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Abstract

Crowd animation is a topic of high interest which offers many challenges. One of

the most important is the trade-off between rich, realistic behaviors and computational

costs. To this end, much effort has been put into creating variety in character repre-

sentation and animation. Nevertheless, one aspect still lacking realism in virtual crowd

characters resides in their attention behaviors. In this paper, we propose a framework

to add gaze attention behaviors to crowd animations. First, we automatically extract

interest points from character or object trajectories in pre-existing animations. For a

given character, we assign a set of elementary scores based on parameters such as dis-
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tance or speed to all other characters or objects in the scene. We then combine these

subscores in an overall scoring function. The scores obtained from this function form a

set of gaze constraints that determine where and when each character should look. We

finally enforce these constraints with an optimized dedicated gaze Inverse Kinematics

solver. It first computes the displacement maps for the constraints to be satisfied. It

then smoothly propagates these displacements over an automatically defined number

of frames. We demonstrate the efficiency of our method and our visually convincing

results through various examples.

Keywords: crowd animation, crowd realism, attention behaviors, crowd motion editing
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Introduction

When we walk in town, we look at other people, objects, or even at nothing in particular.

An important aspect which can greatly enhance crowd animation realism is for characters to

be aware of their environment and of other characters. This has partly been achieved with

navigation and path planning. Our aim in this paper is to obtain more advanced behaviors

than what navigation can provide. This raises the common problem of mandatory trade-off

between rich, realistic behaviors and computational costs. To add attention behaviors to

crowds, we are confronted to two issues. The first one is to detect the points of interest for

characters to look at. The second one is to edit the character motions for them to perform

the gaze behavior. This has to be done very rapidly in order to animate a large number of

characters. In this paper, we propose a two-fold method which meets all these requirements.

Our first contribution is an automatic interest point detection algorithm based on bottom-

up attention behaviors. These are passive or involuntary, stimulus-driven behaviors. Our

algorithm automatically detects where and when each character should look. It is based on

a scoring method which is a weighted sum of elementary scores. These are determined by

functions using parameters such as distance or orientation. Our second contribution is a

very fast dedicated Inverse Kinematics (IK) solver to satisfy these constraints. Our solver

determines how the character motions are edited both spatially and temporally. It com-

putes the displacement maps to satisfy the constraints and smoothly propagates the motion

adjustments with adequate timing in order for the final motion to be fluid and continuous.
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Related Work

Models of Human Vision and Perception. The synthesis of human vision and perception

is a complex problem which has been tackled in many different ways. Models of synthetic

vision based on memory have been developed for the navigation of characters [1, 2]. These

models simulate vision but not the actual human gaze behavior. A model of perception was

introduced by Hill [3] in which a character decided to attend to objects in an environment

depeding on the information it received from them. Chopra Khullar and Badler [4] proposed

an architecture which determined where an agent should look by selecting from top-down,

bottom-up, and idling behaviors. However, their system requires that an animator insert

the top-down interest points in a queue. Similarly, much work has been conducted in the

simulation of visual attention and gaze in Embodied Conversational Agents [5, 6, 7]. These

models give very convincing results but are not applicable to crowds. Several researchers

proposed perceptual systems based on saliency maps [8, 9, 10]. Kim et al. [11] expanded

the approach by using a benefit and cost function to determine when a character should look

at an object. The saliency-map method gives very good results but is prohibitive for crowd

animation. Yu and Terzopoulos [12] proposed a decision network framework to simulate

how people make decisions on what to attend to and how to react. Their system, however,

is aimed at simulating situations with a small group of people.

Motion Editing. A large category of motion editing methods relies on the skillful ma-

nipulation of clips from a motion capture database [13, 14, 15, 16]. Due to the many possible
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configurations in attention behaviors, this would require a very dense database. Other meth-

ods used analytic IK [17, 18]. Lee and Shin [19] proposed a method to edit a pre-existing

animation to satisfy a set of user defined constraints. Shin et al. [20] used Kalman filters

and a set of rules to assign varying importance to a set of tasks which they then solved with

a dedicated IK solver. Kulpa et al. [21] proposed a hierarchical Cyclic Coordinate Descent

algorithm to deal with spacetime constraints. These analytic methods are dedicated to the

positioning of end-effectors, whereas we are interested in controlling the final orientation

of the eyes, head, and spinal joints over time. Several other methods used Jacobian based

IK solvers to edit motions. For example, Choi and Ko [22] discussed a method for online

retargetting. Le Callennec and Boulic [23] introduced the notion of prioritized constraints to

solve possible conflicts between user-defined constraints. While these methods are generic

enough to possibly use any kind of constraints, the use of Jacobian inversion causes pro-

hibitive computational costs that are not compatible with our framework.

