticity is given by

dv�s = η∗dv�s0,

therefore, the irrotationality condition dv�s = 0 (curl vs = 0 for the three-dimensional case) is pre-
served.

Hamiltonian reduction for superfluids. A curve (mη,ρχ ) ∈ T ∗[Diff(D)�F(D, S1)] is a solution of
Hamilton’s equations associated to the superfluid Hamiltonian H(S0,vs0) if and only if the curve

(m,ρ) := J
(
η−1)(mη ◦ η−1,ρχ ◦ η−1)

is a solution of the system (8.19) with initial conditions (S0,vs0).
The associated Poisson bracket for superfluids is

{ f , g}(m,ρ, S,vs)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ+

∫
D

ρ ·
(

d
δ f

δρ
· δg

δm
− d

δg

δρ
· δ f

δm

)
μ

+
∫
D

S ·
(

d
δ f

δS
· δg

δm
− d

δg

δS
· δ f

δm

)
μ

+
∫
D

[(
d
δ f

δρ
+ £££ δ f

δm
v�s

)
· δg

δvs

�

−
(

d
δg

δρ
+ £££ δg

δm
v�s

)
· δ f

δvs

�]
μ. (8.22)

Multivelocity superfluids. We now quickly explain how to generalize the preceding approach to the
case of superfluids with m velocities. Consider the semidirect product

G := Diff(D)�
[
F
(
D, S1)× · · · × F

(
D, S1)]︸ ︷︷ ︸

m times

,

where the group on the right is the direct product of the groups F(D, S1). The semidirect product is
associated to the right action of Diff(D) given by(

χ1, . . . ,χm) �→ (
χ1 ◦ η, . . . ,χm ◦ η).

The affine advected quantities are the m superfluid velocities (v1
s , . . . ,vm

s ) ∈ X(D)m on which an ele-
ment (η,χ1, . . . ,χm) acts as

(
v1

s , . . . ,vm
s

) �→ (
η∗(v1

s

)� + dχ1, . . . , η∗(vm
s

)� + dχm)�
.

The reduced Lagrangian is defined on [X(D)�F(D)m]� [F(D)⊕ X(D)m] and is given by

l
(
vn,

(
να

)
, S,

(
vαs

)) := 1

2

∫
D

ρ‖vn‖μ+
m∑
α=1

∫
D

ρανα −
∫
D

ε
((
ρα

)
, S,

(
vαs − vn

))
μ,
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where ρα , the mass density of the condensate particles with flow vαs , is the function ρα =
ρα(vn, (ν

α), S, (vαs )) defined by the condition

μαchem := ∂ε

∂ρα
((
ρα

)
, S,

(
vαs − vn

)) = 1

2
‖vn‖2 + να.

By the implicit function theorem, these conditions uniquely determine ρα , provided the matrix

(
∂2ε

∂ρα∂ρβ
((

ri), s,
(

v j
x
)))

αβ

is invertible for all ri, s, v j
x ∈ R×R× TD. The variable ρ is defined by ρ := ρ1 +· · ·+ρm and denotes

the total mass density. Using the notations

μαchem := ∂ε

∂ρα
((
ρα

)
, S,

(
vαs − vn

)) ∈ F(D), T := ∂ε

∂ S

((
ρα

)
, S,

(
vαs − vn

)) ∈ F(D),

pα := ∂ε

∂rα
((
ρα

)
, S,

(
vαs − vn

)) ∈Ω1(D),

we obtain the functional derivatives

δl

δvn
= ρv�n +

m∑
α=1

pα,
δl

δνα
= ρα,

δl

δS
= −T ,

δl

δvαs
= −pα

and the thermodynamic derivative identity for the internal energy

d
(
ε
((
ρα

)
, S,

(
vαs − vn

))) =
m∑
α=1

μαchemdρα + T dS +
m∑
α=1

pα · ∇_
(
vαs − vn

) ∈Ω1(D).

Using the affine Euler–Poincaré equations associated to the group Diff(D)� [F(D, S1) × · · · ×
F(D, S1)], we obtain the equations for multivelocity superfluids

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −Div T,

∂

∂t
ρα + div

(
ραvn + (

pα
)�) = 0,

∂

∂t
S + div(Svn)= 0,

∂

∂t
vαs + grad

(
g
(
vαs ,vn

)+μαchem − 1

2
‖vn‖2

)
+ (

ivn d
(
vαs

)�)� = 0,

(8.23)

where α = 1, . . . ,m. The stress tensor T and the pressure p are given by

T := vn ⊗ m +
m∑
α=1

(
pα

)� ⊗ (
vαs

)� + pδ,

p := −ε((ρα), S,
(
vαs − vn

))+
m∑
α=1

μαchemρ
α + ST .
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By Legendre transformation, we obtain the Hamiltonian

h
(
m,

(
ρα

)
, S,

(
vαs

)) = −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(m · vn)μ+
∫
D

ε
((
ρα

)
, S,

(
vαs − vn

))
μ,

where vn = vn(m, (ρα), S, (vαs )) is the vector field defined by the implicit condition

m − ρv�n =
m∑
α=1

∂ε

∂rα
((
ρα

)
, S,

(
vαs − vn

))
.

By the implicit function theorem, the above relation defines a unique function vn , provided the func-
tion ε verifies the condition that the linear map

ux �→
m∑

α,β=1

∂2ε

∂rα∂rβ
(r, s, vx) · ux − rux

is bijective.
Lagrangian and Hamiltonian reductions hold as in the two-fluid model. The evolutions of S and vαs

are given by

S = J
(
η−1)(S0 ◦ η−1) and vαs = η∗

((
vαs0

)� + d
(
χα

)−1)�
,

and the irrotationality condition d(vαs )
� = 0 is preserved.

The associated Poisson bracket is given by

{ f , g}(m,ρ, S,vs)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ+

m∑
α=1

∫
D

ρα ·
(

d
δ f

δρα
· δg

δm
− d

δg

δρα
· δ f

δm

)
μ

+
∫
D

S ·
(

d
δ f

δS
· δg

δm
− d

δg

δS
· δ f

δm

)
μ

+
m∑
α=1

∫
D

[(
d
δ f

δρα
+ £££ δ f

δm

(
vαs

)�) · δg

δvαs

�

−
(

d
δg

δρα
+ £££ δg

δm

(
vαs

)�) · δ f

δvαs

�]
μ.

The γ -circulation gives

d

dt

∮
ct

(
vαs

)� = 0, for all α = 1, . . . ,m,

where ct is a loop which moves with the normal fluid velocity vn .

8.5. Superfluid Yang–Mills magnetohydrodynamics

In this paragraph we combine the Hamiltonian structures of Yang–Mills magnetohydrodynamics
and superfluid dynamics, to obtain a new physical model for the theory of superfluid Yang–Mills
magnetohydrodynamics as well as the corresponding Hamiltonian structure. In the Abelian case we
recover the theory and the Hamiltonian structure derived in [15]. We need a slight generalization of
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the geometric framework developed in Sections 3 and 6, namely we consider the group semidirect
product

Diff(D)�
(
F(D,O)× F

(
D, S1)),

where F(D,O)× F(D, S1) is a direct product of groups on which Diff(D) acts as

(χ1,χ2) �→ (χ1 ◦ η,χ2 ◦ η).

The affine advected quantities are the potential of the Yang–Mills fluid A and the superfluid velocity vs ,
on which (η,χ1,χ2) acts as

A �→ Adχ−1
1
η∗ A + χ−1

1 Tχ1 and vs �→ (
η∗v�s + dχ2

)�
.

The reduced Hamiltonian is defined on the dual of the Lie algebra[
X(D)�

(
F(D,o)× F(D)

)]
�

(
F(D)×Ω1(D,o)× X(D)

)
and is given by

h(m, Q ,ρ, S, A,vs)= −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(m · vn)μ+
∫
D

ε(ρ, S,vs − vn)μ+ 1

2

∫
D

∥∥dA A
∥∥2
μ,

where vn is the normal fluid velocity defined as in (8.21). This is simply the Hamiltonian (8.20) plus the
energy of the Yang–Mills field. The norms are respectively associated to the metrics g and (gk), where
g is a Riemannian metric on D and k is an Ad-invariant inner product on o. The affine Lie–Poisson
equations associated to this Hamiltonian are computed to be⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
m = −Div T,

∂

∂t
ρ + div

(
ρvn + p�

) = 0,

∂

∂t
Q + div(Q vn)= 0,

∂

∂t
S + div(Svn)= 0,

∂

∂t
vs + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ (

ivn dv�s
)� = 0,

∂

∂t
A + dA(A(vn)

)+ ivn B = 0, B := dA A.

(8.24)

For superfluid Yang–Mills magnetohydrodynamics the stress tensor is given by

T := vn ⊗ m + p� ⊗ v�s + B · B + pδ,

where B · B is the (1,1) tensor field defined by

(B · B)i
j := Bb

lj Bli
b ,

and where the pressure is given by p := −ε(ρ, S,vs − vn)+μchemρ + ST − 1
2 ‖B‖2.

The corresponding Hamiltonian reduction and affine Lie–Poisson bracket can be found as before
and the evolutions of the advected quantities are given by

S = J
(
η−1)(S0 ◦ η−1), A = η∗

(
Adχ A0 + χ1Tχ−1

1

)
and vs = (

η∗
(
v�s0 + dχ−1

2

))�
.
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As in the preceding example, it is possible to generalize this approach to multivelocity superfluids. In
this case, the γ -circulation gives

d

dt

∮
ct

(
vαs

)� = 0, for all α = 1, . . . ,m, and
d

dt

∮
ct

A = 0,

where ct is a loop which moves with the normal fluid velocity vn .

8.6. Superfluid Hall magnetohydrodynamics

The Hamiltonian formulation of superfluid Hall magnetohydrodynamics is given in [15]. As one
can guess, the Hamiltonian structure of these equations combines the Hamiltonian structures of Hall
magnetohydrodynamics and of superfluids. This is still true at the group level and we will obtain the
equations by affine Lie–Poisson reduction associated to the group

G := [
Diff(D)�F

(
D, S1)]× Diff(D).

In this expression, the symbol × denotes the direct product of the two groups. The advected quantities
are

(S,u;n) ∈ F(D)× X(D)× F(D).

The variable S is the entropy density of the normal flow, the other variables will be interpreted later.
The action of (η,χ ; ξ) ∈ G is given by

(S,u;n) �→ (
Jη(S ◦ η), (η∗u� + dχ

)�; Jξ(n ◦ ξ)).
The resulting affine Lie–Poisson equations consist of two systems, the affine Lie–Poisson equations as-
sociated to the variables (m,ρ, S,u) and the Lie–Poisson equations associated to the variables (n,n).

The Hamiltonian of superfluid Hall magnetohydrodynamics is defined on the dual Lie algebra

([(
X(D)�F(D)

)
�

(
F(D)⊕ X(D)

)]× [
X(D)�F(D)

])∗
∼=Ω1(D)× F(D)× F(D)×Ω1(D)×Ω1(D)× F(D)

and is given by

h(m,ρ, S,u;n,n) := −1

2

∫
D

ρ‖vn‖2μ+
∫
D

((
m − aρ

R
A

)
· vn

)
μ

+
∫
D

ε(ρ, S,vs − vn)μ+ 1

2

∫
D

‖dA‖2μ,

where m is the total momentum density of the fluid, n is interpreted below as the momentum density
associated to the electron fluid velocity v := δh/δn, vn is the velocity of the normal flow, vs := u − a

R A� is
the superfluid velocity, and ε is the internal energy density. The one-form A is defined by

A := R
n

n
.
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The norm in the first term is taken with respect to a fixed Riemannian metric g on D. The velocity
vn is the function vn = vn(m,ρ, S,u;n,n) defined by the implicit condition

m − ρv�n − aρ

R
A = ∂ε

∂r
(ρ, S,vs − vn)=: p.

By the implicit function theorem, the above relation defines a unique function vn , provided the func-
tion ε verifies the condition that the linear map

ux �→ ∂2ε

∂r2
(r, s, vx,wx) · ux − rux

is bijective for all (r, s, vx,wx) ∈ R × R × TD × TD.
Using the notations

μchem := ∂ε

∂ρ
(ρ, S,vs − vn) ∈ F(D), T := ∂ε

∂ S
(ρ, S,vs − vn) ∈ F(D),

p := ∂ε

∂r
(ρ, S,vs − vn) ∈Ω1(D),

the functional derivatives of h are computed to be

δh

δm
= vn,

δh

δρ
= −1

2
‖vn‖2 − a

R
A · vn +μchem,

δh

δS
= T ,

δh

δu
= p,

v := δh

δn
= −1

n

(
aρvn + ap� + R(div B)�

)
,

δh

δn
= − 1

R
A · v.

The vector field v is interpreted as the electron fluid velocity. The equations for ρ, S , and n are given
by

∂

∂t
ρ + div

(
ρvn + p�

) = 0,
∂

∂t
S + div(Svn)= 0, and

∂

∂t
n + div(nv)= 0.

Using the expression of v in terms of vn we obtain that div(nv)= −a div(ρvn + p�) which proves that

∂

∂t
(aρ + n)= 0.

Thus, if we assume that the initial conditions verify aρ0 + n0 = 0, then we have aρ + n = 0 for all
time. The equations for A and u are computed to be

∂

∂t
A = −ivn B − 1

ρ
ip� B − R

aρ
i(div B)� B,

∂

∂t
u + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ (

ivn du�
)� = 0.

From these two equations we obtain the evolution of the superfluid velocity vs = u − a
R A� as

∂

∂t
vs = −grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+

(
a

Rρ
ip� B + 1

ρ
i(div B)� B − ivn dv�s

)�
.
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Doing computations similar to those for superfluids we obtain that the equation for m + n is given by

∂

∂t
(m + n)= −Div T,

where the stress tensor T is given by

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s + B · B + pδ, p = ρμchem + ST − ε− 1

2
‖B‖2.

Thus, we have obtained the following equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
(m + n)= −Div T,

∂

∂t
ρ + div

(
ρvn + p�

) = 0,
∂

∂t
S + div(Svn)= 0,

∂

∂t
A = −ivn B − 1

ρ
ip� B − R

aρ
i(div B)� B,

∂

∂t
vs = −grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+

(
a

Rρ
ip� B + 1

ρ
i(div B)� B − ivn dv�s

)�
.

(8.25)

These are the equations for superfluid Hall magnetohydrodynamics as given in [15, Eqs. (35a)–(35e)].
When D is three-dimensional, the two last equations read

∂

∂t
A� =

(
vn + 1

ρ
p� − R

aρ
curl B

)
× B and

∂

∂t
vs = −grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ vn × curl vs + 1

ρ

(
curl B − a

R
p�

)
× B.

Hamiltonian reduction for superfluid Hall magnetohydrodynamics. Consider the right-invariant
Hamiltonian function H(mη,ρχ , S,u;nξ ,n) = H(S,u;n)(mη,ρχ ;nξ ) induced by h and suppose that
we have aρ0 + n0 = 0. A smooth curve

(mη,ρχ ;nξ ) ∈ T ∗[(Diff(D)�F
(
D, S1))× Diff(D)

]
is a solution of Hamilton’s equations associated to H(S0,u0;n0) and with the initial condition ρ0 if and
only if the curve

(m,ρ;n) := (
J
(
η−1)(mη ◦ η−1), J

(
η−1)(ρχ ◦ η−1); J

(
ξ−1)(n ◦ ξ−1))

is a solution of Eqs. (8.25), where vs = u − aA�/R = u − an/n.
The Poisson bracket for superfluid Hall magnetohydrodynamics is the sum of the affine Lie–Poisson

bracket associated to the variables (m,ρ, S,u) and the Lie–Poisson bracket associated to the vari-
ables (n,n).

