000159811 001__ 159811
000159811 005__ 20180913060225.0
000159811 0247_ $$2doi$$a10.1016/j.crma.2009.03.015
000159811 02470 $$2ISI$$a000266070400004
000159811 037__ $$aARTICLE
000159811 245__ $$aNilpotent subalgebras of semisimple Lie algebras
000159811 269__ $$a2009
000159811 260__ $$c2009
000159811 336__ $$aJournal Articles
000159811 520__ $$aLet g be the Lie algebra of a semisimple linear algebraic group. Under mild conditions on the characteristic of the underlying field, one can show that any subalgebra of g consisting of nilpotent elements is contained in some Borel subalgebra. In this Note, we provide examples for each semisimple group G and for each of the torsion primes for G of nil subalgebras not lying ill any Borel subalgebra of g. To cite this article: P Levy et al., C R. Acad. Sci. Paris, Ser. 1347 (2009). (C) 2009 Published by Elsevier Masson SAS on behalf of Academie des sciences.
000159811 6531_ $$aReductive Groups
000159811 700__ $$aLevy, Paul
000159811 700__ $$aMcNinch, George
000159811 700__ $$0243571$$aTesterman, Donna$$g133751
000159811 773__ $$j347$$q477-482$$tComptes Rendus Mathematique
000159811 909C0 $$0252369$$pSB$$xU10077
000159811 909C0 $$0252563$$pGR-TES$$xU12576
000159811 909CO $$ooai:infoscience.tind.io:159811$$pSB$$particle
000159811 917Z8 $$xWOS-2010-11-30
000159811 917Z8 $$x102085
000159811 937__ $$aEPFL-ARTICLE-159811
000159811 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000159811 980__ $$aARTICLE