On a different note, Lee at al. [24] described an eye movement model based on statistical

and saccade empirical models of eye-tracking data. Lee and Terzopoulos [25] proposed a

head-neck model based on biomechanics. These methods give stunning results but once

again are not applicable to crowds.

5

Page 5 of 36

http://mc.manuscriptcentral.com/cavw - For Peer Review

Computer Animation and Virtual Worlds

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



System Overview

Our system works as an extra layer added to an existing crowd animation. We enhance this

animation by providing its characters with gaze behaviors. For clarity purposes, we use the

term character to refer to the individual for which we are generating the gaze behavior and

the term entity to refer to either a character or an object that can possibly attract attention.

Finally, interest points are the locations which attract attention. Our method generates gaze

behaviors solely from the entities’ trajectories. Thus, it is generic, and can be used with any

type of crowd animation engine. We define a trajectory Ti(t) for an entity E as:

Ti(t) = [pi(t), ri(t)] (1)

where i is the entity’s ID, pi(t) ∈ R
3 its position at time t, and ri(t) ∈ R its forward

orientation at time t. Since our method aims at enhancing crowd realism, we must deal with

a large number of characters. It would be unthinkable for a user to define all the points of

interest to be attended to by each character. It is thus mandatory to automatically detect

them. This is one of the key features of our method. Based on the entity input trajectories, it

takes into account both the spatial and the temporal aspects of gaze behaviors. Finally, the

detected interest points form a set of gaze constraints L to be satisfied.

Our method also consists of a dedicated IK solver. Given an existing motion, we com-

pute the displacement maps m(ti) that adjust the postures in order to satisfy the automati-
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cally detected constraints. We then propagate these m(ti) in order for the eyes, head, and

torso to be desynchronized, i.e. the movement is initiated by the eyes; the head and the torso

then follow and the eyes partially recenter with respect to the head. The character motions

are thus adapted for them to attend to the interest points in a smooth and natural way.

Automatic Interest Point Detection

The first step in our method consists of automatically detecting the interest points from the

entity trajectories. We define an interest point IP as an entity E which should be attended

to by a given character C. More formally, IP is defined as:

IP (t) = [pt, ta, td, [tb, te]] where pt ∈ R
3 (2)

where pt is IP ’s position in space at time t. ta is its activation duration, td its deactiva-

tion duration, and [tb, te] represents its lifespan. The purpose of ta is to define the amount

of time it will take for the looking motion to be executed. Conversely, td defines the amount

of time for C to look away from IP . These are further discussed in a later section of this

paper. It is to be noted that in the case where the IP is replaced by another, the deactivation

is skipped and replaced by the activation to go from the first IP to the second.

Another important factor in gaze behaviors is that we do not look at things indefinitely.

We can either loose interest or find something else more interesting to look at. As shown
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in Figure 1, we regulate this with [tb, te]. It is the duration for which an entity E is an IP .

For each character C and at each time t, we define the level of interest other entities have

by assigning them a score S(t) computed through a scoring function. The entity E which

obtains the highest score Smax(t) becomes the IP that should be attended to by C at time

t as long as it fulfills two conditions. Smax(t) first has to be above an attention threshold.

This defines the percentage of time C will be attentive to other entities. Second, E should

obtain Smax(t) for a minimal amount of time [tb, te] which we have empirically set to 1/3s.

Previous studies such as Neisser’s [26] explain that human attention is captured by sub-

stantial differences in one or more simple visual attributes. Simple visual attributes are fea-

tures such as color, orientation, size, and motion [27]. Additionally, Yantis and Jonides [28]

underlined that abrupt visual onsets equally attract human attention. These studies have

motivated our choice of four different criteria as components to our scoring function:

Proximity: closer objects or people seem larger and attract attention more easily than

those far away. Moreover, those which are closer occlude those which are further away.

Relative speed: a person will be more prone to set his/her attention on something moving

fast than moving slowly relative to his/her own velocity.

Relative orientation: we are more attentive to objects coming towards us than moving

away from us. Moreover, something coming towards us seems to become larger.

Periphery: we are very sensitive to movements occurring in the peripheral vision. More

specifically, to objects or people entering the field of view.

To decide where a given character will look at a given time we evaluate all entities in
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terms of these criteria. As depicted in Figure 2, we evaluate a set of parameters for each of

these entities: the distance dce(t), the relative speed rs(t) defined by forward differentiation

as ||de(t) − dc(t)||, the orientation in the field of view α(t), and the relative direction β(t).

Similarly to Sung et al. [29], we then combine these parameters to create more complex

scoring functions: Sp for proximity, Ss for speed, So for orientation, and Spe for periphery.

