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Abstract

A phase-field model for the solid–solid a ? c transition of Ti–Al binary alloys is presented based on analytical Gibbs free energies and
couplings to the thermodynamical database ThermoCalc. The equilibrium values recover the a + c phase boundaries. Morphological
transitions from diffusive to massive (partitionless) growth are observed on increasing the initial mole fraction of aluminum. Temporal
evolution of the interface shows a

ffiffi
t
p

behavior for diffusive and a linear behavior for massive growth, which is in accordance with the-
oretical predictions. An estimate of the interfacial mobility of Ti–Al based on the Burke–Turnbull equation is calculated. The expression
of the mobility follows an Arrhenius law. Using the derived interfacial mobility, the calculated interfacial velocities of the massive trans-
formation are in quantitative agreement with those observed in experiments.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Gamma titanium aluminides have been the subject of con-
siderable interest in recent years. Due to their attractive
properties, high-temperature applications in aerospace and
automotive industries are considered. These alloys show a
fine, lamellar microstructure. They provide higher yield
strength than Ti-based alloys and at the same time a low den-
sity, a high specific stiffness and an excellent oxidation resis-
tance at elevated temperatures as well as good creep
properties [1–4].

It is well established that there is a strong correlation
between the formed microstructures and the final mechani-
cal properties of a material, and thus many experimental
studies on the phase transformations have been performed
(e.g. [5,6] and references therein, [7,8]), especially during
the solid–solid transformations in the course of heat treat-
ments [9,10].
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Phase-field models for different phase transformations
of Ti–Al alloys have been proposed. Guo et al. [11] have
used a KKS model [12] to simulate directional solidifica-
tion of a Ti55Al45 alloy with the free energy derived from
Calphad thermodynamic modeling. Wen et al. [13] intro-
duced a three-dimensional phase-field model for the
a02 ? a2 + c solid–solid transformation, which takes into
account coherency strain associated with the lattice rear-
rangement. Lamellar structures similar to the experimental
structures were found. The influence of the coherency
strain was claimed to be the dominating factor for the for-
mation of lamellae. A model taking also into account
stacking faults at intermediate stages and heterogeneous
nucleation of the c phase was developed by Katzarov
et al. [14], who based their model derivation on the stress
methodology used in Wang and Khatchaturyan [15].

In this paper a phase-field model is presented, which con-
centrates on the dynamics of the Ti–Al system; in particular
the transition from diffusive to massive growth is investi-
gated in the framework of analytical Gibbs free energies
and coupling to thermodynamical databases such as
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ThermoCalc. In Section 2.1 the mathematical background of
the model is briefly introduced. In Section 2.2 details on the
modeling of the Gibbs free energy are presented. Details on
the implementation and the coupling to thermodynamical
data bases are given in Sections 2.3 and 2.4. In Section 3
we present the results of the model calculations: equilibrium
calculations show that the model recovers to the exact phase
boundaries of the a + c region; measurements of the
dynamic system behavior, in particular the interface veloc-
ity, show the transition from diffusive to massive growth.
Based on this model, an estimate of the interfacial mobility
is presented. Finally in Section 4 the obtained results are dis-
cussed and a brief conclusion is given.

2. Phase field model

2.1. General model description

The phase-field model of a ? c phase transition in Ti–Al
alloy is based on the model of Singer-Loginova et al.
[16,17], who introduced a Gibbs free energy functional of
a solid–solid transformation in a binary alloy

G ¼
Z

X

GmðxAl;/; T Þ
V m

þ e2

2
jr/j2

� �
dX ð1Þ

where Gm denotes the molar Gibbs free energy and Vm is
the molar volume and is assumed to be constant. xAl is
the mole fraction of aluminum. The variable / is the phase
field, which takes values of 1 in the c-phase and 0 in the
a-phase and varies smoothly between those values over
the phase boundary. Due to rapid heat conduction, isother-
mal conditions of the temperature T for the whole domain
are assumed.