The γ -circulation gives

d

dt

∮
ct

u� = 0.
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Using the definition vs := u − a
R A� , we obtain

d

dt

∮
ct

(
v�s + a

R
A�

)
= 0,

where ct is a loop which moves with the normal fluid velocity vn . The Kelvin–Noether theorem associ-
ated to the variable n gives

d

dt

∮
dt

A = 0,

where dt is a loop which moves with the electron fluid velocity v.

8.7. HVBK dynamics for superfluid 4He with vortices

The Hall–Vinen–Bekarevich–Khalatnikov (HVBK) equations describe superfluid Helium turbulence.
We consider the version of HVBK equations, together with its Hamiltonian structure, as given in [12].
It turns out that this Hamiltonian structure is the same as that of superfluid Hall magnetohydrody-
namics, that is, it is obtained by affine Lie–Poisson reduction associated to the group

G := [
Diff(D)�F

(
D, S1)] × Diff(D).

As before, the advected quantities are

(S,u;n) ∈ F(D)× X(D)× F(D),

where S is the entropy density of the normal flow. The action of (η,χ ; ξ) ∈ G is given by

(S,u;n) �→ (
Jη(S ◦ η), (η∗u� + dχ

)�; Jξ(n ◦ ξ)).
The resulting affine Lie–Poisson equations consist of two systems, the affine Lie–Poisson equations as-
sociated to the variables (m,ρ, S,u) and the Lie–Poisson equations associated to the variables (n,n).

For simplicity we assume that the manifold D is three-dimensional. The Hamiltonian of HVBK
dynamics is defined on the dual Lie algebra

([(
X(D)�F(D)

)
�

(
F(D)⊕ X(D)

)]× [
X(D)�F(D)

])∗
∼=Ω1(D)× F(D)× F(D)×Ω1(D)×Ω1(D)× F(D)

and is given by

h(m,ρ, S,u;n,n) := −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(
(m − ρA) · vn

)
μ+

∫
D

ε(ρ, S,vs − vn,ω)μ,

where m is the total momentum density of the fluid, n is interpreted below as the momentum density
associated to the vortex fluid velocity vl := δh/δn, vn is the velocity of the normal flow, vs := u − A� is
the superfluid velocity, ω := curl vs is the superfluid vorticity, and ε is the internal energy density. The
one-form A is defined by

A := −n

n
.
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Note that the Hamiltonian of HVBK dynamics is similar to that of Hall magnetohydrodynamics, for
R = a = −1. The norm in the first term and the operator curl are taken with respect to a fixed
Riemannian metric g on D. The velocity vn is the function vn = vn(m,ρ, S,u;n,n) defined by the
implicit condition

m − ρv�n − ρA = ∂ε

∂r
(ρ, S,vs − vn,ω)=: p.

By the implicit function theorem, the above relation defines a unique function vn , provided the func-
tion ε verifies the condition that the linear map

ux �→ ∂2ε

∂r2
(r, s, vx,wx) · ux − rux

is bijective, for all (r, s, vx,wx) ∈ R × R × TD × TD.
We make the following definitions

μchem := ∂ε

∂ρ
(ρ, S,vs − vn,ω) ∈ F(D), T := ∂ε

∂ S
(ρ, S,vs − vn,ω) ∈ F(D),

p := ∂ε

∂r
(ρ, S,vs − vn,ω) ∈Ω1(D), λ := ∂ε

∂ω
(ρ, S,vs − vn,ω) ∈Ω1(D).

The interpretation of the quantities μchem, T ,p, and λ is obtained from the following thermodynamic
derivative identity for the internal energy:

d
(
ε(ρ, S,vs − vn,ω)

) =μchemdρ + T dS + p · ∇_ (vs − vn)+ λ · ∇_ ω ∈Ω1(D),

where ∇ denotes the Levi-Civita covariant derivative associated to the metric g . The functional deriva-
tives of h are computed to be

δh

δm
= vn,

δh

δρ
= −1

2
‖vn‖2 − A · vn +μchem,

δh

δS
= T ,

δh

δu
= p + curlλ,

vl := δh

δn
= 1

n

(
ρvn + p� + curlλ

)
,

δh

δn
= A · vl.

The vector field vl will be interpreted as the vortex line velocity. The equations for ρ, S , and n are given
by

∂

∂t
ρ + div

(
ρvn + p� + curlλ

) = 0,
∂

∂t
S + div(Svn)= 0, and

∂

∂t
n + div(nvl)= 0.

Using the expression of vl in terms of vn we obtain that div(nvl)= div(ρvn +p�+curlλ) which proves
that

∂

∂t
(ρ − n)= 0.

Thus, if we assume that the initial conditions verify ρ0 = n0, then we have ρ = n for all time. The
equations for A and u are computed to be

∂

∂t
A� = 1

ρ

(
ρvn + p� + curlλ

)× curl A� = vl × curl A�,

∂

∂t
u + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
+ curl u × vn = 0.
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As in superfluid dynamics, this equation preserves the condition curl u = 0, and we will suppose that
it holds initially: curl u0 = 0. In this case we have ω = − curl A� and the equations above read

∂

∂t
A� + vl × ω = 0 and

∂

∂t
u + grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
= 0. (8.26)

From these two equations we obtain that the evolution of the superfluid velocity vs = u − A� is given
by

∂

∂t
vs + ω × vl = −grad

(
g(vs,vn)+μchem − 1

2
‖vn‖2

)
, (8.27)

which can be rewritten as

∂

∂t
vs + ∇vs vs = −grad

(
μchem − 1

2
‖vs − vn‖2

)
+ f, f = (vl − vs)× ω,

(compare to (8.18)). Doing computations similar to those for superfluids we obtain that the equation
for m + n is given by

∂

∂t
(m + n)= −Div T,

where T is the HVBK stress tensor given by

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s − ω ⊗ λ� + pδ, p = ρμchem + ST − ε+ ω� · λ.

Thus, we have obtained the following equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
J = −Div T,

∂

∂t
ρ + div J = 0,

∂

∂t
S + div(Svn)= 0,

∂

∂t
vs + ∇vs vs = −grad

(
μchem − 1

2
‖vs − vn‖2

)
+ f, f = (vl − vs)× ω,

(8.28)

where we have used the notation

J := ρv�n + p = m + n

for the total momentum density. These are the equations of HBVK dynamics as given in Eq. (1) of [12]
with R = 0.

Hamiltonian reduction for HVBK dynamics. Consider the right-invariant Hamiltonian H(mη,ρχ , S,u;
nξ ,n)= H(S,u;n)(mη,ρχ ;nξ ) induced by h. Suppose that ρ0 = n0 and curl u0 = 0 and let (mη,ρχ ;nξ )
be a solution curve in T ∗[(Diff(D)�F(D, S1)) × Diff(D)] of Hamilton’s equations associated to
H(S0,u0;n0) and with the initial condition ρ0. Then the curve

(m,ρ;n) := (
J
(
η−1)(mη ◦ η−1), J

(
η−1)(ρχ ◦ η−1); J

(
ξ−1)(n ◦ ξ−1))

is a solution of the HVBK equations (8.28), where vs = u − A� = u + n/n. To obtain the converse of
this assertion, it is not enough to assume that (m,ρ, S,vs,n) verifies (8.28). It is also required that A
or u verify the corresponding equation in (8.26).



Author's personal copy

F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275 235

Note that from the equalities vs = u − A� and curl u = 0 we obtain that the variables u and A� are
interpreted respectively as the potential and the rotational components of the superfluid velocity vs .

As in Section 8.6, we have

d

dt

∮
ct

(
v�s + A

) = 0 and
d

dt

∮
dt

A = 0,

where ct and dt are loops which move with the normal fluid velocity vn and the vortex line velocity vl ,
respectively. Using Eq. (8.27) for the evolution of the superfluid velocity vs , we obtain the vortex Kelvin
theorem

d

dt

∮
dt

v�s = 0.

By the Stokes theorem, this can be rewritten as

d

dt

∫∫
St

(
ω� · n

)
dS = 0,

where n is the unit vector normal to the surface St whose boundary ∂ St is a loop which moves with
the vortex line velocity vl . This is the conservation of the flux of superfluid vorticity through any
surface whose boundary moves with the velocity vl .

In [12] it is also supposed that ∂ε
∂r is collinear to r, more precisely, that there exists a positive

function ρs such that

p = ρs(vs − vn).

The function ρs is interpreted as the superfluid mass density, and the density of the normal fluid is given
by ρn := ρ−ρs . Using these notations, the total momentum J and the stress tensor T can be rewritten
as

J = ρnvn + ρsvs

and

T = vn ⊗ ρnv�n + vs ⊗ ρsv�s − ω ⊗ λ� + pδ.

8.8. Classical fluids versus superfluids

We summarize below the examples that have been studied in the previous sections.

Classical fluids. In order to compare the two theories, we use the notation vn for the fluid velocity.
We also express the dynamics in terms of the entropy density S and internal energy density ε (and
not in terms of the specific entropy s and internal energy e). We have

ε(ρ, S)= ρe(ρ, S/ρ),

and the first law of thermodynamics

de = p

ρ2
dρ + T ds, p = ρ2 ∂e

∂ρ
,
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reads

dε =μchemdρ + T dS, p = ρμchem + ST − ε.

(i) Basic hydrodynamics
Symmetry group Diff(D), momentum m ∈Ω1(D).
Advected quantities (ρ, S) ∈ F(D)× F(D).
Hamiltonian

h(m,ρ, S)= 1

2

∫
D

1

ρ
‖m‖2μ+

∫
D

ε(ρ, S)μ,

m = ρv�n.

Stress tensor formulation ṁ = −Div T, where

T = vn ⊗ ρv�n + pδ, p = ρμchem + ST − ε.

(ii) Yang–Mills magnetohydrodynamics
Symmetry group Diff(D)�F(D,O), momenta (m, Q ) ∈Ω1(D)× F(D,o∗).
Advected quantities (ρ, S, A) ∈ F(D)× F(D)×Ω1(D,o).
Hamiltonian

h(m, Q ,ρ, S, A)= 1

2

∫
D

1

ρ
‖m‖2μ+

∫
D

ε(ρ, S)μ+ 1

2

∫
D

∥∥dA A
∥∥2
μ,

m = ρv�n.

Stress tensor formulation ṁ = −Div T, where

T = vn ⊗ ρv�n + B · B + pδ, p = ρμchem + ST − ε− 1

2
‖B‖2.

(iii) Hall magnetohydrodynamics
Symmetry group Diff(D)× Diff(D), momenta (m,n) ∈Ω1(D)×Ω1(D).
Advected quantities (ρ, S;n) ∈ F(D)× F(D)× F(D).
Hamiltonian

h(m,ρ, S;n,n)= 1

2

∫
D

1

ρ

∥∥∥∥m − aρ

R
A

∥∥∥∥2

μ+
∫
D

ε(ρ, S)μ+ 1

2

∫
D

‖dA‖2μ, A := R
n

n
,

m = ρv�n + aρ

R
A.

Initial conditions

aρ0 + n0 = 0 �⇒ {
aρ + n = 0 and m + n = ρv�n

}
.

Stress tensor formulation ṁ + ṅ = −Div T, where

T = vn ⊗ ρv�n + B · B + pδ, p = ρμchem + ST − ε− 1

2
‖B‖2.
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Superfluids. As before, we denote by vn the velocity of the normal flow and by vs the superfluid
velocity. For simplicity we treat the two fluid model in this summary. Generalization to multifluid
models follows as above in the examples. The superfluid first law reads

dε =μchemdρ + T dS + p · ∇_ (vs − vn),

where ε is the internal energy density. For HBVK dynamics the term λ · ∇_ ω has to be added.

(i) Basic superfluid hydrodynamics
Symmetry group Diff(D)�F(D, S1), momenta (m,ρ) ∈Ω1(D)× F(D).
Advected quantities (S,vs) ∈ F(D)× X(D).
Hamiltonian

h(m,ρ, S,vs)= −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(m · vn)μ+
∫
D

ε(ρ, S,vs − vn)μ,

m = ρv�n + p.

Stress tensor formulation ṁ = −Div T, where

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s + pδ, p = ρμchem + ST − ε.

(ii) Superfluid Yang–Mills magnetohydrodynamics
Symmetry group Diff(D)� (F(D,O) × F(D, S1)), momenta (m, Q ,ρ) ∈ Ω1(D) × F(D,o∗) ×
F(D).
Advected quantities (S, A,vs) ∈ F(D)×Ω1(D,o)× X(D).
Hamiltonian

h(m, Q ,ρ, S, A,vs)

= −1

2

∫
D

ρ‖vn‖2μ+
∫
D

(m · vn)μ+
∫
D

ε(ρ, S,vs − vn)μ+ 1

2

∫
D

∥∥dA A
∥∥2
μ,

m = ρv�n + p.

Stress tensor formulation ṁ = −Div T, where

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s + B · B + pδ, p = ρμchem + ST − ε− 1

2
‖B‖2.

(iii) Superfluid Hall magnetohydrodynamics
Symmetry group [Diff(D)�F(D, S1)] × Diff(D), momenta (m,ρ,n) ∈Ω1(D)×Ω1(D)× F(D).
Advected quantities (S,u;n) ∈ F(D)× X(D)× F(D).
Hamiltonian

h(m,ρ, S,u;n,n)= −1

2

∫
D

ρ‖vn‖2μ+
∫
D

((
m − aρ

R
A

)
· vn

)
μ

+
∫
D

ε(ρ, S,vs − vn)μ+ 1

2

∫
D

‖dA‖2μ,

where
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A := R
n

n
, vs := u − a

R
A�,

m = ρv�n + aρ

R
A + p.

Initial conditions

aρ0 + n0 = 0 �⇒ {
aρ + n = 0 and m + n = ρv�n + p

}
,

curl u0 = 0 �⇒ curl u = 0.

Stress tensor formulation ṁ + ṅ = −Div T, where

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s + B · B + pδ, p = ρμchem + ST − ε− 1

2
‖B‖2.

(iv) HBVK hydrodynamics
Symmetry group [Diff(D)�F(D, S1)] × Diff(D), momenta (m,ρ,n) ∈Ω1(D)×Ω1(D)× F(D).
Advected quantities (S,u;n) ∈ F(D)× X(D)× F(D).
Hamiltonian

h(m,ρ, S,u;n,n)= − 1

2

∫
D

ρ‖vn‖2μ+
∫
D

(
(m − ρA) · vn

)
μ

+
∫
D

ε(ρ, S,vs − vn,ω)μ,

A := −n

n
, vs := u − A�, ω := curl vs,

m = ρv�n + ρA + p.

Initial conditions

ρ0 = n0 �⇒ {
ρ = n and m + n = ρv�n + p =: J

}
, curl u0 = 0 �⇒ curl u = 0.

Stress tensor formulation ṁ + ṅ = −Div T, where

T = vn ⊗ (
ρv�n + p

)+ p� ⊗ v�s − ω ⊗ λ� + pδ, p = ρμchem + ST − ε+ ω� · λ.

The hypothesis p = ρs(vs − vn) implies the equalities J = ρnvn + ρsvs and

T = vn ⊗ ρnv�n + vs ⊗ ρsv�s + ω ⊗ λ� + pδ.

