000160060 001__ 160060
000160060 005__ 20181203022205.0
000160060 0247_ $$2doi$$a10.1038/NNANO.2008.374
000160060 022__ $$a1748-3387
000160060 02470 $$2ISI$$a000263492500018
000160060 02470 $$a19197316$$2PMID
000160060 037__ $$aARTICLE
000160060 041__ $$aeng
000160060 245__ $$aCarbon nanotubes might improve neuronal performance by favouring electrical shortcuts
000160060 260__ $$bNature Publishing Group$$c2009
000160060 269__ $$a2009
000160060 336__ $$aJournal Articles
000160060 520__ $$aCarbon nanotubes have been applied in several areas of nerve tissue engineering to probe and augment cell behaviour, to label and track subcellular components, and to study the growth and organization of neural networks. Recent reports show that nanotubes can sustain and promote neuronal electrical activity in networks of cultured cells, but the ways in which they affect cellular function are still poorly understood. Here, we show, using single-cell electrophysiology techniques, electron microscopy analysis and theoretical modelling, that nanotubes improve the responsiveness of neurons by forming tight contacts with the cell membranes that might favour electrical shortcuts between the proximal and distal compartments of the neuron. We propose the 'electrotonic hypothesis' to explain the physical interactions between the cell and nanotube, and the mechanisms of how carbon nanotubes might affect the collective electrical activity of cultured neuronal networks. These considerations offer a perspective that would allow us to predict or engineer interactions between neurons and carbon nanotubes.
000160060 6531_ $$aPropagating Action-Potentials
000160060 6531_ $$aPrefrontal Cortical-Neurons
000160060 6531_ $$aPyramidal Neurons
000160060 6531_ $$aApical Dendrites
000160060 6531_ $$aCa2+ Channels
000160060 6531_ $$aGrowth
000160060 6531_ $$aFunctionalization
000160060 6531_ $$aBrain
000160060 6531_ $$aMicroelectrodes
000160060 6531_ $$aNanotechnology
000160060 700__ $$aCellot, Giada
000160060 700__ $$aCilia, Emanuele
000160060 700__ $$aCipollone, Sara
000160060 700__ $$aRancic, Vladimir
000160060 700__ $$aSucapane, Antonella
000160060 700__ $$aGiordani, Silvia
000160060 700__ $$aGambazzi, Luca
000160060 700__ $$0240392$$g150822$$aMarkram, Henry
000160060 700__ $$aGrandolfo, Micaela
000160060 700__ $$aScaini, Denis
000160060 700__ $$aGelain, Fabrizio
000160060 700__ $$aCasalis, Loredana
000160060 700__ $$aPrato, Maurizio
000160060 700__ $$aGiugliano, Michele
000160060 700__ $$aBallerini, Laura
000160060 773__ $$j4$$tNature Nanotechnology$$q126-133
000160060 909C0 $$xU10458$$0252120$$pLNMC
000160060 909CO $$pSV$$particle$$ooai:infoscience.tind.io:160060
000160060 917Z8 $$xWOS-2010-11-30
000160060 917Z8 $$x198657
000160060 937__ $$aEPFL-ARTICLE-160060
000160060 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000160060 980__ $$aARTICLE