The interfacial energy of the system r enters in the free
energy functional of Eq. (1) by the parameter e, which is
related to the interface thickness d [18] as

e2 ¼ 3
ffiffiffi
2
p

rd: ð2Þ
The molar free energy Gm is constructed as a mixture of

the molar free energies in the a and c phases, respectively,
and an additional energy hump [19]:

Gm ¼ ð1� pð/ÞÞGa
m þ pð/ÞGc

m þ gð/ÞW ð3Þ

where W ¼ 6rV m=
ffiffiffi
2
p

d is the height of the energy hump
and g(/), p(/) are the standard phase-field polynomial
functions:

gð/Þ ¼ /2ð1� /Þ2 ð4Þ
pð/Þ ¼ /3ð10� 15/þ 30/2Þ ð5Þ

The phase-field equation is derived by the variational
Allen–Cahn formalism:

o/
ot
¼ �M/

dG
d/

ð6Þ

o/
ot
¼ M/ e2r2/þ 1

V m
p0ð/Þ Ga

m � Gc
m

� �
� g0ð/ÞW
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: ð7Þ
where p
0
and g

0
are the derivatives with respect to / and M/

is related to the interfacial mobility M as M/ = 0.235M/d
[16].

The derivation of the diffusion equation is rather cum-
bersome. While here we present only an outline, the
detailed derivation is given in Appendices B and C. The
evolution of the concentration field is governed by the nor-
mal diffusion equation:

oxAl

ot
¼ �r � JAl ð8Þ

The diffusional flux of aluminum is given by Onsager’s law
and can be expanded in terms of the concentration and the
phase-field gradients:

JAl ¼ �L00r dGm

dxAl

� �
ð9Þ

JAl ¼ �L00r o
2Gm

ox2
Al

rxAl þ
o

2Gm

oxAlo/
r/

� �
ð10Þ

where the kinetic parameter L
00

is related to the diffusional
mobility of aluminum MAl, which is modeled as a function
of the phase-field variable. For a disordered a-phase one
can write L

00
= xAl(1 � xAl)MAl, while the expression of

L
00

for the ordered c-phase is more complicated and is given
in Appendix C. Combined, the diffusion equation is written
as

oxAl

ot
¼ r � L00ðxAl;/Þ

o
2Gm

ox2
Al

rxAl þ
o

2Gm

oxAlo/
r/

� �� �
: ð11Þ
2.2. The Ti–Al system

In the last decade intensive experimental investigations
of the Ti–Al phase equilibria have been performed (e.g.
[20–22]). In parallel thermodynamic descriptions of the
Ti–Al system have successively improved to match the
experimental results [23,24]. Zhang et al. [25] have made
great efforts to describe the Gibbs energy of the ordered
phases of Ti–Al. Ohnuma et al. [26] provided new experi-
mental data and reported a thermodynamic analysis that
takes into account the ordering configurations in several
phases. The criticism was raised that the model calculations
of Zhang et al. described the Gibbs energies of the ordered
and disordered phases with the same primitive structure
independently. Nevertheless the calculations were in excel-
lent agreement with the experimental results. For our
numerical phase-field simulations we have decided to use
the Gibbs energies of Zhang et al. [25] for the ordered
and disordered phases c and a + c, respectively.

The Gibbs energy of the disordered solutions phases is
given by [25]:

Gm ¼ xTi
0GTi þ xAl

0GAl þ RT ðxTi ln xTi þ xAl ln xAlÞ
þ xTixAl½G0 þ G1ðxTi � xAlÞ� ð12Þ

where xi is the mole fraction of component i and 0Gi is the
Gibbs energy of a component in its standard state. The first
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two terms on the right-hand side describe the mechanical
mixture of the components, the third term the ideal Gibbs
energy of mixing and the fourth term the excess Gibbs en-
ergy. The parameters G0 and G1 were obtained by
optimization.

The Gibbs energy of ordered phases is described with a
generalized bond-energy model [25,27]:

Gm ¼ xTi
0GTi þ xAl

0GAl þ
X2

i¼1

X2

i¼1

ðV 12Zij þ eV 12
eZ ijÞX iyi

Tiy
j
Al

þ RT
X2

i¼1

X iðyi
Ti ln yi

Ti þ yj
Al ln yj

AlÞ ð13Þ

where Xi (i = 1,2) is the site fraction of the sublattice i rel-
ative to the total lattice sites and yi

p is the concentration of
the component p on sublattice i, Zij and eZ ij are the numbers
of the first nearest neighbors and the second nearest neigh-
bors on sublattice j (i, j = 1, 2), V12 represents the inter-
change energy between the first nearest neighbors andeV 12 the interchange energy between the second nearest
neighbors with eV 12 ¼ aV 12 and a = const.