8.9. Volovik–Dotsenko theory of spin glasses

In [27], the authors use a Poisson bracket approach to derive the equations of nonplanar magnet
with disclinations and of spin glass. These models are referred to as the Volovik–Dotsenko spin glasses.
In [16], the Hamiltonian structure of the Volovik–Dotsenko spin glasses is shown to be isomorphic
to that of Yang–Mills magnetohydrodynamics. Thus, it can be obtained using the affine Lie–Poisson
reduction developed in the present paper. In this section we also carry out the Lagrangian version of
the approach given in [16], to which we refer for additional comments on the physics of spin glasses.

The advected variables are

ρ ∈ V ∗
1 = F(D) and γ ∈ V ∗

2 =Ω1(D,o).
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The variable ρ is the defect inertial-mass density and the curvature B = dγ γ is interpreted as the
disclination density.

The reduced Lagrangian l : [X(D)�F(D,o)]� [V ∗
1 ⊕ V ∗

2 ] → R is given by

l(u, ν,ρ,γ )= 1

2

∫
D

ρ‖u‖2μ+ ε

2

∫
D

∥∥γ (u)+ ν
∥∥2
μ− 1

2

∫
D

ρ‖γ ‖2μ, (8.29)

where the norms are associated to the metrics g,k, and (gk), respectively, and ε is the constant of
susceptibility. The unreduced Lagrangian L is the right-invariant function induced by l on the cotangent
bundle. Since it has a complicated expression, we do not give the formula for L. We will justify the
choice of this Lagrangian by showing that its Legendre transformation yields the Hamiltonian of the
Volovik–Dotsenko spin glasses.

This Lagrangian appears as a generalization of the Lagrangian

lSG(ν,γ )= ε

2

∫
D

‖ν‖2μ− 1

2

∫
D

ρ‖γ ‖2μ, (8.30)

associated to the macroscopic description of spin glasses in [6], where ρ is the constant of rigidity,
see Section 8.1. In order to understand mathematically the passage form the Lagrangian (8.30) to the
Lagrangian (8.29), we consider the following general situation.

General case. Consider a Lagrangian lρ :F(D,o)⊕Ω1(D,o) → R, lρ = lρ(ν,γ ) associated to a spin
system and depending on a parameter ρ interpreted as the spin rigidity. Recall that the affine Euler–
Poincaré and advection equations are (see Section 8.1)⎧⎪⎪⎨⎪⎪⎩

∂

∂t

δlρ
δν

= −ad∗
ν

δlρ
δν

+ divγ
δlρ
δγ

,

∂

∂t
γ + dγ ν = 0.

(8.31)

To lρ we associate the Lagrangian l : [X(D)�F(D,o)]� [F(D)⊕Ω1(D,o)] → R given by

l(u, ν,ρ,γ ) := 1

2

∫
D

ρ‖u‖2μ+ lρ(ν,γ ),

where ν := γ (u) + ν and ρ is now a variable. Remark the analogy with the process of minimal
coupling. In the case where lρ is given by (8.30), we recover the Volovik–Dotsenko Lagrangian (8.29).

The functional derivatives of l are computed to be

κ := δl

δν
= δlρ
δν

∈ F(D,o∗), m := δl

δu
= ρu� + δlρ

δν
· γ ∈Ω1(D),

and

δl

δρ
= 1

2
‖u‖2 + δlρ

δρ
∈ F(D), δl

δγ
= δlρ
δν

u + δlρ
δγ

∈ X(D,o∗).

The advection equations are

∂

∂t
ρ + div(ρu)= 0 and

∂

∂t
γ + iu B + dγ ν = 0.
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We now compute the affine Euler–Poincaré equations. We have

∂

∂t

δlρ
δν

= −ad∗
ν

δlρ
δν

− div

(
δlρ
δν

u
)

+ divγ
(
δlρ
δν

u + δlρ
δγ

)
= −ad∗

ν−γ (u)
δlρ
δν

− div

(
δlρ
δν

u
)

+ div

(
δlρ
δν

u
)

− Tr

(
ad∗
γ

δlρ
δν

u
)

+ divγ
(
δlρ
δγ

)
= −ad∗

ν

δls

δν
+ divγ

(
δls

δγ

)
.

Using the equations for ρ,γ ,
δlρ
δν , the relation m = ρu� + δlρ

δν · γ , and the identity

£u

(
δlρ
δν

· γ
)

= d
δlρ
δν

(u) · γ + δlρ
δν

· £uγ

we obtain

(
∂

∂t
m + £um + (div u)m

)�
= ρ

(
∂

∂t
u + ∇uu + ∇uT · u

)
+ ∂

∂t

(
δlρ
δν

· γ
)

+ £u

(
δlρ
δν

· γ
)

+ (div u)
δlρ
δν

· γ

= ρ

(
∂

∂t
u + ∇uu + ∇uT · u

)
− ad∗

ν

δlρ
δν

· γ + divγ
(
δlρ
δγ

)
· γ − δlρ

δν
· iu B − δlρ

δν
· dγ ν

+ d
δlρ
δν

(u) · γ + δlρ
δν

· £uγ + (div u)
δlρ
δν

· γ

= ρ

(
∂

∂t
u + ∇uu + ∇uT · u

)
− ad∗

ν

δlρ
δν

· γ + divγ
(
δlρ
δγ

)
· γ

+ δlρ
δν

· dγ
(
γ (u)− ν

)+ div

(
δlρ
δν

u
)

· γ ,

where in the last equality we used the identity (3.12) and the definition of the curvature B . We also
have (

δl

δρ
� ρ

)�
= ρ

(
∇uT · u + grad

δlρ
δρ

)
and

δl

δγ
�1 γ = divγ

(
δlρ
δν

u + δlρ
δγ

)
· γ −

(
δlρ
δν

u + δlρ
δγ

)
· i_ B.

Thus the affine Euler–Poincaré equation for the variable u is

ρ

(
∂

∂t
u + ∇uu + ∇uT · u

)
− ad∗

ν

δlρ
δν

· γ + divγ
(
δlρ
δγ

)
· γ + δlρ

δν
· dγ

(
γ (u)− ν

)+ div

(
δlρ
δν

u
)

· γ

= − δlρ
δν

· dν + ρ

(
∇uT · u + grad

δlρ
δρ

)
+ divγ

(
δlρ
δν

u + δlρ
δγ

)
· γ −

(
δlρ
δν

u + δlρ
δγ

)
· i_ B,
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which, after remarkable cancellations, reads

∂

∂t
u + ∇uu = grad

δlρ
δρ

− 1

ρ

(
δlρ
δν

u + δlρ
δγ

)
· i_ B.

Thus the affine Euler–Poincaré equations associated to l are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = grad

δlρ
δρ

− 1

ρ

[(
δlρ
δν

u + δlρ
δγ

)
· i_ B

]�
,

∂

∂t

δlρ
δν

= −ad∗
ν

δlρ
δν

+ divγ
(
δlρ
δγ

)
,

∂

∂t
γ + iu B + dγ ν = 0,

∂

∂t
ρ + div(ρu)= 0, B = dγ γ , ν = γ (u)+ ν.

(8.32)

This system of equations can be seen as a generalization of Eqs. (8.31). If lρ is hyperregular, then l
is also hyperregular, and the associated Hamiltonian is given by∫

D

1

2ρ
‖m − κ · γ ‖2μ+ hρ(κ,γ ), (8.33)

where hρ is the Legendre transformation of lρ .

The case of Volovik–Dotsenko spin glasses. We now specialize the previous discussion to the case
of the Volovik–Dotsenko spin glasses, that is, we consider the Lagrangian (8.29). In this case, the
momenta are given by

κ = ε
(
γ (u)+ ν

)
and m = ρu� + κ · γ ,

and Eqs. (8.32) read ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = −grad

1

2
‖γ ‖2 +

[(
γ � − 1

ρ
κu

)
i_ B

]�
,

∂

∂t
κ + divγ

(
ργ �

) = 0,
∂

∂t
γ + iu B + 1

ε
dγ κ� = 0,

∂

∂t
ρ + div(ρu)= 0, B = dγ γ .

(8.34)

In the case of the spin glass dynamics described by the equations above, the term −grad 1
2 ‖γ ‖2 is an

analogue of the electrostatic force and the term (γ � − 1
ρ κu)i_ B is an analogue of the Lorentz force.

Lagrangian reduction for the Volovik–Dotsenko spin glasses. A curve (η,χ) ∈ Diff(D)�F(D,O) is a
solution of the Euler–Lagrange equations associated to the Lagrangian L(ρ0,γ0) if and only if the curve

(u, ν) := (
η̇ ◦ η−1, (T Rχ−1 χ̇ ) ◦ η−1)

is a solution of the spin glass equations (8.34) with initial conditions (ρ0, γ0), and where κ =
ε(γ (u)+ ν).

The evolution of the advected quantities is given by

ρ = J
(
η−1)(ρ0 ◦ η−1) and γ = η∗

(
Adχ γ0 + χ Tχ−1),
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and the evolution of the disclination density is

B = η∗
(
Adχ dγ0γ0

)
.

The variable χ is the orientation of Lagrangian particles in their reference configuration.
By Legendre transforming L(ρ0,γ0) and l, we obtain the right-invariant Hamiltonian H(ρ0,γ0) and

the reduced Hamiltonian h, given by

h(m, κ,ρ,γ )= 1

2

∫
1

ρ
‖m − κ · γ ‖2μ+ 1

2ε

∫
‖κ‖2μ+ 1

2

∫
ρ‖γ ‖2μ,

see also (8.33). Note that this Hamiltonian differs by a sign in the first term from the Hamilto-
nian (2.26b) in [16]. This is due to our convention in the Hamiltonian structure which also differs
from theirs. This justifies the choice we made for the Volovik–Dotsenko Lagrangian (8.29).

Hamiltonian reduction for the Volovik–Dotsenko spin glasses. A curve (mη, κχ ) ∈ T ∗[Diff(D)�
F(D,O)] is a solution of Hamilton’s equations associated to the spin glass Hamiltonian H(ρ0,γ0) if
and only if the curve(

ρu� + κ · γ ,κ) =: (m, κ) := J
(
η−1)(mη ◦ η−1, T ∗Rχ◦η−1

(
κχ ◦ η−1))

is a solution of the system (8.34) with initial conditions (ρ0, γ0).
The associated Poisson bracket is identical to that of Yang–Mills magnetohydrodynamics, except

for the fact that the variable s is not present in this case. Notice that the variables have not the same
physical meaning in the two theories; see [16].

The Kelvin–Noether theorem gives the complicated expression

d

dt

∮
ct

(
u� + κ

ρ
γ

)
=

∮
ct

1

ρ

(−κdν + divγ (w)γ − w · i_ B
)
,

where

ν := κ

ε
− γ (u), w := κu − ργ �,

which can be rewritten in the simpler form

d

dt

∮
ct

u� =
∮
ct

(
γ � − 1

ρ
κu

)
i_ B.

The γ -circulation gives

d

dt

∮
ct

γ =
∮
ct

ad(κ/ε)−γ (u) γ .

8.10. Microfluids

Microfluids are fluids whose material points are small deformable particles. Examples of microfluids
include liquid crystals, blood, polymer melts, bubbly fluids, suspensions with deformable particles, biological
fluids. In this section we find the Hamiltonian structure of the equations governing the motion of
non-dissipative microfluids in Eringen’s formulation by showing that they appear by Euler–Poincaré
and Lie–Poisson reduction.
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We quickly recall from [7] some needed facts about microfluids. A material particle P in the fluid
is characterized by its position X and by a vector Ξ attached to P that denotes the orientation
and intrinsic deformation of P . Both X and Ξ have their own motions, X �→ x = η(X, t) and Ξ �→
ξ = χ(X,Ξ, t), called respectively the macromotion and micromotion. Since the material particles are
considered to be of very small size, a linear approximation in Ξ is permissible for the micromotion.
Therefore, we can write

ξ = χ(X, t)Ξ,

where χ(X, t) ∈ GL(3)+ := {A ∈ GL(3) | det(A) > 0}. The classical Eringen theory considers only three
possible groups in the description of the micromotion of the particles: GL(3)+ ⊃ CSO(3)⊃ SO(3). These
cases correspond to micromorphic, microstretch, and micropolar fluids, respectively, all of them dis-
cussed in detail below. The Lie group CSO(3) is a certain closed subgroup of GL(3)+ that is associated
to rotations and stretch. Of course, the general theory developed in this paper admits other groups
describing the micromotion.

Micromorphic fluids. A fluid in a domain D is called micromorphic if its macromotion and micromo-
tion are described respectively by a diffeomorphism η ∈ Diff(D) and a function χ ∈ F(D,GL(3)+). As
a consequence of this description, the configuration manifold of micromorphic fluids is isomorphic to
the product of the two groups Diff(D) and F(D,GL(3)+). We will show the remarkable facts that, as
in the previous examples, the relevant group structure on the configuration manifold is given by the
semidirect product Diff(D)�F(D,GL(3)+).

The general equations for micromorphic continua are given by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
tkl,k + ρ

(
fl − D

dt
ul

)
= 0,

mklm,k + tml − sml + ρ(llm − σlm)= 0,

D

dt
ρ + ρ div u = 0,

D

dt
ikl − ikrνlr − ilrνkr = 0,

(8.35)

where D/dt denotes the material derivative.
Since this is the first time this symbol D/dt appears, it is useful to make some comments and to

place this discussion in the larger context of complex fluid motion on general Riemannian manifolds.
The domain D ⊂ R3 is endowed with the usual Riemannian metric given by the inner product in
Euclidean space. This Riemannian metric has an associated Levi-Civita connection ∇ whose covariant
derivative along an arbitrary vector field u is defined by ∇u := u · ∇ . Of course, if D is replaced
by a general Riemannian manifold, then ∇u is the covariant derivative of the Levi-Civita connection
associated with the given metric and does not have this simple expression. The material derivative of
a vector field v along u is given, in general, by

D

dt
v = ∂

∂t
v + ∇uv.

On functions f ∈ F(D, V ), where V is a vector space, the material derivative is given by

D

dt
f = ∂

∂t
f + d f (u),

which is metric independent.
In (8.35) the material derivative operator is applied to the vector field u and to the functions ρ

and ikl , even though ikl are the components of the symmetric tensor i. Thus, one should not interpret
the last equation in (8.35) as the covariant derivative of the tensor i. This convention is in force
throughout the rest of the paper and we shall comment on this in the relevant places.
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Eqs. (8.35) are given in [7, Eqs. (2.2.10), (2.2.11), (2.2.31), and (2.2.32)]. The variable ρ is the mass
density, νkl is the microgyration tensor, and the symmetric tensor ikl is the microinertia. The vector
field fk is the body force density and llm is the body couple density. The spin inertia σkl is given by

σkl = iml

(
D

dt
νkm + νknνnm

)
.

The tensors tkl,mklm , and skl are respectively the stress tensor, the couple stress tensor, and the mi-
crostress tensor; see Chapters 1, 2, and 17 in [7] for details. The four equations in (8.35) correspond
respectively to the balance of momentum, the balance of momentum moments, the conservation of
mass, and the conservation of microinertia.

