TY - EJOUR
DO - 10.1016/j.crma.2009.03.015
AB - Let g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the underlying field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel subalgebra. In this Note, we provide examples for each semisimple group G and for each of the torsion primes for G of nil subalgebras not lying ill any Borel subalgebra of g. To cite this article: P Levy et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Published by Elsevier Masson SAS on behalf of Academie des sciences.
T1 - Nilpotent subalgebras of semisimple Lie algebras
DA - 2009
AU - Levy, Paul
AU - McNinch, George
AU - Testerman, Donna
JF - Comptes Rendus Mathematique
SP - 477-482
VL - 347
EP - 477-482
ID - 159811
KW - Reductive Groups
ER -