In Ref. [25], it is argued that within experimental errors a
linear relationship A + BT for the free energy is sufficient to
represent the energy differences between various states, as
opposed to Dinsdale [28], who used the complex expression
a + bT + cT ln + dT2 + e/T + fT3 + gT4 + hT7 + iT�9 with
a, . . ., i, A, B as constants.

The standard state formulations for 0GAl and 0GTi [29]
are given in Appendix A as functions of the temperature.
The full free energies for a and c Ti–Al and their concentra-
tion dependence are given in Appendix B.

2.3. Numerical evaluation

In order to solve Eqs. (7) and (11) numerically several
possible methods have been proposed. It is possible to
solve them (in principle) with a explicit finite difference
method with forward Euler time stepping. However, even
for the one-dimensional case with realistic interface thick-
nesses of the order of nanometers and a reasonable mesh
of the order of 5000–10000 grid nodes the calculation times
become rather lengthy. Implicit methods such as backward
Euler scheme are unconditionally stable and seem to have
offer large advantages over the explicit ones [16]. However
the implementation for implicit solvers is non-trivial. In the
literature different numerical methods have been used for
spatial discretization of the phase-field equations: finite ele-
ments (FEM) [30,31], finite volumes (FV) [32,33], especially
for the simulation of two- and three-dimensional struc-
tures. FEM and FV formulations have the additional
advantage of allowing spatial adaptivity.

In this paper we have used a fourth-order Runge-Kutta
approach for the time integration. While still being explicit
in time with almost the same stability criterion as for for-
ward Euler, the time step can be increased by more than
an order of magnitude. Interestingly, this approach, despite
its practical usefulness and ease of implementation, has to
our knowledge hardly been used for phase-field simulations
[34,35].

2.4. Coupling to thermodynamical databases

While the analytical derivation of the model with the
Gibbs free energy was used to prove the validity of the
model, it was found that this description, although very
general, restricts the possible uses of the proposed model.
The model parameters yi

p have to be precalculated for
every temperature T separately by the optimization pro-
cess described in Ref. [25]. Moreover, the analytical der-
ivation requires precise expressions for the diffusional and
interfacial mobilities, which to the authors’ knowledge
are not available for Ti–Al alloy. In general, the expres-
sions of the Gibbs energies and the mobilities are only
known for a limited number of alloys (e.g. Fe–C [36]),
which typically leads to extremely complicated mathemat-
ical expression of phase-field models (see Appendices A–
C).

Therefore, especially for use in industrial applications, it
is favorable to rely on thermodynamic databases such as
ThermoCalc, which furnish numerical values for the Gibbs
energies of the alloy of interest. We note, however, that a
direct coupling of the phase-field simulations with the
ThermoCalc database is unsatisfactory for two reasons:
(i) it is very inefficient in terms of access times for a
requested value, and (ii) it creates strong dependencies on
a specific product.

Instead of the direct coupling with the ThermoCalc data
base we have used precalculated values for Ga(xAl, T) and
Gc(xAl, T) in the range xAl = 0.365, 0.370, . . ., 0.52 and
T = 773, 778, . . ., 1673 K. Internally the data for the Gibbs
energies is calculated by the Redlich–Kistler polynomials
(e.g. [37]). We have found, however, that in the range rele-
vant for the phase-field simulations, the numerical data can
be accurately approximated by nth order polynomials,
where n = 6–8, as a function of the concentration for a
given temperature. The polynomials have the advantage
of being easily analytically differentiable, so that no numer-
ical artifacts are introduced. Furthermore the polynomial
fits can be precalculated and stored in a table for easy
access during the simulations. So far, we have performed
simulations for constant temperatures. However, this
approach is easily extendable by interpolation to changes
in temperatures during the simulations in order to consider
the effects of heat treatments or continuous cooling. In
Fig. 1 the position of the phase boundary as a function
of time for diffusive growth is shown, calculated by the
analytical and numerical Gibbs energies at 700 �C. A good
agreement between the analytical description and the data
obtained from ThermoCalc is found.