The constitutive equations for non-dissipative micromorphic fluids are given by

tkl = ∂Ψ

∂ρ−1
δkl, mklm = 0, and skl = ∂Ψ

∂ρ−1
δkl + 2ρ

∂Ψ

∂ irk
irl, (8.36)

see (3.4.6) and (3.4.7) in [7]. Here the function Ψ = Ψ (ρ−1, i) : R × Sym(3)→ R is the free energy and
Sym(3) denotes the space of symmetric 3 × 3 matrices. It is usually assumed that

Ψ
(
ρ−1, A−1i A

) = Ψ
(
ρ−1, i

)
, for all A ∈ O (3).

This condition is imposed by the axiom of objectivity. Since i is symmetric, this implies that the free
energy depends on i only through the quantities Tr(i), Tr(i2) and Tr(i3).

Using the constitutive equations (8.36) and assuming that fk = 0, lkl = 0, Eqs. (8.35) read⎧⎪⎪⎨⎪⎪⎩
ρ

D

dt
ul = ∂l

∂Ψ

∂ρ−1
, σlm = −2

∂Ψ

∂ irm
irl,

D

dt
ρ + ρ div u = 0,

D

dt
ikl − ikrνlr − ilrνkr = 0.

(8.37)

These are the equations for non-dissipative micromorphic fluids.

Microstretch fluids. A microstretch fluid is a micromorphic fluid whose micromotion χ takes values in
the four-dimensional real Lie group CSO(3) defined by

CSO(3)= {
A ∈ GL(3)+

∣∣ there exists λ ∈ R such that A AT = λI3
}

and called the conformal special orthogonal group. The Lie algebra of CSO(3) is

cso(3)= {
ν ∈ gl(3)

∣∣ there exists μ ∈ R such that ν + νT =μI3
}
.

Note that in the relations above we necessarily have λ3 = det(A)2 and 3μ = 2 Tr(ν). Note also that
each ν ∈ cso(3) decomposes uniquely as

νi j = ν0δi j − εi jkνk, (8.38)

where ν0 ∈ R, and (ν1,ν2,ν3)=: ν is a vector in R3. The equality (8.38) can be rewritten as

ν = ν0 I3 + ν̂,

where ν̂ ∈ so(3) is the matrix whose entries are given by ν̂ i j = −εi jkνk .
The material particles of microstretch fluids have seven degrees of freedom: three for translations,

three for rotations, and one for stretch.



Author's personal copy

F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275 245

The general equations for microstretch continua are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tkl,k + ρ

(
fl − D

dt
ul

)
= 0,

mk,k + t − s + ρ(l − σ)= 0, mkl,k + εlmntmn + ρ(ll − σl)= 0,

D

dt
ρ + ρ div u = 0,

D

dt
j0 − 2 j0ν0 = 0,

D

dt
jkl − 2ν0 jkl + (εkpr jlp + εlpr jkp)νr = 0.

(8.39)

These equations are given in [7, Eqs. (2.2.38)–(2.2.41)]. Following the conventions introduced in the
discussion following (8.35), the material derivative operator D/dt acts on the vector field u and on the
functions ν0, νl , ρ , j0, and jkl . As before, the variable ρ is the mass density. The variables ν0 and ν
are respectively the microstretch rate and the microrotation rate, constructed from νkl as in (8.38). The
microstretch microinertia j0 and the microinertia jkl are constructed from ikl as follows:

j0 := 2ikk and jkl := 1

2
j0δkl − ikl.

The microstretch spin inertia σ and the spin inertia σk are given by

σk := jkl
D

dt
νl + 2ν0 jklνl + εklm jmnνlνn and σ := 1

2

(
D

dt
ν0 + ν2

0

)
− jklνkνl.

The microstretch vector mk , the couple stress tensor mkl , the microstretch force density l, and the couple
density l are defined from mklm and lkl by the decompositions

mklm = 1

3
mkδlm − 1

2
εlmrmkr and lkl = 1

3
lδkl − 1

2
εklrlr .

We also used the notations t := tkk and s := skk . Using these definitions and the fact that the fluid has
the microstretch property, one can obtain Eqs. (8.39) from Eqs. (8.35).

The constitutive equations for non-dissipative microstretch fluids are given by

tkl = ∂Ψ

∂ρ−1
δkl, mkl = 0, mk = 0, and s − t = 2ρ

(
∂Ψ

∂ jkl
jkl + ∂Ψ

∂ j0
j0

)
,

where Ψ = Ψ (ρ−1, j, j0) is the free energy, see (3.4.16) in [7].

Micropolar fluids. A micropolar fluid is a micromorphic fluid whose micromotion χ takes values in
the Lie group SO(3). The material particles of micropolar fluids have six degrees of freedom: three for
translations and three for rotations. Micropolar fluids are, therefore, a particular case of microstretch
fluids.

The general equations for micropolar continua are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tkl,k + ρ

(
fl − D

dt
ul

)
= 0,

mkl,k + εlmntmn + ρ(ll − σl)= 0,

D

dt
ρ + ρ div u = 0,

D

dt
jkl + (εkpr jlp + εlpr jkp)νr = 0,

(8.40)
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where the variables and tensors have the same meaning as in the previous examples. These equations
are given in [7, Eqs. (2.2.43)–(2.2.46)]. They are derived from those of microstretch continua, using
that the microgyration tensor ν takes values in the Lie subalgebra so(3) of cso(3), that is, ν0 = 0. In
particular, the spin inertia σk is given by

σk := jkl
D

dt
νl + εklm jmnνlνn = D

dt
( jklνl).

The constitutive equations for non-dissipative micropolar fluids are given by

tkl = ∂Ψ

∂ρ−1
δkl and mkl = 0,

where Ψ = Ψ (ρ−1, j) is the free energy; see (3.4.27) in [7].

Lagrangian and Hamiltonian formulation for micromorphic fluids. We now show that the equations
for non-dissipative micromorphic fluids can be obtained by Euler–Poincaré reduction associated to the
semidirect product Diff(D)�F(D,GL(3)+). The advected quantities are the mass density ρ ∈ F(D)
and the microinertia tensor i ∈ F(D, Sym(3)). The symmetry group Diff(D)�F(D,GL(3)+) acts lin-
early on the advected variables (ρ, i) by

(ρ, i) �→ (
Jη(ρ ◦ η),χ T (i ◦ η)χ)

.

The choice of this group representation is dictated by the form of the advection equations for the
mass density and the microinertia in Eqs. (8.37). The infinitesimal actions ρ(u, ν)= ρu and i(u, ν) of
(u, ν) ∈ X(D)�F(D,gl(3)) on ρ and i are given, respectively, by

ρu = div(ρu) and i(u, ν)= di(u)+ νT i + iν.

Given two matrices a,b ∈ gl(3) we denote by ab their product and by a · b := Tr(aT b) the contraction.
By identifying the dual of F(D, Sym(3)) with itself through the pairing

〈m, i〉 =
∫
D

m(x) · i(x)μ,

we obtain the diamond operations

m �1 i = −m · di and m �2 i = −2im.

In order to obtain the equations for micromorphic fluids we consider the Lagrangian l: [X(D)�
F(D,gl(3))]� [F(D)⊕ F(D, Sym(3))] → R given by

l(u, ν,ρ, i) := 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ(iν · ν)μ−
∫
D

ρΨ
(
ρ−1, i

)
μ, (8.41)

where the function Ψ represents the free energy, and where the norm in the first term is taken relative
to a fixed Riemannian metric g on D. The functional derivatives are

δl

δu
= ρu�,

δl

δν
= ρiν,

δl

δρ
= 1

2
‖u‖2 + 1

2
iν · ν −Ψ

(
ρ−1, i

)+ 1

ρ

∂Ψ

∂ρ−1

(
ρ−1, i

)
and

δl

δi
= 1

2
ρννT − ρ

∂Ψ

∂ i

(
ρ−1, i

)
.
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A computation, involving remarkable cancellations, shows that the Euler–Poincaré equations (1.2) as-
sociated to the Lagrangian (8.41) and to the group G = Diff(D)�F(D,GL(3)+) acting linearly on
V ∗ = F(D)⊕ F(D, Sym(3)) are given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = 1

ρ
grad

∂Ψ

∂ρ−1
,

i

(
∂

∂t
ν + dν(u)− νν

)
= 2i

∂Ψ

∂ i
,

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
i + di(u)+ νT i + iν = 0.

(8.42)

Thus we have recovered Eqs. (8.35) by Euler–Poincaré reduction, up to a change of variables, replac-
ing ν by −νT .

Consider the right-invariant Lagrangian L(ρ0,i0) : T [Diff(D)�F(D,GL(3)+)] → R induced by the
Lagrangian (8.41). A curve (η,χ) ∈ Diff(D)�F(D,GL(3)+) is a solution of the Euler–Lagrange equa-
tions associated to L(ρ0,i0) if and only if the curve

(u, ν) := (
η̇ ◦ η−1, χ̇χ−1 ◦ η−1) ∈ X(D)�F

(
D,GL(3)+

)
is a solution of the micromorphic fluid equations (8.42) with initial conditions (ρ0, i0). Note that, in
our approach, the relation ν = (χ̇χ−1) ◦ η−1 between the microgyration tensor and the micro and
macromotions is due to the passage from the Lagrangian to the spatial representation. This relation
coincides with that given in [7], up to conventions. It is considered there as a definition of ν .

The evolution of the mass density ρ and the microinertia i is given by

ρ = J
(
η−1)(ρ0 ◦ η−1) and i = ((

χ T )−1
i0χ

−1) ◦ η−1.

Note that the evolution of the determinant of i is

det(i)= det(i0)

det(χ)2
◦ η−1.

Therefore, if the initial microinertia i0 is invertible, then i is invertible for all time. Under this hypoth-
esis we can take the Legendre transformation of the Lagrangian l and we obtain the Hamiltonian

h(m, κ,ρ, i)= 1

2

∫
D

1

ρ
‖m‖2μ+ 1

2

∫
D

1

ρ

(
i−1κ · κ)μ+

∫
D

ρΨ
(
ρ−1, i

)
μ,

where (m, κ,ρ, i) ∈Ω1(D)× F(D,gl(3))× F(D)× F(D, Sym(3)), which consists of the sum of the
kinetic energy due to macromotion and micromotion and the free energy. By Lie–Poisson reduction,
we obtain that Eqs. (8.42) are Hamiltonian with respect to the Lie–Poisson bracket

{ f , g}(m, κ,ρ, i)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(

ad δ f
δκ

δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

ρ

(
d
(
δ f

δρ

)
δg

δm
− d

(
δg

δρ

)
δ f

δm

)
μ
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+
∫
D

i ·
(

div

(
δ f

δi

δg

δm

)
− δg

δκ

δ f

δi
− δ f

δi

(
δg

δκ

)T

− div

(
δg

δi

δ f

δm

)
+ δ f

δκ

δg

δi
+ δg

δi

(
δ f

δκ

)T )
μ. (8.43)

The Kelvin–Noether circulation theorem applied to micromorphic fluids yields the simple relation

d

dt

∮
ct

u� =
∮
ct

∂Ψ

∂ i
· di.

Lagrangian and Hamiltonian formulation for microstretch fluids. The symmetry group of mi-
crostretch fluid dynamics is Diff(D)�F(D,CSO(3)). As before, the advected quantities are the mass
density ρ ∈ F(D) and the microinertia tensor i ∈ F(D, Sym(3)), on which the symmetry group acts
linearly as in the micromorphic case.

The Lagrangian of the microstretch fluid has the same expression as that of the micromorphic
fluid, namely, l : [X(D)�F(D, cso(3))]� [F(D)⊕ F(D, Sym(3))] → R is given by

l(u, ν,ρ, i) := 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ(iν · ν)μ−
∫
D

ρΨ
(
ρ−1, i

)
μ.

Using the change of variables i �→ j := Tr(i)I3 − i, this Lagrangian reads

l(u, ν,ρ, j)= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ

(
1

2
j0ν

2
0 + jν · ν

)
μ−

∫
D

ρΨ
(
ρ−1, j

)
μ, (8.44)

where j0 := Tr( j). The functions ν0 ∈ F(D) and ν = (ν1,ν2,ν3) ∈ F(D,R3) are defined as in
Eq. (8.38). The expression (8.44) for the Lagrangian has the advantage of giving the formula of the
energy due to microstretch and microrotation separately.

The associated Euler–Poincaré equations are the same as in (8.42). We now rewrite these equa-
tions, using the fact that, for microstretch fluids, the microgyration tensor ν has values in the Lie
subalgebra cso(3). We will make use of the following two lemmas.

Lemma 8.1. Suppose that the free energy Ψ verifies the axiom of objectivity, that is,

Ψ
(
ρ−1, A−1i A

) = Ψ
(
ρ−1, i

)
, for all A ∈ O (3).

Then the matrix i ∂Ψ
∂ i is symmetric.

Proof. Consider a curve A(t) ∈ SO(3) such that A(0) = I3 and Ȧ(0) = ξ ∈ so(3). Differentiating the
equality Ψ (A(t)−1i A(t))= Ψ (i) at t = 0, we obtain the condition

DΨ (i)(iξ − ξ i)= 0, for all ξ ∈ so(3).

Using the equalities DΨ (i)(iξ − ξ i)= Tr( ∂Ψ
∂ i (iξ − ξ i))= Tr(( ∂Ψ

∂ i i − i ∂Ψ
∂ i )ξ), we obtain that the matrix

∂Ψ
∂ i i − i ∂Ψ

∂ i is symmetric. Since this matrix is clearly also antisymmetric, we obtain ∂Ψ
∂ i i − i ∂Ψ

∂ i = 0. �
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Lemma 8.2. For i ∈ F(D, Sym(3)) define

j := Tr(i)I3 − i ∈ F
(
D, Sym(3)

)
.

For ν ∈ F(D, cso(3)) define ν0 ∈ F(D) and ν ∈ F(D,R3) by the condition

ν = ν0 I3 + ν̂.

Then,

• the equation

i

(
D

dt
ν − νν

)
= 2i

∂Ψ

∂ i
(8.45)

is equivalent to the system

⎧⎪⎪⎨⎪⎪⎩
j0

2

(
D

dt
ν0 − ν2

0

)
+ ( jν) · ν = 2

(
j0
∂Ψ

∂ j0
+ j · ∂Ψ

∂ j

)
,

j
D

dt
ν − 2ν0 jν − ( jν)× ν = 0,

(8.46)

• the equation

D

dt
i + νT i + iν = 0

is equivalent to the equation

D

dt
j + 2ν0 j + [ j, ν̂] = 0.

Proof. The results follow by direct computations. The two equations in (8.46) are obtained by taking
respectively the trace and the antisymmetric part of Eq. (8.45). For the computation of the trace, we
use the equalities

Tr(iν)= ν0 Tr(i)= 1

2
ν0 j0, Tr(iνν)= 1

2
ν2

0 − ( jν) · ν and Tr

(
i
∂Ψ

∂ i

)
= j0

∂Ψ

∂ j0
+ j · ∂Ψ

∂ j
.

For the computation of the antisymmetric part, we use the equalities

iν − (iν)T = ĵν,

iνν − (iνν)T = 2ν0
(
iν̂ − (iν̂)T )+ (

iν̂ν̂ − (iν̂ν̂)T ) = 2ν0 ĵν + ̂( jν)× ν,

and the fact that the matrix i ∂Ψ
∂ i is symmetric, by the preceding lemma. �
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Using this lemma, we obtain that the Euler–Poincaré equations (8.42) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂t
u + ∇uu = 1

ρ
grad

∂Ψ

∂ρ−1
,

j0

2

(
D

dt
ν0 − ν2

0

)
+ ( jν) · ν = 2

(
j0
∂Ψ

∂ j0
+ j · ∂Ψ

∂ j

)
,

j
D

dt
ν − 2ν0 jν − ( jν)× ν = 0,

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + 2ν0 j + [ j, ν̂] = 0.