The proximity parameter evaluates the distance between a character C and all other en-

tities E. Given dce(t), the distance between C and E at time t, and α(t) the orientation of E

in C’s field of view at time t, our proximity score is computed as:

Sp(t) = exp(
−(0.5(dm − dce(t)) + (dm

2
− 1))2

2
)) (3)

where dm is the maximal distance value beyond which C will stop looking. We allow

for entities situated 2 − 3m away from C to obtain the highest scores. We believe those

closer than this will already have been attended to and should loose their interest potential.

For speed, we follow the same principle as for proximity. It is computed as:

Ss(t) = ωsw||de(t) − dc(t)|| (4)

where ||de(t) − dc(t)|| is the relative speed and ωsw is an arbitrary weighting factor to

bring the speed scores to vary in the same range as the proximity ones. Ss(t) expresses the

difference between the distances traveled by E and C in one frame.
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Similarly, our orientation score is computed as:

So(t) = (π − α(t))β(t) (5)

The larger α(t), the more opposite the directions of E and C will be. We want to give

more importance to the entities coming towards C. We thus weight the score in order for the

entities in the central vision to be favored as opposed to the entities in the peripheral vision.

The last criterion is periphery. The calculations are the same as for the orientation,

however, we give more importance to the entities in the periphery. Its score is computed as:

Spe(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if β(t) > βm

ωpwα(t)(π − β(t)) otherwise

(6)

where βm is the maximum angle between the forward directions of C and E. Here as

well, we weight the score with a weighting parameter ωpw for the score range to be similar

to that of the other criteria. We thus obtain all our subscores.

It is important to note that we further improve our algorithm by pruning a number of

computations. First, we use the maximum distance dm. All entities farther than this from C

are automatically discarded from further computation. Out of this subset, we prune the pro-

cess again by considering only the entities in C’s field of view. All following computations

are done on this remaining subset of entities. We thus greatly reduce computational costs.

At this point, we can define, for each parameter individually, which entity is the most
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interesting for each character at each frame. However, these criteria need to be evaluated

as a whole for them to have a meaning. To this end, we define a final scoring function.

Moreover, in order to obtain variety in the character gaze behaviors, we want to bring in

subtle changes in the importance of each parameter. The subscores can thus be weighted to

have more or less influence on the overall score. These weights are randomly assigned by

the application and sum up to 1. Our overall scoring function is thus defined as:

S(t) = IE(ωpSp(t) + ωsSs(t) + ωoSo(t) + ωpeSpe(t)) (7)

where IE is the impact factor of E. Once the best overall scores Smax(t) have been

computed, we define the attention threshold A which determines the minimum score for a

gaze behavior to be activated. This cannot be defined as an absolute value since the overall

scores can greatly vary. We thus compute A as the (100-a)th percentile of Smax(t). C will

thus only pay attention a percent of the time. As depicted in Figure 1, the gazed at IP s will

be the ones that have a higher value than A. We thus partially simulate mood or personality.

Our method automatically generates gaze shifts since we calculate the IP s at each frame

and for each character. However, if the IP stays the same for a long time, this generates

unlikely behaviors. For example, if two characters are walking side by side, their respective

scores for each other may be very high due to their proximity. They will thus keep on

staring at each other, producing unrealistic gaze behaviors. We therefore define a threshold

duration dl. If an IP lasts for more than dl, the entity of next highest interest is chosen as
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new IP . We empirically set dl to a maximum value of 4 seconds for the gaze behavior not

to last indefinitely. This also simulates interesting emergent behaviors. In the example given

above, two characters walking side by side will oscillate between looking at each other and

looking at another entity or back in front of them. They will thus seem to be talking together.

Automatic Motion Adaptation for Gaze

In the present section, we explain how we adapt the initial motions to obtain the desired

gaze behaviors. Each of the IP s we have calculated for a character C can be considered as

a gaze constraint li in a set of gaze constraints L. C’s motion thus has to be adjusted to meet

these li. Since the IP s can be dynamic (in the case where they are moving entities), we

have to compute the joint displacements to be applied to the base motion at each frame. As

this is done on a per-frame basis, the overall performance of our system critically depends

on our IK solver. To this end, we propose a robust and very fast dedicated IK solver.

The skeletons we use are composed of 86 joints. Our method adjusts 10 of them: 5 spinal

cord, 2 cervical, 1 head and 2 eye joints, in order for the characters to align their gaze to the

IP s. The eyes are swing joints and have 2 degrees of freedom (DOF). All the others are ball

and socket joints that have 3 DOF. This amounts to 28 DOF in all. By considering only this

subset of the full skeleton, we greatly reduce the complexity of our algorithm. This allows

us to have very small computational times and thus to animate a large number of characters.