The results presented in the following section were
obtained by direct use of Eq. (11) instead of the analytical
Eq. (50) in Appendix C. The simulation parameters are
given in Table 1.



Fig. 2. Relaxation to equilibrium concentrations. The diffusional deple-
tion is rearranging to a step function between the a- and the c-phase. The
simulations are performed at T = 1145 �C and initial concentration
xAl,0 = 0.46. The mole fraction profiles are shown at different times:
t = 10�7, 1.5 � 10�6, 4.5 � 10�6, . . .,1.4 � 10�2, 3.7 s.

Fig. 1. Interface position given by the analytical description (dashed line)
(see Appendices A–C) and the numerical data obtained by ThermoCalc.
The simulations were performed at T = 700 �C and an initial concentra-
tion of xAl = 0.4 in a domain of 250 nm.
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3. Results

3.1. Equilibrium: quantitative recovery of the phase diagram

In order to test the quantitative prediction capabilities
of the proposed model, we have calculated equilibrium
concentration profiles for the a ? c transition and com-
pared the results to the phase boundary data obtained by
ThermoCalc. The initial condition for the simulations is
homogeneous a with a very thin layer of c formed at the left
side of the system. In Fig. 2, the relaxation to the equilib-
rium profile is shown for the temperature T = 1145 �C. Ini-
tially a bump behind the depletion is created, which, as
time increases, will relax to the equilibrium concentration.

Calculating the phase boundaries for the a + c region
with the presented phase-field model we have found that
the deviation from the ThermoCalc data was in every cal-
culated case less than 10�3.

3.2. Dynamics of the system

3.2.1. Morphological transition: diffusion to massive growth

A qualitatively different behavior of the phase transfor-
mation can be found for different initial concentrations. A
space time plot for diffusive growth is shown in Fig. 3a. On
increase of the concentration at constant temperatures, the
system changes to massive growth in Fig. 3b. The interfa-
Table 1
Simulation parameters for the phase-field calculations

Interface thickness d[nm] 1
Molar volume Vm [m3/mol] 10.1 � 10�6

Interfacial energy r [J/m2] 0.3
Al-diffusion [38–41] DAl [m2/s] 6:65 � 10�3 expð�329000

RT Þ
Ti-diffusion [38–41] DTi [m2/s] 1:35 � 10�3 expð�303000

RT Þ

The data for the Gibbs free energies are given in the Appendix.
cial velocity increases drastically. In diffusive growth the
interface propagates with a

ffiffi
t
p

dependence until the
impingement of the diffusion boundary layer with the
domain boundary sets in. For the massive growth, the
velocity becomes constant, and thus the interface position
propagates linearly in time. In Fig. 4, the interface position
is plotted as a function of time for different initial concen-
trations, which demonstrates the behavioral change of the
system on this morphological transition.

3.2.2. Prediction of interfacial mobility

While the equilibrium behavior in the limit is not sensi-
tive to the mobility of the interface, the dynamics of the
system is far less quantitative since accurate physical values
in Ti–Al for the interfacial mobilities are to the best of our
knowledge not known. However, in order to study the
morphological behavior of the system especially in two
and three dimensions, a dependence of the interfacial
mobility on the temperature must be derived. Based on
thermodynamic considerations a partitionless transforma-
tion becomes possible in this system only at temperatures
below the T0 line, which is the temperature at which the
free energies of the a- and c-phase are equal. However,
the exact temperature at which such a transformation
becomes kinetically possible is still a matter of controversy.
An extensive review on this debate is given in Ref. [42]. In
the present study, we have investigated three scenarios:

(i) First, we assumed that the transition between diffu-
sive and massive growth occurs exactly at the T0 line. Then,
for a given temperature, we have calculated the T0-concen-
tration and by performing multiple simulations we have
found a value for the interfacial mobility that produces dif-
fusive and massive growth at the T0-concentration and just
slightly above it (i.e. slightly below the T0 temperature),
respectively. By performing the above procedure for every
acceptable temperature we were able to find values for the



Fig. 3. Two-dimensional space–time plot of (a) diffusive phase transfor-
mation, (b) massive phase transformation with constant velocity of the
interface. The simulations were performed at T = 1145 �C and (a)
xAl,0 = 0.46 for diffusive growth, where the concentration profiles are
given at different instances t = 0, 0.02, 0.07, 0.14, . . ., 6.5, 7.4 ms and a total
simulation time is tend = 7.4 ms and (b) xAl,0 = 0.48 for massive growth,
where each line is separated by a time increment of Dt = 6.6 ls and the
total simulation time is tend = 0.19 ms. The notch value, corresponding to
the concentration at the phase interface, is 0.4774.