(8.47)

The third equation can be rewritten as

D

dt
( jν)= 0.

From the last equation, we deduce that the conservation law for j0 reads

D

dt
j0 + 2ν0 j0 = 0.

Thus we have recovered Eqs. (8.39) by Euler–Poincaré reduction, up to a change of variables, replac-
ing ν by −νT .

The Lagrangian reduction for microstretch fluids follows from that of micromorphic fluids and so
we do not repeat it. Making use of the fact that the micromotion χ takes values in CSO(3), we obtain
that the evolution of the microinertia i with initial value i0 is

i = ((
χ T )−1

i0χ
−1) ◦ η−1 =

(
1

det(χ)2/3
χ i0χ

−1
)

◦ η−1.

It follows that the evolution of the variable j has the same expression and that the evolution of the
microstretch inertia j0, with initial value ( j0)0, is given by

j0 = 1

det(χ)2/3
( j0)0 ◦ η−1.

As in the micromorphic case, if the initial microinertia tensor i0 is invertible, we can obtain the
equations and its associated Poisson bracket by Lie–Poisson reduction.

Lagrangian and Hamiltonian formulation for micropolar fluids. The symmetry group of micropolar
fluid dynamics is Diff(D)�F(D, SO(3)). In terms of the variable j, the Lagrangian reads

l(u,ν,ρ, j)= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ( jν · ν)μ−
∫
D

ρΨ
(
ρ−1, j

)
μ.

Using that ν0 = 0 for micropolar fluids, we obtain that the Euler–Poincaré equations are given by⎧⎪⎪⎨⎪⎪⎩
∂

∂t
u + ∇uu = 1

ρ
grad

∂Ψ

∂ρ−1
, j

D

dt
ν − ( jν)× ν = 0,

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + [ j, ν̂] = 0.

(8.48)

Note the analogy between the second equation and the equation for the rigid body.
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The Lagrangian reduction for micropolar fluids follows from that of micromorphic fluids so we
shall not repeat it. Making use of the fact that the micromotion χ takes values in SO(3), we obtain
that the evolution of the microinertia j with initial value j0 is

j = (
χ j0χ

−1) ◦ η−1.

Thus, the evolution of its determinant is given by

det( j)= det( j0) ◦ η−1,

which shows that j is invertible if and only if j0 is invertible. Thus, if the initial microinertia tensor
j0 is invertible, the equations of motion (8.48) can be obtained by Lie–Poisson reduction. Using the
equalities

m := δl

δu
= ρu� and κ := δl

δν
= ρ jν,

the Legendre transformation yields the Hamiltonian

h(m,κ,ρ, j)= 1

2

∫
D

1

ρ
‖m‖2μ+ 1

2

∫
D

1

ρ

(
j−1κ · κ)μ+

∫
D

ρΨ
(
ρ−1, j

)
μ

representing the total energy of the system. In the particular case of micropolar fluids, and in terms
of the variable j, the Poisson bracket (8.43) becomes

{ f , g}(m,κ,ρ, j)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(

ad δ f
δκ

δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

ρ

(
d
(
δ f

δρ

)
δg

δm
− d

(
δg

δρ

)
δ f

δm

)
μ

+
∫
D

j ·
(

div

(
δ f

δ j

δg

δm

)
+

[
δ f

δ j
,
δg

δκ

]
− div

(
δg

δ j

δ f

δm

)
−

[
δg

δ j
,
δ f

δκ

])
μ, (8.49)

where the brackets in the last term denote the usual commutator bracket of matrices.

A quaternionic point of view on microstretch and micropolar fluids. We now show that, in the case
of microstretch fluids, we can use the Lie group H× of invertible quaternions to describe the micro-
motion of the particles. To see this, recall that there is a 2 to 1 surjective group homomorphism

π : S3 ∼= SU(2)→ SO(3)

given by

α + jβ ∼=
[
α −β
β α

]
�→

⎡⎣ Re(α2 − β2) Im(α2 − β2) 2 Re(αβ)

− Im(α2 + β2) Re(α2 + β2) −2 Im(αβ)

−2 Re(αβ) −2 Im(αβ) |α|2 − |β|2

⎤⎦ ,
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where the universal covering group S3 = {α+ jβ ∈ H | |α|2 + |β|2 = 1} ⊂ H× denotes the Lie group of
unit quaternions. The tangent map of π at the identity is the Lie algebra isomorphism

p = k(ν1 + iν2 + jν3) ∈ T1 S3 �→ 2ν̂ ∈ so(3),

where ν = (ν1,ν2,ν3) and the Lie algebra T1 S3 consists of pure quaternions.
Remarkably, the map π extends to a 2 to 1 surjective group homomorphism

π : H× → CSO(3)

given by the same expression. Thus the group H× of invertible quaternions can be seen as the univer-
sal covering group of the conformal special orthogonal rotations. The Lie algebra isomorphism reads

p = ν0 + k(ν1 + iν2 + jν3) ∈ H �→ 2(ν0 I3 + ν̂) ∈ cso(3).

These observations show that the micromotion of a microstretch fluid can be described by a map
χ :D → H× with values in the group of invertible quaternions.

The same remark applies to micropolar fluids where one can use the group of unit quaternions S3

instead of SO(3). In both cases, the only difference in the equations of motion is that the variable ν
takes values in H or in the Lie algebra of pure quaternions, respectively.

Remarks on the use of other groups and the anisotropic cases. For K an invertible and symmetric
3 × 3 matrix, we define the group

SO(K )= {
A ∈ GL(3)+

∣∣ AT K A = K
}
.

This is a three-dimensional Lie group, called the special K -orthogonal group with Lie algebra given by

so(K )= {
ν ∈ gl(3)

∣∣ νT K + Kν = 0
}
.

Note that SO(K ) is the group of orthogonal linear maps relative to the (possibly indefinite) inner
product uT K v . The analogue of the hat map̂: R3 → so(3) is the map K̂ : R3 → so(K ) defined by

ûK := K −1 K̂ u ∈ so(K ).

The adjoint and coadjoint actions of SO(K ) on R3 are computed to be

AdA u = K −1 AK u and Ad∗
A−1 v = K A−T K −1 v.

By differentiating the adjoint action we find the expression of the Lie bracket on R3 associated to the
group SO(K ). This Lie bracket generalizes the cross-product u × v associated to SO(3), thus we shall
use the notation u ×K v and we call it the cross-product associated to K . We have

u ×K v := d

dt

∣∣∣∣
t=0

Adexp(tûK
)

v = K −1ûK K v = K −2 K̂ uK v

= K −2(K u × K v)= det(K )K −3(u × v),

where we used the relation

K u × K v = det(K )K −1(u × v),
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valid for any invertible and symmetric matrix K . To show this formula, we first note that it holds
when K is a diagonal matrix. Then it suffices to write K = B T D B , where B ∈ SO(3) and D is the
diagonal matrix of eigenvalues. Note that, by construction, we have the formula

û ×K v
K = [

ûK
, v̂ K ]

.

The infinitesimal coadjoint action is computed to be

ad∗
u w = det(K )

(
K −3 w

)× u.

Note that so(K ) = [so(K ), so(K )], as is easily seen using the formula for ×K . Thus, since
dim so(K ) = 3, the Lie algebra so(K ) is simple (see [20, example at the end of §2, Chapter I]). Ac-
cording to the classification of all three-dimensional real Lie algebras (see [20, Problems 28–35 in
§15, Chapter I]), it follows that if K is definite, then so(K ) ∼= so(3) and if K is indefinite, then
so(K )∼= sl(2,R) (see also the discussion at the end of §14.6 in [23]).

A Casimir function for the Lie–Poisson bracket on (R3,×K ) is given by

C(w)= 1

2
w T K −3 w,

since we have

ad∗
δC/δw w = 0.

This shows that the coadjoint orbits of SO(K ) are ellipsoids (when K is definite) or hyperboloids
(when K is indefinite).

When K is positive definite, the group O = SO(K ) can be used for the description of the anisotropic
version of the theory of micropolar fluids. In such micropolar fluids, the particles have preferred axes
of deformations. Note that if u ∈ R3 is given, then the SO(K )-orbit {Au | A ∈ SO(K )} through u in R3

coincides with the ellipsoid Ec := {v ∈ R3 | v T K v = c} containing u. Typical cases are given by

K =
[1 0 0

0 1 0
0 0 ε

]
or K =

[
ε 0 0
0 ε 0
0 0 1

]
, ε ∼ 0,

corresponding to extremely oblate and prolate ellipsoids.
As in the micropolar case, the Lagrangian of the anisotropic micropolar fluid is deduced from that of

the micromorphic case. For the microrotation energy, we have identity

Tr
(
(iν)T ν

) = jK ν · ν,

where ν̂K = ν and where

jK := Tr
(
iK −2)K 2 − i ∈ Sym(3)

is the anisotropic generalization of the relation

j = Tr(i)I3 − i

that was used in the micropolar case. Thus the Lagrangian of the anisotropic micropolar fluid can be
written as

l(u,ν,ρ, jK )= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ( jK ν · ν)μ−
∫
D

ρΨ
(
ρ−1, jK

)
μ.
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In terms of the variables (u, ν,ρ, i) the associated motion equations are given by (8.42), except that
now ν takes values in so(K ). One can write these equations in terms of the variables (u,ν,ρ, jK ) by
simply replacing ν by ν̂K and i by

1

2
Tr
(

jK K −2)K 2 − jK

in the micromorphic fluid equations (8.42).
We also can consider an anisotropic version of the microstretch theory, by choosing as internal

symmetry group the Lie group

CSO(K )= {
A ∈ GL+(3)

∣∣ there exists λ ∈ R such that AT K A = λK
}

called the conformal special K -orthogonal group. The Lie algebra of CSO(K ) is

cso(K )= {
ν ∈ gl(3)

∣∣ there exists μ ∈ R such that νT K + Kν =μK
}
.

In such anisotropic microstretch fluids, in addition to have preferred axes of deformations, the fluid
particles can also stretch.

As in the microstretch case, we have, for all ν ∈ cso(K ), the decomposition

ν = ν̂K + ν0 I3

for a unique ν ∈ R3 and ν0 ∈ R. The adjoint action and Lie bracket read

AdA
(
ν̂K + ν0 I3

) = 1

det(A)1/3

(
K −1 AKν

)̂ K + ν0 I3 and [ν,μ] = ν̂ ×K μ
K
.

As in the microstretch case, the Lagrangian of the anisotropic microstretch fluid is deduced from
that of the micromorphic case. In the anisotropic case the microrotation energy takes the complicate
expression

Tr
(
(iν)T ν

) = jK ν · ν − 2ν0 Tr
(

jK ν̂K )+ ν2
0

1

2
Tr
(

jK K −2)Tr
(

K 2)− ν2
0 Tr( jK ),

which generalizes the formula

Tr
(
(iν)T ν

) = jν · ν + 1

2
j0ν

2
0

valid when K = I3.

8.11. Liquid crystals

The liquid crystal state is a distinct phase of matter observed between the crystalline (solid)
and isotropic (liquid) states. There are three main types of liquid crystal states, depending upon
the amount of order in the material. The nematic liquid crystal phase is characterized by rod-like
molecules that have no positional order but tend to point in the same direction. In the cholesteric (or
chiral nematic) phase, molecules resemble helical springs, which may have opposite chiralities. As for
nematics, the molecules exhibit a privileged direction, which is the axis of the helices. Smectic liquid
crystals are essentially different from both nematics and cholesterics, in that they have one more de-
gree of orientational order. Smectics generally form layers within which there is a loss of positional
order, while orientational order is still preserved. See for example [4,5], and [28] for more information.

There are various approaches to the dynamics of liquid crystals. In this section we carry out the
Lagrangian and Hamiltonian formulation for three of them:
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– the director theory due to Oseen, Frank, Zöcher, Ericksen, and Leslie,
– the micropolar and microstretch theories, due to Eringen, which take into account the microinertia

of the particles and which is applicable, for example, to liquid crystal polymers,
– the ordered micropolar approach, due to Lhuillier and Rey, which combines the director theory

with the micropolar models.

For simplicity we suppose that the fluid container D is a domain in R3 and all boundary conditions
are ignored. This means that in all integration by parts we assume that the boundary terms vanish.

8.11.1. Director theory
In this theory it is assumed that only the direction and not the sense of the molecules matter in

the description of the physical phenomena. Thus, the preferred orientation of the molecules around a
point is described by a unit vector n :D → S2, called the director, and n and −n are assumed to be
equivalent.

This description is convenient for nematics and cholesterics. We will consider the director as a
map n :D → R3, and we will show that the condition ‖n‖ = 1 is preserved by the Euler–Poincaré
dynamics.

We shall obtain the Ericksen–Leslie equations by Euler–Poincaré and Lie–Poisson reduction. For
nematic and cholesteric liquid crystals, the order parameter Lie group is O = SO(3). In this paragraph
we always identify the Lie algebra so(3) with R3, that is, we have adu v = u × v . Identifying the dual
through the canonical inner product on R3, we have ad∗

u w = w × u.
The symmetry group is the semidirect product Diff(D)�F(D, SO(3)). In the original Ericksen–

Leslie approach, the liquid crystal flow is supposed to be incompressible. In this case the subgroup
Diff(D)vol �F(D, SO(3)) should be used. Here we treat general compressible flows. An element
(η,χ) ∈ Diff(D)�F(D, SO(3)) acts linearly on the advected quantities (ρ,n) ∈ F(D) × F(D,R3),
by

(ρ,n) �→ (
Jη(ρ ◦ η),χ−1(n ◦ η)).

The associated infinitesimal action and diamond operations are given by

nu = ∇n · u, nν = n × ν, m �1 n = −∇nT · m and m �2 n = n × m,

where ν,m,n ∈ F(D,R3). We use here and in the rest of the paper ∇n instead of the usual derivative
dn of the director n ∈ F(D,R3), since this notation is standard in the liquid crystals literature. Thus
∇n is a 3 × 3 matrix whose rows are the vectors ∇n1, ∇n2, ∇n3 and hence its columns are ∂1n, ∂2n,
∂3n; ∇nT denotes the transpose of ∇n. The Euler–Poincaré equations (1.2) associated to the group
(Diff(D)�F(D, SO(3)))� (F(D)× F(D,R3)) are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂

∂t

δl

δu
= −£££u

δl

δu
− div u

δl

δu
− δl

δν
· dν + ρ d

δl

δρ
−

(
∇nT · δl

δn

)�
,

∂

∂t

δl

δν
= ν × δl

δν
− div

(
δl

δν
u
)

+ n × δl

δn
.

(8.50)

Note that the first equation is in Ω1(D), the dual of the Lie algebra X(D). The advection equations
are ⎧⎪⎪⎨⎪⎪⎩

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
n + (∇n)u + n × ν = 0.

(8.51)
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The reduced Lagrangian for nematic and cholesteric liquid crystals is of the form

l(u,ν,ρ,n) := 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ J‖ν‖2μ−
∫
D

ρ F
(
ρ−1,n,∇n

)
μ, (8.52)

where the constant J is the microinertia constant and F is the free energy. The axiom of objectivity
requires that

F
(
ρ−1, A−1n, A−1∇nA

) = F
(
ρ−1,n,∇n

)
for all A ∈ O (3) for nematics, or for all A ∈ SO(3) for cholesterics.