Fig. 4. Position of the interface as a function of time for different initial
concentrations with superimposed square-root fit for diffusive growth and
linear fit for massive growth.

Fig. 5. The interfacial velocity of the massive transformation predicted by
the Burke–Turnbull equation Eq. (15) as a function of temperature and
mole fraction.
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interfacial mobility (line A in Fig. 6), which follow an
Arrhenius law.
MA ¼ 370 � exp
�38916

T

� �
m4 J�1 s�1: ð14Þ

However, the interfacial velocities of the massive trans-
formations turned out to be approximately one order of
magnitude larger than those found experimentally [43]
and predicted by the Burke–Turnbull equation [44].

(ii) For a given concentration the Burke–Turnbull equa-
tion [43,44] specifies the growth velocity V of the interface
as a function of the temperature (see Fig. 5) during massive
transformation for an interface-controlled reaction

V ¼ 23020
�ðGa

m � Gc
mÞ

RT

� �
exp

�155250

RT

� �
: ð15Þ

In this equation the activation enthalpy and activation
entropy of the original Burke–Turnbull equation for inter-
face diffusion were already measured by Veeraraghavan
et al. [43] and replaced by numerical values. We have
assumed that the critical temperature below which the tran-
sition to massive transformation becomes possible corre-
sponds to the maximum of the Burke–Turnbull plot.
Then, for every acceptable concentration, we have repeated
the procedure described in (i) and found an expression for
the interfacial mobility shown as line B in Fig. 6

MB ¼ 5:98 � 10�3 exp
�27947

T

� �
m4 J�1 s�1: ð16Þ

With this mobility the interfacial velocities of the mas-
sive transformation are underestimated by a factor of 6
compared to those found experimentally [43].

(iii) For every concentration and temperature corre-
sponding to the maximum of the Burke–Turnbull plot we
have tuned the interfacial mobility to produce the maxi-
mum interfacial velocity predicted by the Burke–Turnbull
equation. The obtained mobility is shown in Fig. 6 as line
C. Its expression is



Fig. 6. Interfacial mobility coefficients as a function of 1/T calculated (A)
based on the assumption that a morphology transition from diffusive to
massive growth occurs at the T0 line of the phase diagram, (B) based on
the assumption that the morphology transition from diffusive to massive
growth for a given mole fraction occurs at the temperature corresponding
to the maximum of the Burke–Turnbull plot (Fig. 5), (C) as a fit to the
maximum growth velocity predicted by the Burke–Turnbull equation. (D)
The interfacial mobility of the Fe–C alloy is included for comparison.

Fig. 8. A portion of the Ti–Al phase diagram with superimposed T0 line
(dashed-dotted line). The black lines demonstrate the critical compositions
above which transition from diffusive to massive growth becomes possible
for a given temperature. The lines B and C correspond to the interfacial
mobility MB Eq. (16) and MC, Eq. (17) respectively.
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MC ¼ 1:24 � 10�5 exp
�17847

T

� �
m4 J�1 s�1: ð17Þ

With the interfacial mobility MC we have performed simu-
lations of massive growth at xAl = 0.475 and different tem-
peratures. The obtained interfacial velocities are in
quantitative agreement with the experimental observation
as demonstrated in Fig. 7. We should note, however, that
the data for the Gibbs energies used in Ref. [43] differs from
ours, which explains the slight right shift of the experimen-
tal data with respect to the analytical Burke–Turnbull
equation. Additionally, we have calculated the transition
Fig. 7. Comparison of the calculated interfacial velocity for xAl = 0.475
and different temperatures with the analytical prediction of the Burke–
Turnbull equation and experimental data from Ref. [43]. The interfacial
velocities are calculated with the interfacial mobility Eq. (17) shown as line
C in Fig. 6.
border from diffusive to massive transformations shown
as lines B and C in Fig. 8. As can be seen from Fig. 8,
the morphological transition occurs below the T0 line, as
predicted thermodynamically [42].

For comparison, the known values for the interfacial
mobility in the Fe–C system [45] are plotted in Fig. 6 as line
D. The big difference in values between line D and lines A–
C might be explained by the fact that diffusional mobilities
in Fe–C change only by 3 orders of magnitude, while in the
Ti–Al system the change is by 10 orders of magnitude
(Table 1) in the range of temperatures investigated.

4. Discussion and conclusions

A phase-field model for a?c solid–solid phase transfor-
mation in Ti–Al is presented. The model is capable of pre-
dicting the behavior of the diffusion field for the whole
range of concentrations and temperatures corresponding
to the a + c region of the Ti–Al phase diagram. We have
presented a detailed analytical description of the model
and demonstrated that the simulations recover accurately
the equilibrium values of the phase diagram. However,
the available analytical description of the Gibbs energy is
accurate only at low temperatures. We have presented a
coupling to the ThermoCalc database and shown that for
a given temperature the system can undergo either diffu-
sion-controlled or massive transformation depending on
the initial Al content of the a-phase. By fitting values of
the interfacial mobility to produce maximum velocities pre-
dicted by the Burke–Turnbull equations we have derived
an estimate for the interfacial mobility as a function of
the temperature. The derived expression follows an Arrhe-
nius law and produces results that are in good quantitative
agreement with the experimental data.

Our intention is to extend the simulations to higher
dimensions in order to investigate morphological changes,
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which Ti–Al undergoes during different heat treatments as
was found in experimental studies [5,6].
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Appendix A. Thermodynamic data of Ti–Al

The free energy formulations in the standard states for
0GAl and 0GTi [29] are given by

0Ghcp
Al ¼ � 7976:15þ 137:071542T � 24:3671976T lnðT Þ

� 11277:683þ 188:661987T � 31:748192T lnðT Þ
� 1:234264 � 1028T�9 þ 5481� 1:8T ð18Þ

for 933.6–2900 K and

0Gfcc
Ti ¼ � 8059:921þ 133:687208T � 23:9933T lnðT Þ

þ 908:837þ 67:048538T � 14:9466T lnðT Þ
� 0:0081465T 2 þ 2:02715 � 10�7T 3

� 1477660T�1 þ 6000� 0:1T ð19Þ

in the temperature range 1155–1941 K and

0Gfcc
Ti ¼ � 8059:921þ 133:687208T � 23:9933T lnðT Þ

� 7811:815þ 133:060068T � 23:9887T lnðT Þ
� 0:0042033T 2 � 9:0876 � 10�8T 3 þ 42680T�1

þ 6000� 0:1T ð20Þ

for 900–1155 K.

Appendix B

The free energies Ga
m and Gc

m are given by the disordered
and ordered solutions (generalized bond-energy model
[25,27]) in Eqs. (12) and (13), respectively. The numerical val-
ues [25] used for the a-phase are G0 = � 123476.4 +
27.38338T and G1 = � 16484.1 + 3.74935T. The numerical
values for the c-phase are V 12 ¼ 2900:3� 4:25469T�
ð26871:2� 17:17261T ÞxAl þ ð22047:2� 14:44646T Þx2

Al and

Z11 = 4,Z12 = 8,Z21 = 8,Z22 = 4, eZ 11 ¼ 6; eZ 12 ¼ 16; eZ 21 ¼
16; eZ 22 ¼ 6 and a = 0.6. The stoichiometric coefficients are
X1 = X2 = 1/2.
According to the generalized bond-energy model [27],
there are six variables in Gc

m; however, only two of them
are independent. We will use xAl and y1

Al as being indepen-
dent. Therefore

xTi ¼ 1� xAl ð21Þ

y2
Al ¼

1

X 2
ðxAl � X 1y1

AlÞ ¼ 2xAl � y1
Al ð22Þ

y1
Ti ¼ 1� y1

Al ð23Þ
y2

Ti ¼ 1� y2
Al ð24Þ

According to Kattner [29], the order parameter y1
Al can

be, in a first-order approximation, written as

xAl 6 0:5 : y1
Al ¼ 0; y2

Al ¼ 2xAl ð25Þ
xAl > 0:5 : y1

Al ¼ 2xAl � 1; y2
Al ¼ 1 ð26Þ

Therefore

xAl 6 0:5 : y1
Ti ¼ 1; y2

Ti ¼ 1� 2xAl ð27Þ
xAl > 0:5 : y1

Ti ¼ 2ðxAl � 1Þ; y2
Ti ¼ 0 ð28Þ

These values are accurate for 700 �C. For different tem-
peratures the data must be recalculated by optimizing ([25]).