A standard choice for F is the Oseen–Zöcher–Frank free energy given by

ρ F
(
ρ−1,n,∇n

) = K2 (n · curl n)︸ ︷︷ ︸
chirality

+1

2
K11 (div n)2︸ ︷︷ ︸

splay

+1

2
K22 (n · curl n)2︸ ︷︷ ︸

twist

+ 1

2
K33 ‖n × curl n‖2︸ ︷︷ ︸

bend

, (8.53)

where K2 �= 0 for cholesterics and K2 = 0 for nematics. The free energy can also contain additional
terms due to external electromagnetic fields. The constants K11, K22, K33 are respectively associated to
the three principal distinct director axis deformations in nematic liquid crystals, namely, splay, twist,
and bend. In general, these constants are different, but the expression of the resulting equations of
motion can be greatly simplified if we make the one-constant approximation K11 = K22 = K33 = K . In
this case the free energy becomes, up to the addition of a divergence,

ρ F
(
ρ−1,n,∇n

) = 1

2
K‖∇n‖2.

The functional derivatives of the Lagrangian (8.52) are computed to be

m := δl

δu
= ρu�, κ := δl

δν
= ρ Jν,

and

δl

δρ
= 1

2
‖u‖2 + 1

2
J‖ν‖2 − F + 1

ρ

∂ F

∂ρ−1
, −h := δl

δn
= −ρ ∂ F

∂n
+ ∂i

(
ρ
∂ F

∂n,i

)
.

The vector field h is referred to as the molecular field. In the case of the free energy (8.53) for nematics
(K2 = 0), the vector h is given by

h = K11 grad div n − K22
(

A curl n + curl(An)
)+ K33

(
B × curl n + curl(n × B)

)
,

where A := n · curl n and B := n × curl n. In the case of the one-constant approximation we have
h = −KΔn.

Using the Lagrangian (8.52), the Euler–Poincaré equations (8.50) become⎧⎪⎪⎨⎪⎪⎩
ρ

(
∂

∂t
u + ∇uu

)
= grad

∂ F

∂ρ−1
− ∂i

(
ρ
∂ F

∂n,i
· ∇n

)
,

ρ J
D

dt
ν = h × n,

(8.54)
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where we have used the standard notation D
dt := ∂

∂t + u · ∇ for the material derivative acting on every
component of ν . The advection equations are

⎧⎪⎪⎨⎪⎪⎩
∂

∂t
ρ + div(ρu)= 0,

D

dt
n = ν × n.

(8.55)

The evolution of the advected quantities is given by

ρ = J
(
η−1)(ρ0 ◦ η−1) and n = (χn0) ◦ η−1.

We now show that under some conditions, Eqs. (8.54) and (8.55) are equivalent to the Ericksen–
Leslie equations for liquid crystals. This will use the following lemma.

Lemma 8.3. Let ν and n be solutions of the Euler–Poincaré equations (8.54) and (8.55). Then:

(i) ‖n0‖ = 1 implies ‖n‖ = 1 for all time.
(ii) D

dt (n · ν)= 0. Therefore, n0 · ν0 = 0 implies n · ν = 0 for all time.
(iii) Suppose that n0 · ν0 = 0 and ‖n0‖ = 1. Then the second equation of (8.55) reads

ν = n × D

dt
n

and the second equation of (8.54) reads

ρ J
D2

dt2
n − 2qn + h = 0,

where 2q := n · h − ρ J‖ Dn
dt ‖2 = n · h − ρ J‖ν‖2 .

Proof. (i) This is clear from the evolution n = (χn0) ◦ η−1, since χ ∈ SO(3).
(ii) Using the second equations in (8.54) and (8.55), we have

D

dt
(n · ν)=

(
D

dt
n
)

· ν + n ·
(

D

dt
ν

)
= (ν × n) · ν + n · 1

ρ J
(h × n)= 0.

(iii) Using the first two results, we obtain

n × D

dt
n = n × (ν × n)= (n · n)ν − (n · ν)n = ν,

which proves the first relation.
To prove the second, we take the material time-derivative of the relation above to rewrite the

second equation of (8.54) as ρ J (n × D2

dt2 n) = h × n. Taking the cross-product with n on the left we
obtain the equation

ρ J

(
n · D2

dt2
n
)

n − ρ J
D2

dt2
n = h − (n · h)n.



Author's personal copy

258 F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275

Defining 2q := n · h + ρ J (n · D2

dt2 n), this equation reads

ρ J
D2

dt2
n − 2qn + h = 0,

which is the second relation since n · D2

dt2 n = −‖ Dn
dt ‖2 = −‖ν‖2. The last two equalities are obtained

by taking two consecutive material time-derivatives of ‖n‖2 = 1 and using the identity ν = n × D
dt n,

respectively. �
Thus, we obtain the following theorem.

Theorem 8.4. Let (u,ν,ρ,n) be a solution of Eqs. (8.54) and (8.55), with the initial conditions n0 and ν0
verifying

‖n0‖ = 1 and n0 · ν0 = 0.

Then (u,ρ,n) is a solution of the Ericksen–Leslie equations⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂

∂t
u + ∇uu

)
= grad

∂ F

∂ρ−1
− ∂ j

(
ρ
∂ F

∂n, j
· ∇n

)
,

ρ J
D2

dt2
n − 2qn + h = 0,

∂

∂t
ρ + div(ρu)= 0,

(8.56)

where 2q := n · h − ρ J‖ Dn
dt ‖2 .

Conversely, let (u,ρ,n) be a solution of the Ericksen–Leslie equations (8.56) such that ‖n‖ = 1, and define

ν := n × D

dt
n.

Then (u,ν,ρ,n) is a solution of Eqs. (8.54) and (8.55).

Remark. One should think of the function q in the Ericksen–Leslie equation the way one regards the
pressure in ideal incompressible homogeneous fluid dynamics, namely, the q is an unknown function
determined by the imposed constraint ‖n‖ = 1 in the following way. The dot product of the second
equation of (8.56) with n yields the formula of q given in the statement of the theorem by imposing
‖n‖ = 1.

This q does not appear in the Euler–Poincaré formulation relative to the variables (u,ν,ρ,n), since
in this case, the constraint ‖n‖ = 1 is automatically satisfied by Lemma 8.3(i).

As a consequence of Theorem 8.4, we obtain the Ericksen–Leslie equations for liquid crystals by
Lagrangian reduction. Consider the right-invariant Lagrangian

L(ρ0,n0) : T
[
Diff(D)�F

(
D, SO(3)

)] → R

induced by the Lagrangian (8.52), and assume that ‖n0‖ = 1 and ν0 · n0 = 0. A curve (η,χ) ∈
Diff(D)�F(D, SO(3)) is a solution of the Euler–Lagrange equations associated to L(ρ0,n0) , with initial
condition ν0 if and only if the curve

(u, ν) := (
η̇ ◦ η−1, χ̇χ−1 ◦ η−1)
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is a solution of the Ericksen–Leslie equations (8.56), where

ρ = J
(
η−1)(ρ0 ◦ η−1) and n = (χn0) ◦ η−1.

As in the case of microfluids, the curve η ∈ Diff(D) describes the Lagrangian motion of the fluid or
macromotion, and the curve χ ∈ F(D, SO(3)) describes the local molecular orientation relative to a fixed
reference frame or micromotion. A standard choice for the initial value of the director is

n0(x) := (0,0,1), for all x ∈ D.

In this case we obtain that

n =
(
χ13
χ23
χ33

)
◦ η−1.

This relation is usually taken as a definition of the director, when the 3-axis is chosen as the reference
axis of symmetry.

By the Legendre transformation, the Hamiltonian for liquid crystals is given by

h(m,κ,ρ,n) := 1

2

∫
D

1

ρ
‖m‖2μ+ 1

2 J

∫
D

1

ρ
‖κ‖2μ+

∫
D

ρ F
(
ρ−1,n,∇n

)
μ.

The Poisson bracket for liquid crystals is given by

{ f , g}(m,ρ,κ,n)=
∫
D

m ·
[
δ f

δm
,
δg

δm

]
μ

+
∫
D

κ ·
(
δ f

δκ
× δg

δκ
+ d

δ f

δκ
· δg

δm
− d

δg

δκ
· δ f

δm

)
μ

+
∫
D

ρ

(
d
δ f

δρ
· δg

δm
− d

δg

δρ
· δ f

δm

)
μ

+
∫
D

[(
n × δ f

δκ
+ ∇n · δ f

δm

)
δg

δn
−

(
n × δg

δκ
+ ∇n · δg

δm

)
δ f

δn

]
μ. (8.57)

The Kelvin circulation theorem for liquid crystals reads

d

dt

∮
ct

u� =
∮
ct

1

ρ
∇nT · h,

where h is the molecular field defined by

h = ρ
∂ F

∂n
− ∂i

(
ρ
∂ F

∂n,i

)
.

8.11.2. Micropolar theory of liquid crystals
This approach is based on the equations for micropolar continua given in (8.40). The difference

from the micropolar fluid treated before is that for liquid crystals the free energy Ψ depends also
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on a new variable γ = (γ ab
i ) ∈ Ω1(D, so(3)) called the wryness tensor. This variable is denoted by

γ = (γ a
i ) when it is seen as a form with values in R3.

The constitutive equations in the non-dissipative case are given by

tkl = ∂Ψ

∂ρ−1
δkl − ρ

∂Ψ

∂γ a
k

γ a
l and mkl = ρ

∂Ψ

∂γ l
k

,

according to (12.5.18) in [7], where the function Ψ = Ψ (ρ−1, j, γ ) : R × Sym(3)× gl(3)→ R denotes
the free energy. The axiom of objectivity requires that

Ψ
(
ρ−1, A−1 j A, A−1γ A

) = Ψ
(
ρ−1, j,γ

)
for all A ∈ O (3) (for nematics and nonchiral smectics), or for all A ∈ SO(3) (for cholesterics and chiral
smectics). See paragraphs 12.6, 12.8 and 12.9 in [7] for the choice of the free energy for nematics,
cholesterics, and smectics, respectively.

Assuming that fl = 0 and lk = 0, Eqs. (8.40) for micropolar continua become

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ

D

dt
ul = ∂l

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂γ a
k

γ a
l

)
, ρσl = ∂k

(
ρ
∂Ψ

∂γ l
k

)
− εlmnρ

∂Ψ

∂γ a
m

γ a
n,

D

dt
ρ + ρ div u = 0,

D

dt
jkl + (εkpr jlp + εlpr jkp)νr = 0.

(8.58)

These are the equations for non-dissipative micropolar liquid crystals as given in Section 12 of [7].
To these equations one needs to add the evolution of γ given by

D

dt
γ a

l = ∂lνa + νabγ
b
l − γ a

r ∂lur, (8.59)

which is Eq. (12.3.13) in [7]. Here D
dt acts on the one-form γ ∈Ω1(D,R3) as D

dt γ := ∂
∂t γ + £££uγ .

Lagrangian and Hamiltonian formulation of micropolar liquid crystals. We now show that the
system of Eqs. (8.58) and (8.59) can be obtained by affine Euler–Poincaré and affine Lie–Poisson
reduction. As in the case of micropolar fluids, the symmetry group is the semidirect product
Diff(D)�F(D, SO(3)). The advected quantities are the mass density ρ , the microinertia tensor j ∈
F(D, Sym(3)), and the wryness tensor γ ∈ Ω1(D, so(3)). The action of the symmetry group on the
variables ρ and j is linear and is the same as for micropolar fluids. The action of (η,χ) on the
wryness tensor γ is affine and is given by

γ �→ χ−1(η∗γ )χ + χ−1Tχ.

The Lagrangian is the same as that for micropolar fluids, except for the fact that the free energy
depends also on the wryness tensor. We thus have

l(u,ν,ρ, j, γ )= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ( jν · ν)μ−
∫
D

ρΨ
(
ρ−1, j, γ

)
μ. (8.60)

The computation of the affine Euler–Poincaré equations is similar to that for micropolar fluids, except
for the equation associated to the variable ν for which we give some details below.
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Using the Lagrangian (8.60) we find that the evolution for ν is

ρ
1

2

D

dt
ĵν = 2

(
j
∂Ψ

∂ j

)
A

− div

(
ρ
∂Ψ

∂γ

)
−

[
γi,ρ

∂Ψ

∂γi

]
,

where the index A denotes the antisymmetric part of the matrix. According to our conventions, D
dt ĵν

on the right-hand side means that D
dt is applied to every entry of the matrix valued function ĵν :D →

so(3). Using the equality

∂̂Ψ

∂γ i
= 2

∂Ψ

∂γi
,

we obtain

ρ
D

dt
( jν)= 4

˜(
j
∂Ψ

∂ j

)
A

− div

(
ρ
∂Ψ

∂γ

)
− γ i × ρ

∂Ψ

∂γ i
,

where ˜denotes the inverse of .̂ We now use the axiom of objectivity to simplify this expression.

Lemma 8.5. Suppose that the free energy Ψ verifies the axiom of objectivity, that is,

Ψ
(
ρ−1, A−1i A, A−1γ A

) = Ψ
(
ρ−1, i,γ

)
, for all A ∈ SO(3)

(
or O (3)

)
.

Then

2

(
j
∂Ψ

∂ j

)
A

=
((

∂Ψ

∂γ

)T

γ − γ

(
∂Ψ

∂γ

)T )
A
. (8.61)

Proof. Consider a curve A(t) ∈ SO(3) such that A(0) = I3 and Ȧ(0) = ξ ∈ so(3). Differentiating the
equality Ψ (A(t)−1 j A(t), A(t)−1γ A(t))= Ψ ( j,γ ) at t = 0, we obtain the condition

DΨ ( j,γ )( jξ − ξ j,γ ξ − ξγ )= 0, for all ξ ∈ so(3).

Using the equalities

DΨ ( j,γ )( jξ − ξ j,γ ξ − ξγ )= Tr

(
∂Ψ

∂ j
( jξ − ξ j)

)
+ Tr

((
∂Ψ

∂γ

)T

(γ ξ − ξγ )

)

= Tr

((
∂Ψ

∂ j
j − j

∂Ψ

∂ j
+

(
∂Ψ

∂γ

)T

γ − γ

(
∂Ψ

∂γ

)T )
ξ

)

and the identity 2( j ∂Ψ
∂ j )A = j ∂Ψ

∂ j − ∂Ψ
∂ j j, we obtain the result. �

Note that Eq. (8.61), can be rewritten in R3 as

4
˜(
j
∂Ψ

∂ j

)
A

= γ a × ∂Ψ

∂γ a
+ γ k × ∂Ψ

∂γ k
.
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Using these results for the equation for ν , the affine Euler–Poincaré equations associated to the La-
grangian (8.60) read ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂

∂t
u + ∇uu

)
= grad

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂γ a
k

γ a
)
,

j
D

dt
ν − ( jν)× ν = − 1

ρ
div

(
ρ
∂Ψ

∂γ

)
+ γ a × ∂Ψ

∂γ a
,

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + [ j, ν̂] = 0,

∂

∂t
γ + £££uγ + dγ ν̂ = 0.

(8.62)

Recall that dγ ν̂ = dν̂ + [γ , ν̂]. Thus, we have recovered Eqs. (8.58) for non-dissipative micropolar
liquid crystals, together with Eq. (8.59), up to a change of variables γ �→ −γ .