For the case xAl 6 0.5 we find

Gc
m ¼ ð1� xAlÞ0Gc

Tiþ xAl
0Gc

Alþ
1

2
RT ½2ð1� xAlÞ lnð2ð1� xAlÞÞ

þ ð2xAl� 1Þ lnð2xAl� 1Þ�þ 1

2
A11ð2ð1� xAlÞð2xAl� 1Þ

þ 1

2
A222ð1� xAlÞÞ ð29Þ

and for xAl > 0.5

Gc
m ¼ ð1� xAlÞ0Gc

Ti þ xAl
0Gc

Al þ
1

2
RT ½ð1� 2xAlÞ lnð1� 2xAlÞ

þ 2xAl lnð2xAlÞ� þ
1

2
ðA12ð2xAlÞ þ A22ð1� 2xAlÞ2xAlÞ

ð30Þ

with Aij ¼ AijðxAl; T Þ ¼ ðV ijZij þ fV ij
eZ ijÞ.

The Gibbs free energy in the a-phase is given by

Ga
m ¼ ð1� xAlÞ0Ga

Ti þ xAl
0Ga

Al þ RT ½ð1� xAlÞ lnð1� xAlÞ
þ xAl ln xAl þ ð1� xAlÞðGa

0 þ Ga
1ð1� 2xAlÞÞ ð31Þ
Appendix C

Here, we give the derivation for the diffusion equations
in terms of the free energies in Eqs. (29)–(31).

The diffusion equation is given by

_xAl ¼ �r � JAl ð32Þ

JAl ¼ �L00r dGm

dxAl

� �
ð33Þ

where L
00

is a phenomenological constant usually modeled
as L

00
= xAl(1 � xAl)MAl with MAl the diffusional mobility.

It follows immediately
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r dGm

dxAl

� �
¼ r oGm

oxAl

� �
¼ o2Gm

ox2
Al

rxAl þ
o2Gm

oxAlo/
r/: ð34Þ

Thus, we can identify the diffusion coefficient
DAl ¼ L00 o

2Gm
ox2

Al

and therefore

_xAl ¼ r � MAlxAlð1� xAlÞ
o

2Gm

ox2
Al

rxAl þ
o

2Gm

oxAlo/
r/

� �� �
ð35Þ

There are two reasonable choices for MAl at the
interface:

MAl ¼ Ma
Alð1� pð/ÞÞ þM c

Alpð/Þ ð36Þ

and

MAl ¼
M c

Al

Ma
Al

� �pð/Þ

: ð37Þ

For the derivation we will use Eq. (36).
The derivatives of Eqs. (29)–(31):
oGa
m

oxAl

¼�0Gc
Tiþ0Gc

AlþRT ½lnðxAlÞ� lnð1� xAlÞ� ð38Þ

� xAlðGa
0þGa

1ð1�2xAlÞÞþð1�xAlÞ
ðGa

0þGa
1ð1�2xAlÞÞ�2xAlð1� xAlÞGa

1

o2Ga
m

ox2
Al

¼ RT
xAlð1� xAlÞ

�2ðGa
0þ3Ga

1Þþ12Ga
1xAl ð39Þ

¼ RT
xAlð1� xAlÞ

þRa ð40Þ

oGc
m;xAl>0:5

oxAl

¼�0Gc
Tiþ0Gc

AlþRT ½ð� lnð1�2xAlÞ� ð41Þ

� lnð2xAlÞ�þ
oA12

oxAl

xAlþA12

þoA22

oxAl

ð1�2xAlÞxAlþA22ð1�4xAlÞ

o2Gc
m;xAl>0:5

ox2
Al

¼ RT
ð1�2xAl�1ÞxAl

þo2A12

ox2
Al

xAlþ2
oA12

oxAl

ð42Þ

þo2A22

ox2
Al

ð1�2xAlÞxAlþ2
oA22

oxAl

ð1�4xAlÞ�4A22

¼ RT
ð1�2xAl�1ÞxAl

þRc
xAlP0:5 ð43Þ

oGc
m;xAl<0:5

oxAl

¼0Gc
Tiþ0Gc

AlþRT ½� lnð2ð1� xAlÞÞ ð44Þ

þ lnð2xAl�1Þ�þoA11

oxAl

ð1� xAlÞð2xAl�1Þ

þA11ð3�4xAlÞþ
oA22

oxAl

ð1� xAlÞ�A22

o2Gc
m;xAl<0:5

ox2
Al

¼ RT
ð1� xAlÞð2xAl�1Þþ

o2A11

ox2
Al

ð1�xAlÞð2xAl�1Þ

þoA11

oxAl

ð3�4xAlÞ�4A11þo2A22

ox2
Al

ð1�xAlÞ�2
oA22

oxAl

ð45Þ

¼ RT
xAlð1�2xAlÞ

þRc
xAl<0:5 ð46Þ
In Eqs. (40), (43) and (46) the term Ri denotes a simpli-
fication for all the other terms.

The problem of Eqs. (43) and (46) is that the first term of
the right-hand side is not identical. We therefore have to
modify L

00
in the following way

L00 ¼ MxAl
½ð1� pð/ÞÞxAlð1� xAlÞ þ pð/Þð1� xAlÞ

� ð2xAl � 1Þ� forxAl < 0:5 ð47Þ
L00 ¼ MxAl

½ð1� pð/ÞÞxAlð1� xAlÞ þ pð/Þð1� xAlÞ
� ð1� 2xAlÞxAl� forxAl P 0:5 ð48Þ

Finally the diffusion Eq. (35) for xAl < 0.5

_xAl ¼ r � ½MAlxAlð1� xAlÞð1� pð/ÞÞ þ pð/ÞxAlð1� 2xAlÞ�

� ð1� pð/ÞÞ RT
xAlð1� xAlÞ

þ Ra

� ��	
þpð/Þ RT

xAlð1� 2xAlÞ
þ Rc

xAl<0:5

� �
rxAl

þ30gð/Þ � oGa
m

oxAl

þ� oGc
m

oxAl

� �
r/

�

ð49Þ

Thus

_xAl ¼ r � RTMAl ð1� pð/ÞÞ2 1þ Ra

RT

� �
xAlð1� xAlÞ

		
þ p2ð/Þ 1þ Rc

RT
xAlð1� 2xAlÞ

� �
þ 1� pð/Þð Þpð/Þ 1� xAl

1� 2xAl

�
þ Rc

RT
xAlð1� xAlÞ

þ 1� 2xAl

1� xAl

Ra

RT
xAlð1� 2xAlÞ

�

rxAl

þ RTMAlðð1� pð/ÞÞxAlð1� xAlÞ
þ pð/ÞxAlð1� 2xAlÞÞ

� 30gð/Þ � 1

RT
oGa

m

oxAl

þ oGc
m

oxAl

1

RT

� �� �
r/



ð50Þ

In order to perform simulations we have non-dimension-
alized the governing equations with x ? xl, where l = d is
the reference length. The time was non-dimensionalized with
t ? tl2/D, where D is a reference diffusion coefficient and can
be taken as D ¼ RTMa

Al. Accordingly the free energy and the
hump were non-dimensionalized as eG ¼ G=RT andeW ¼ W =RT . Thus, the phase field equation becomes

D

l2
_/ ¼ M/e2 1

l2
r2/þM/RT ð30gð/ÞðeGa

m � eGc
mÞ � g0ð/Þ eW Þ

ð51Þ
and so

_/ ¼ eM /ee2r2/þ eM /RT ð30gð/ÞðeGa
m � eGc

mÞ � g0ð/Þ eW Þ
ð52Þ

with eM / ¼ l2M/=D and ee2 ¼ e2=l2.
The diffusion equation becomes
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D

l2
_xAl ¼

D

l2
r � RTMAl

D
:::f grxAl þ :::f gð

�
� 30gð/Þ oeGc

m

oxAl

þ oeGa
m

oxAl

 !( )
r/

!#
ð53Þ
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