Consider the right-invariant Lagrangian L(ρ0, j0,γ0) : T [Diff(D)�F(D, SO(3))] → R induced by the
Lagrangian (8.60). A curve (η,χ) ∈ Diff(D)�F(D, SO(3)) is a solution of the Euler–Lagrange equa-
tions associated to L(ρ0, j0,γ0) if and only if the curve

(u, ν̂) := (
η̇ ◦ η−1, χ̇χ−1 ◦ η−1) ∈ X(D)�F

(
D, SO(3)

)
is a solution of Eqs. (8.62) with initial conditions (ρ0, j0, γ0). The evolution of the mass density ρ ,
the microinertia j, and the wryness tensor γ is given by

ρ = J
(
η−1)(ρ0 ◦ η−1), j = (

χ j0χ
−1) ◦ η−1, and γ = η∗

(
χγ0χ

−1 + χ Tχ−1).
If the initial value γ0 is zero, then the evolution of γ is given by

γ = η∗
(
χ Tχ−1).

This relation is usually taken as a definition of γ when using Eq. (8.58). We consider γ as an inde-
pendent variable and therefore the system (8.62) contains an evolution equation for γ .

The Legendre transformation and the Hamiltonian formulation can be carried out as in the case of
micropolar fluids. The affine Lie–Poisson bracket consists of the sum of the Lie–Poisson bracket (8.49)
with the term ∫

D

[(
dγ

δ f

δκ
+ £££ δ f

δm
γ

)
· δg

δγ
−

(
dγ

δg

δκ
+ £££ δg

δm
γ

)
· δ f

δγ

]
μ

due to the presence of the variable γ .
The Kelvin–Noether circulation theorem applied to micropolar liquid crystals yields the relation

d

dt

∮
ct

u� =
∮
ct

∂Ψ

∂ i
· di + ∂Ψ

∂γ
· i_ dγ − 1

ρ
div

(
ρ
∂Ψ

∂γ

)
· γ .

The γ -circulation yields the relation

d

dt

∮
ct

γ =
∮
ct

ν × γ

in R3.
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Remark. According to Eq. (12.9.1) in [7], a liquid crystal flow is called smectic if the constraint

Tr(γ )=
3∑

i=1

γ i
i = 0

is satisfied. However, note that this constraint is not preserved by the evolution γ = η∗(χγ0χ
−1 +

χ Tχ−1) in general. This is consistent with the fact that the last equation in (8.62), which can be
written equivalently in vectorial form as

∂γ

∂t
+ £££uγ + dν + γ × ν = 0,

does not imply that if the initial condition for γ has trace zero then Trγ = 0 for all time.

8.11.3. Microstretch theory of polymeric liquid crystals
This approach is based on the equations for microstretch continua given in (8.39). The difference

from the microstretch fluid treated before is that for polymeric liquid crystals the free energy Ψ de-
pends also on the wryness tensor γ ∈Ω1(D, so(3)) and on the microstrain e ∈Ω1(D). The constitutive
equations in the non-dissipative case are given by

tkl = ∂Ψ

∂ρ−1
δkl − ρ

∂Ψ

∂γ a
k

γ a
l − ρ

∂Ψ

∂ek
el, mkl = ρ

∂Ψ

∂γ l
k

,

mk = ∂Ψ

∂ek
, and s − t = 2ρ

(
∂Ψ

∂ jkl
jkl + ∂Ψ

∂ j0
j0

)
,

see Eqs. (16.3.13) and (16.3.13) in [7], where

Ψ = Ψ
(
ρ−1, j, γ , e

)
: R × Sym(3)× gl(3)× R3 → R

denotes the free energy. The axiom of objectivity requires that

Ψ
(
ρ−1, A−1 j A, A−1γ A, A−1e

) = Ψ
(
ρ−1, j,γ , e

)
for all A ∈ O (3) (for nematics and nonchiral smectics), or for all A ∈ SO(3) (for cholesterics and chiral
smectics). See paragraphs 16.4, 16.6 and 16.7 in [7] for the choice of the free energy for nematic,
smectic, and cholesteric polymers, respectively.

Assuming that fl = 0 and lk = 0, Eqs. (8.39) for microstretch continua become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
D

dt
ul = ∂l

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂γ a
k

γ a
l + ρ

∂Ψ

∂ek
el

)
,

ρσ = ∂k

(
ρ
∂Ψ

∂ek

)
− 2ρ

(
∂Ψ

∂ jkl
jkl + ∂Ψ

∂ j0
j0

)
,

ρσl = ∂k

(
ρ
∂Ψ

∂γ l
k

)
− εlmnρ

(
∂Ψ

∂γ a
m

γ a
n + ∂Ψ

∂em
en

)
,

D

dt
ρ + ρ div u = 0,

D

dt
jkl + (εkpr jlp + εlpr jkp)νr = 0.

(8.63)

These are the equations for non-dissipative microstretch polymeric liquid crystals as studied in Section 16
of [7].
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To these equations one adds the evolution of γ ∈Ω1(D,R3) and e ∈Ω1(D) given by

D

dt
γ a

l = ∂lνa + ν̂abγ
b
l − γ a

r ∂lur

and

D

dt
ek = ν0,k + eiui,k,

which is Eq. (16.3.8) in [7]. Like in Eq. (8.59), D/dt acts on the one-forms γ and e as D/dt = ∂/∂t +£££u .

Lagrangian and Hamiltonian formulation of polymeric liquid crystals. We now show that Eqs. (8.63)
can be obtained by affine Euler–Poincaré and affine Lie–Poisson reduction. As in the case of mi-
crostretch fluids, the symmetry group is the semidirect product Diff(D)�F(D,CSO(3)). The ad-
vected quantities are the mass density ρ , the microinertia tensor i ∈ F(D, Sym(3)), the wryness
tensor γ ∈ Ω1(D, so(3)), and the microstrain e ∈ Ω1(D). The action of the symmetry group on
the variables ρ and i is linear and is the same as for microstretch fluids. The action of (η,χ) ∈
Diff(D)�F(D,CSO(3)) on the wryness tensor γ is affine and is given by

γ �→ χ−1(η∗γ )χ +χ−1Tχ, (8.64)

where χ ∈ F(D, SO(3)) is defined by the equality

χ = det(χ)1/3χ,

and is the microrotation part of χ ∈ F(D,CSO(3)). The determinant det(χ)1/3 can be seen as the
microstretch part of χ . The action of (η,χ) on the microstrain e is also affine and is given by

e �→ η∗e + 1

3
det(χ)−1d

(
det(χ)

)
. (8.65)

We now explain why these affine actions are natural. The variables e and γ can be seen as the
symmetric and antisymmetric parts of a strain tensor ζ ∈Ω1(D, cso(3)). More precisely, we have

ζ = eI3 + γ ,

where 3e := Tr(ζ ) and γ := ζA . The affine action of (η,χ) ∈ Diff(D)�F(D,CSO(3)) is the natural ac-
tion of the automorphism group onto the connections of the trivial principal bundle CSO(3)×D → D,
as defined in the general theory (see (3.6)), that is,

ζ �→ χ−1η∗ζχ + χ−1Tχ.

By taking the trace of this action we find the affine action (8.65), whereas the antisymmetric part
gives the affine action (8.64).

We now give the associated right infinitesimal actions and diamond operations. We have

γ u = £££uγ , γ ν = [γ , ν̂], w �1 γ = (div w) · γ − w · i_ dγ , w �2 γ = [γi,wi],
eu = £££ue, eν = 0, f �1 e = (div f ) · e − f · i_ de, f �2 e = 0.

Relative to the two group one-cocycles

C1(χ)= χ−1Tχ and C2(χ)= 1

3
det(χ)−1d det(χ)
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we have

dC1(ν)= dν̂, dC T
1 (w)= −div w,

dC2(ν)= dν0, dC T
2 ( f )= −1

3
(div f )I3.

The Lagrangian is the same as that for microstretch fluids, except for the fact that the free energy
depends also on the wryness tensor γ and on the microstrain e. We thus have

l(u, ν,ρ, i, γ , e)= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ(iν · ν)μ−
∫
D

ρΨ
(
ρ−1, i, γ , e

)
μ, (8.66)

where iν · ν = Tr((iν)T ν). The computation of the associated Euler–Poincaré equations involves the
following generalization of Lemma 8.5.

Lemma 8.6. Suppose that the free energy Ψ verifies the axiom of objectivity, that is,

Ψ
(
ρ−1, A−1i A, A−1γ A, A−1e

) = Ψ
(
ρ−1, i,γ , e

)
, for all A ∈ SO(3)

(
or O (3)

)
.

Then

2

(
j
∂Ψ

∂ j

)
A

=
((

∂Ψ

∂γ

)T

γ − γ

(
∂Ψ

∂γ

)T

− e ⊗ ∂Ψ

∂e

)
A
. (8.67)

Using this lemma, a direct (but long) verification shows that the affine Euler–Poincaré equations
associated to the Lagrangian (8.66) are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂

∂t
u + ∇uu

)
= grad

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂γ a
k

γ a + ρ
∂Ψ

∂ek
e

)
,

j0

2

(
D

dt
ν0 − ν2

0

)
+ ( jν) · ν = 2

(
j0
∂Ψ

∂ j0
+ j · ∂Ψ

∂ j

)
− 1

ρ
div

(
ρ
∂Ψ

∂e

)
,

j
D

dt
ν − 2ν0 jν − ( jν)× ν = − 1

ρ
div

(
ρ
∂Ψ

∂γ

)
+ γ a × ∂Ψ

∂γ a
+ e × ∂Ψ

∂e
,

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + 2ν0 j + [ j, ν̂] = 0,

∂

∂t
γ + £££uγ + [γ , ν̂] + dν̂ = 0,

∂

∂t
e + £££ue + dν0 = 0.

(8.68)

Thus, we have recovered Eqs. (8.63) for non-dissipative polymeric liquid crystals together with the con-
servation laws for γ and e, up to a change of variables ν �→ −νT and γ �→ −γ . Recall that the
microstretch rate ν0 ∈ F(D) and the microrotation rate ν ∈ F(D,R3) are constructed from the vari-
able ν ∈ F(D, cso(3)) through the decomposition

ν = ν0 I3 + ν̂.

As before, Lagrangian reduction can be carried out, by starting with the right-invariant Lagrangian
L(ρ0,i0,γ0,e0) : T [Diff(D)�F(D,CSO(3))] → R induced by the Lagrangian (8.66). The evolution of the



Author's personal copy

266 F. Gay-Balmaz, T.S. Ratiu / Advances in Applied Mathematics 42 (2009) 176–275

linear advected quantities ρ and i is the same as in the case of microstretch fluids. The evolution of
the affine advected quantities is given by

γ = η∗
(
χγ0χ

−1 + χ Tχ−1) and e = η∗
(

e0 + 1

3
det(χ)d

(
det(χ)−1)).

If the initial values are zero, then the evolution of γ and e is given by

γ = η∗
(
χ Tχ−1) and e = 1

3
η∗

(
det(χ)d

(
det(χ)−1)).

[7] takes these relations as definitions of γ and e.
The Legendre transformation and the Hamiltonian formulation can be carried out as in the case

of microstretch fluids. The affine Lie–Poisson bracket consists of the sum of the Lie–Poisson bracket
(8.43) with the two terms

∫
D

[(
dγ

(
δ f

δκ

)
A

+ £££ δ f
δm
γ

)
· δg

δγ
−

(
dγ

(
δg

δκ

)
A

+ £££ δg
δm
γ

)
· δ f

δγ

]
μ

+
∫
D

[(
d
(
δ f

δκ

)
0
+ £££ δ f

δm
e

)
δg

δe
−

(
d
(
δg

δκ

)
0
+ £££ δg

δm
e

)
δ f

δe

]
μ

due to the presence of the variables γ and e. Here δ f /δκ ∈ F(D, cso(3)) and so it has a unique de-
composition δ f /δκ = (δ f /δκ)0 I3 + (δ f /δκ)A , where (δ f /δκ)0 ∈ F(D) and (δ f /δκ)A ∈ F(D, so(3)).

The Kelvin–Noether circulation theorem applied to polymeric liquid crystals yields the relation

d

dt

∮
ct

u� =
∮
ct

∂Ψ

∂ i
· di + ∂Ψ

∂γ
· i_ dγ − 1

ρ
div

(
ρ
∂Ψ

∂γ

)
· γ + ∂Ψ

∂e
· i_ de − 1

ρ
div

(
ρ
∂Ψ

∂e

)
e.

The γ -circulation yields the relations

d

dt

∮
ct

γ =
∮
ct

ν × γ

in R3, and

d

dt

∮
ct

e = 0.

8.11.4. Ordered micropolar theory
This approach is developed in [21]. It is based on the micropolar theory and uses the Oseen–

Zöcher–Frank free energy. As we will see, it gives a direct generalization of the Ericksen–Leslie
equations.

Lhuillier and Rey consider the general equations for micropolar continua (8.40), together with the
constitutive relations in the non-dissipative case,

tkl = ∂ F

∂ρ−1
δkl − ρ

∂ F

∂na
,k

na
, l and mkl = εlabnaρ

∂ F

∂nb
,k

;
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see Eqs. (10) in [21]. Note that here we adapted these relations to the compressible case. Thus,
Eqs. (8.40) read ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
D

dt
ul = ∂l

∂ F

∂ρ−1
− ∂k

(
ρ
∂ F

∂na
,k

na
, l

)
,

ρσl = ∂k

(
εlabnaρ

∂ F

∂nb
,k

)
− εlmnρ

∂ F

∂na
,m

na
,n,

D

dt
ρ + ρ div u = 0,

D

dt
jkl + (εkpr jlp + εlpr jkp)νr = 0.

(8.69)

To these equations one needs to add the evolution for n

D

dt
n = ν × n,

which is Eq. (9) in [21]. Recall that σ = D
dt ( jν).

Lagrangian and Hamiltonian formulation of ordered micropolar theory of liquid crystals. We now
show that Eqs. (8.69) can be obtained by Euler–Poincaré and Lie–Poisson reduction. As in the case
of micropolar fluids, the symmetry group is the semidirect product Diff(D)�F(D, SO(3)). The ad-
vected quantities are the mass density ρ , the microinertia tensor j ∈ F(D, Sym(3)), and the director
n ∈ F(D,R3). The representation of the symmetry group on the variables ρ and j is the same as for
micropolar fluids. The representation on the director is the same as that for the director theory.

The Lagrangian is the same as that for micropolar fluids, except that it involves the elastic free
energy F (ρ−1,n,∇n), which is usually taken to be the Oseen–Zöcher–Frank free energy. We thus
obtain

l(u,ν,ρ, j,n)= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ( jν · ν)μ−
∫
D

ρ F
(
ρ−1,n,∇n

)
μ.

The associated Euler–Poincaré equations are⎧⎪⎪⎨⎪⎪⎩
ρ

(
∂

∂t
u + ∇uu

)
= grad

∂ F

∂ρ−1
− ∂i

(
ρ
∂ F

∂n,i
· ∇n

)
,

ρ
D

dt
( jν)= h × n.

(8.70)

The advection equations are ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + [ j, ν̂] = 0,

D

dt
n = ν × n.

(8.71)

The evolution of the advected quantities is given by

ρ = J
(
η−1)(ρ0 ◦ η−1), j = (

χ j0χ
−1) ◦ η−1 and n = (χn0) ◦ η−1.

Thus we have recovered Eqs. (8.69) together with the evolution of the director. One just needs to
prove that the equations for the variable ν are equivalent in (8.70) and (8.69). As shown in the
following lemma, this is a consequence of the axiom of objectivity.
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Lemma 8.7. Suppose that the free energy F verifies the property

F
(
ρ−1, A−1n, A−1∇nA

) = F
(
ρ−1,n,∇n

)
, for all A ∈ SO(3)

(
or O (3)

)
.

Then the matrix (
∂ F

∂∇n

)T

(∇n)− (∇n)
(
∂ F

∂∇n

)T

− n
(
∂ F

∂n

)T

is symmetric.

Note that in this expression the last term denotes the multiplication of a column vector with a
row vector and the result of this operation is a 3 × 3 matrix whose (i, j) entry is ni

∂ F
∂n j

.

Using this lemma, we obtain the equality

∂k

(
εlabnaρ

∂ F

∂nb
,k

)
− εlmnρ

∂ F

∂na
,m

na
,n = (h × n)l, (8.72)

therefore, the equations associated to the variable ν in (8.69) and (8.70) are equivalent.
The Hamiltonian and Lie–Poisson bracket can be computed as in the preceding examples. The

Kelvin–Noether circulation theorem has the same form as that of the Ericksen–Leslie equations,
namely

d

dt

∮
ct

u� =
∮
ct

1

ρ
∇nT · h.

8.11.5. Comparison of the three theories
In this subsection we summarize the known relationships between the three theories for liquid

crystals presented in this paper. We shall prove that the director theory of Ericksen–Leslie is a par-
ticular case of the ordered micropolar theory of Lhuillier–Rey. Therefore, one needs to compare the
latter with the micropolar theory of Eringen. As will be shown, these two theories, while close, do
not seem to be equivalent.

Theorem 8.8. The Ericksen–Leslie equations are a particular case of the equations given by the ordered mi-
cropolar theory.

Proof. As we have seen in Theorem 8.4, if ‖n‖ = 1 and ν = n × D
dt n, then the Ericksen–Leslie equa-

tions (8.56) are equivalent to Eqs. (8.54) and (8.55). It turns out that these equations are a particular
case of Eqs. (8.70) and (8.71) given by the ordered micropolar theory. To see this, it suffices to as-
sume that the microinertia j is constant and given by j = J I3, where J is the microinertia constant
appearing in the director theory, and I3 is the identity 3 × 3 matrix. �

Thus, the ordered micropolar theory is a generalization of the director theory, which takes into account the
variation of microinertia. We now compare the ordered director theory with the micropolar theory of
Eringen for a particular choice of the initial condition for the microinertia j. This choice imposes the
condition that j is a moment of inertia. This will use some technical lemmas.

Lemma 8.9. Let j and n be solutions of Eqs. (8.70) and (8.71). Let j0 and n0 be the initial values and suppose
that

j0 = J (I3 − n0 ⊗ n0),
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where J is a scalar constant. Then

j = J (I3 − n ⊗ n)

for all time.

Proof. From the Lagrangian formulation, we know that the evolution of j and n is

n = (χn0) ◦ η−1 and j = (
χ j0χ

−1) ◦ η−1.

Since χ(n ⊗ n)χ−1 = (χn)⊗ (χn) for all χ ∈ SO(3), we obtain

j = (
χ j0χ

−1) ◦ η−1 = J
(

I3 − (χn0)⊗ (χn0)
) = J (I3 − n ⊗ n). �

Lemma 8.10. Let ν , j, and n be solutions of Eqs. (8.70) and (8.71). Define

γ := (∇n)× n ∈Ω1(D,R3),
that is, γ (v)= [(∇n)v] × n ∈ F(D,R3) for every v ∈ X(D). Then γ verifies the equation

∂

∂t
γ + £££uγ + γ × ν + j

J
dν = 0.

Proof. Using the equation

D

dt
n = ν × n

and ‖n‖ = 1, we compute

D

dt
γ = ∇

(
D

dt
n
)

× n + ∇n × D

dt
n = (dν × n)× n + (ν × ∇n)× n + ∇n × (ν × n)

= (n · dν)n − dν + (n · ν)∇n − (∇n · ν)n = ν × (∇n × n)− (
dν − (n · dν)n

)
= ν × γ − (I3 − n ⊗ n)dν. �

Theorem 8.11. Suppose (see the following lemma) that the free energy F can be written in terms of

j := J (I3 − n ⊗ n) and γ := ∇n × n,

that is, there exists a function Ψ : R × Sym(3)× gl(3)→ R such that

F
(
ρ−1,n,∇n

) = Ψ
(
ρ−1, j,γ

)
.
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Let (u,ν,ρ, j,n) be a solution of Eqs. (8.70) and (8.71), and suppose that the initial conditions verify j0 =
J (I3 − n0 ⊗ n0). Then (u,ν,ρ, j,γ ) is a solution of the system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂

∂t
u + ∇uu

)
= grad

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂γ a
k

γ a
)
,

j
D

dt
ν − ( jν)× ν = − 1

ρ
div

(
ρ

j

J

∂Ψ

∂γ

)
+ γ a × ∂Ψ

∂γ a
,

∂

∂t
ρ + div(ρu)= 0,

D

dt
j + [ j, ν̂] = 0,

∂

∂t
γ + £££uγ + γ × ν + j

J
dν = 0.

(8.73)

This system is very close but distinct from the system (8.62) studied by Eringen. The difference is due to the
presence of the factor j

J in the second and last equations.

Proof. Let (u,ν,ρ, j,n) be a solution of Eqs. (8.70) and (8.71). The equations associated to the con-
servation of mass and microinertia in (8.73) are clearly verified since they are identical. Using that
j0 = J (I3 − n0 ⊗ n0), we obtain j = J (I3 − n ⊗ n), by Lemma 8.9. Thus by Lemma 8.10, the last
equation in (8.73) is verified.

Using that the relation γ = ∇n × n reads γ a
i = εa

bcnb
,in

c in coordinates, we obtain

∂ F

∂nb
, j

= ∂Ψ

∂γ a
i

∂γ a
i

∂nb
, j

= ∂Ψ

∂γ a
j

εa
bcnc .

This shows that

∂k

(
ρ
∂ F

∂na
,k

na
, l

)
= ∂k

(
ρ
∂Ψ

∂γ a
k

γ a
l

)
.

Thus, the first equation is verified.
We also have

εlabna ∂ F

∂nb
,k

= εlabna ∂Ψ

∂γ d
k

εd
bcnc = nanl ∂Ψ

∂γ a
k

− ∂Ψ

∂γ l
k

= −(I3 − n ⊗ n)la
∂Ψ

∂γ a
k

= −
(

j

J

∂Ψ

∂γ

)
lk
.

Using this equality and the relation (8.72), the second equation of (8.70) reads

ρ
D

dt
( jν)l = ∂k

(
εlabnaρ

∂ F

∂nb
,k

)
− εlmnρ

∂ F

∂na
,m

na
,n

= −∂k

(
ρ

(
j

J

∂Ψ

∂γ

)
lk

)
− εlmnρ

∂Ψ

∂γ a
m

γ a
n.

This can be written as

ρ
D

dt
( jν)= −div

(
ρ

j

J

∂Ψ

∂γ

)
+ ργ a × ∂Ψ

∂γ a
,

which is exactly the second equation in (8.73). �
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No Lie–Poisson or Euler–Poincaré interpretation of the system (8.73) is known. This system would
coincide with Eringen’s system (8.62), if j/ J could be taken equal to one. This, however, cannot be
achieved since j is an advected variable; J is a constant. We interpret Theorem 8.11 as saying that
the Lhuillier–Rey and Eringen formulations are very close but not equivalent.

We now show that the hypothesis made on the free energy F is verified in the case of the Oseen–
Zöcher–Frank free energy.

Lemma 8.12. Let n be a unit vector. Define

γ := ∇n × n and j = I3 − n ⊗ n.

Then

Tr(γ )= n · curl n,

Tr
(
γ T γ

) = Tr
(∇nT ∇n

)
= (div n)2 + (n · curl n)2 + ‖n × curl n‖2 + div

(
(n · ∇)n − n div n

)
,

Tr
(
γ T γ (n ⊗ n)

) = ‖n × curl n‖2.

Thus,

Tr
(
γ T γ j

) = (div n)2 + (n · curl n)2 + div
(
(n · ∇)n − n div n

)
.

Proof. Note that the relation γ = ∇n × n reads

γ i = ∂in × n =
⎛⎝n3∂in2 − n2∂in3

n1∂in3 − n3∂in1

n2∂in1 − n1∂in2

⎞⎠ .

Thus, we obtain

n · curl n = n1(∂2n3 − ∂3n2)+ n2(∂3n1 − ∂1n3)+ n3(∂1n2 − ∂2n1)
= (

n3∂1n2 − n2∂1n3)+ (
n1∂2n3 − n3∂2n1)+ (

n2∂3n1 − n1∂3n2)
= γ 1

1 + γ 2
2 + γ 3

3 = Tr(γ ).

This shows the first equality.
In order to check the second assertion, we compute γ T γ in terms of n. We have

γ T (u) · v = u · γ (v)= u · (∇n(v)× n
) = ∇n(v) · (n × u)= v · ∇nT (n × u),

therefore, we have γ T (u)= ∇nT (n × u) and we can compute

γ T γ (u)= ∇nT [n × (
γ (u)

)] = ∇nT [n × (∇n(u)× n
)]

= ∇nT [(n · n)∇n(u)− (
n · ∇n(u)

)
n
]

= ∇nT ∇n(u).
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We have obtained the equality γ T γ = ∇nT ∇n. The formula

Tr
(∇nT ∇n

) = (div n)2 + (n · curl n)2 + ‖n × curl n‖2 + div
(
(n · ∇)n − n div n

)
can be checked directly, see for example Lemma 3.3 in [28]. This proves the second equality.

The third assertion follows from the equalities

Tr
(
γ T γ (n ⊗ n)

) = Tr
(
(γ n)T γ n

) = ‖γ n‖2 = ∥∥(∇n)n × n
∥∥2 = ∥∥(∇n)n

∥∥2 = ‖n × rot n‖2,

where the last one follows from the identity (∇n)n = −n × rot n; see Lemma 3.3 in [28]. �
As a consequence of this lemma, the expressions associated to chirality, twist, splay, and bend

appearing in the Oseen–Zöcher–Frank free energy can be expressed in terms of the variables j and γ .
We have

n · curl n = Tr(γ ), (n · curl n)2 = Tr(γ )2,

(div n)2 = Tr
(
γ T γ j

)− Tr(γ )2, modulo a divergence,

‖n × curl n‖2 = Tr
(
γ T γ

)− Tr
(
γ T γ j

)
.

Thus, in terms of j and γ , the Oseen–Zöcher–Frank free energy reads

ρΨ
(
ρ−1, j,γ

) = K2 Tr(γ )+ 1

2
K11

(
Tr
(
γ T γ j

)− Tr(γ )2)+ 1

2
K22 Tr(γ )2

+ 1

2
K33

(
Tr
(
γ T γ

)− Tr
(
γ T γ j

))
,

up to the addition of a divergence. This functional clearly satisfies the axiom of objectivity.

8.11.6. Remark on the use of other groups
From a mathematical point of view, the previous approaches generalize to any order parameter Lie

group O ⊂ GL(3)+ .

γ -theory. In the case of Eringen’s theory, it suffices to consider the group Diff(D)�F(D,O) acting
on the advected quantities (ρ, i, ζ ) ∈ F(D)⊕ Sym(3)⊕Ω1(D,o) as

ρ �→ Jη(ρ ◦ η), i �→ χ T (i ◦ η)χ, ζ �→ Adχ−1 η∗ζ + χ−1Tχ.

If O = SO(3) then ζ = γ is the wryness tensor, and we recover the theory of micropolar liquid crys-
tals (see Section 8.11.2). If O = CSO(3) then ζ = (γ , e), where γ is the wryness tensor and e is the
microstrain and we recover the microstretch theory of polymeric liquid crystals (see Section 8.11.3). In
general, we obtain a theory of “O-liquid crystals” whose Lagrangian given by

l(u, ν,ρ, i, ζ )= 1

2

∫
D

ρ‖u‖2μ+ 1

2

∫
D

ρ(iν · ν)μ−
∫
D

ρΨ
(
ρ−1, i, ζ

)
μ,
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and the variable ζ is interpreted as a connection on the trivial O-principal bundle over D. The asso-
ciated affine Euler–Poincaré equations (3.13) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

(
∂

∂t
u + ∇uu

)
= grad

∂Ψ

∂ρ−1
− ∂k

(
ρ
∂Ψ

∂ζ a
k

ζ a
)
,

P

(
i

(
∂

∂t
ν + dν(u)− νν − 2

∂Ψ

∂ i

))
= 0,

∂

∂t
ρ + div(ρu)= 0,

∂

∂t
i + di(u)+ νT i + iν = 0,

∂

∂t
ζ + £uζ + [ζ, ν] + dν = 0,

(8.74)

where P :gl(3)→ o denotes the orthogonal projection onto the Lie algebra o, associated to the inner
product

a · b = Tr(aT b), a,b ∈ o.

n-theory. Recall that in the case of the Ericksen–Leslie and Lhuillier–Rey theories the director is a
map n :D → R3, on which the group Diff(D)�F(D, SO(3)) acts linearly as

n �→ χ−1(n ◦ η). (8.75)

This representation can be generalized to other groups in two ways. First the action (8.75) clearly still
makes sense for any matrix Lie group O. In this case, the advection equation for n reads

D

dt
n = νn,

where ν ∈ F(D,o), and the variable n evolves by

n = (χn0) ◦ η−1.

Note that, in general, the norm ‖n(x)‖ is not constant. For example, if O = SO(K ), for K positive
definite, then n describes an ellipsoid. As in the case of microfluids, the typical cases to consider are

K1 =
(1 0 0

0 1 0
0 0 ε

)
or K2 =

(
ε 0 0
0 ε 0
0 0 1

)
, ε ∼ 0.

The group SO(K1) should be useful for the description of smectic liquid crystals. If O = CSO(3), then
the norm ‖n‖ evolves as ∥∥n

(
η(x)

)∥∥ = det
(
χ(x)

)1/3∥∥n0(x)
∥∥.

Therefore, the norm depends on the “stretch part” det(χ)1/3 of χ ∈ CSO(3). More generally, we can
use the group CSO(K ) to model the theory of anisotropic microstretch liquid crystals. This constitutes a
first way of generalizing the representation (8.75) to other groups.

A second way to generalize the representation (8.75) consists in replacing the director n :D → R3

by a Lie algebra valued variable n :D → o on which the group Diff(D)�F(D,O) acts as

n �→ Adχ−1 (n ◦ η). (8.76)
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In this case, the advection equation reads

D

dt
n = adν n,

and the variable n evolves as

n = (Adχ n0) ◦ η−1.

Note that when O = SO(3), both approaches coincide because the birth representation and the adjoint
representation of SO(3) on R3 are identical. When O = CSO(3), (microstretch case) then we can write
n = n̂ + mI3 and the action (8.76) reads

(n,m) �→ (
χ−1(n ◦ η),m ◦ η),

where

χ := 1

det(χ)1/3
χ :D → SO(3),

and the evolutions are given by

n = (χ n0) ◦ η−1 and m = m0 ◦ η−1.

Therefore n can be seen as a director, since ‖n(x)‖ is constant in time. Since the evolution of the
variable m does not depend on the micromotion and the evolution of n depends only on the SO(3)
part of the micromotion χ ∈ CSO(3), this approach cannot be used for the description of microstretch
liquid crystals. This shows that the first generalization seems physically more interesting.
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