Our method consists of two distinct phases. The first one computes the displacement
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map to be applied in order to satisfy the current gaze constraint. We name this spatial

resolution. At each timestep, if there is an active constraint, we launch an iterative loop

starting with the bottom of the kinematic chain (lumbar vertebras) and ending with the top

of the kinematic chain (eyes). At each iteration, we calculate the total remaining rotation

to be done by the average eyes position (global eye) to satisfy the constraint and determine

the ratio of this rotation to be applied to the current joint. The remaining rotation to be done

by each eye joint is then computed in order for them to converge on the IP . Moreover, for

IP s in the 30◦ composing the central foveal area, only the eye joints are recruited. For the

15◦ farther on each side composing the central vision area, only the eye, head, and cervical

joints are recruited. Small movements therefore do not recruit the heavier joints. Similarly,

for larger movements, the final 15◦ are done by the eyes only and the 15◦ before that, by

the eyes, head and cervicals only. The second component is the temporal propagation of the

displacement map over an automatically defined number of frames. This number is different

if considering the eyes, the head and cervicals, or the joints composing the remainder of the

spine. In this way, we allow for the lighter joints to move more rapidly than the others. The

eyes thus converge on the IP well before any of the other joints attain their final posture.

Spatial Resolution

The purpose of the spatial resolution is to find a displacement map m(t) that modifies the

initial motion in order to satisfy a given gaze constraint li. Similarly to Lee and Shin [19],
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we consider the initial motion as a set of independent character postures. We adjust each of

these postures individually to satisfy the constraint. To determine the displacement which

should be applied to each of the recruited joints, we first calculate the 3D rotation ql ∈ S
3,

that aligns the global eye orientation to the position of li. Let Mwt be the rigid transformation

matrix that transforms a point p in a local coordinate frame to its world position xwt at time

t. Let lwt be IP ’s position expressed in world coordinates. The vector vlt going from the

global eye to the IP in the global eye frame is defined as:

vlt = RT
wt(lwt − xwt) (8)

where Rwt is the rotational part of Mwt and xwt is the global eye position in the world

coordinate frame. Let dlt be the initial looking direction expressed in the global eye frame.

The total rotation qlt in local coordinates is thus the shortest rotation to go from dlt to vlt.

The eyes are not the only joints to adjust. To reach a natural posture, we dispatch this rotation

to the other recruited joints. To determine the contribution ci of each joint to the complete

rotation ql, we take inspiration from Boulic et al. [30]. We use the formula they propose for

the spinal rotation distribution around the vertical axis. In our model, the rotations around

the other axes are very small; we therefore keep the same formula for all types of rotations:

ci = (−(i − n))(
2

n(n − 1)
) i = 1...9 (9)

where n is the total number of joints through which to iterate and i is the joint index. At
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each step, ci determines the percentage of remaining rotation to be assigned to joint i. The

total rotation to be done by each joint for the character to satisfy the constraint may then

be calculated by spherical linear interpolation using these contribution values. To reach the

final posture, we compute the remaining rotation for each eye to converge on the IP .

Temporal Resolution

The speed of our looking motions varies depending on what we look at. To reproduce this,

we dynamically determine the activation duration based on the best overall scores Smax(t).

A point of high interest triggers a rapid movement and one of low interest a slower one. The

activation duration ta for a character C to satisfy a constraint li is thus computed with the

Smax(t) at time tb associated to that constraint. Given the maximum possible score SMAX ,

ta is computed as:

ta =
αSMAX

vmSmax(t)
(10)

where α is the angle of the total rotation which would have to be done by the head to

satisfy li, expressed in radians and vm is the maximum possible head velocity. The choice

of value for vm is motivated by a study conducted by Grossman et al. [31]. The authors

experimented on the maximum head velocity during vigorous voluntary yaw rotations. They

obtained a median maximal velocity vm of 4π rad/s. However, we hardly use our maximal

head velocity. We therefore set it to 2π rad/s in our model. ta defines the number of frames it
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will take the head and cervical joints to satisfy li. We double this value to obtain the number

of frames in which the remainder of the spine will satisfy li and halve it to obtain the number

of frames in which the eyes will converge. This allows for the lighter joints to move faster

than the heavier ones. Finally, since a motion can take as long as one wants, there is no

particular time threshold under which it should be done. We therefore empirically set an

upper bound value for ta at 2 seconds in order for the motion not to be unnaturally long.

In this way, if Smax(t) is very high, the turning motion will be done fast and if it is low,

the turning motion will be done in a larger number of frames. Moreover, the eyes converge

on the IP faster than the head and cervical joints, which in turn will satisfy the constraint

before the remainder of the spine. If the gaze behavior is deactivated, either because C has

been looking at an IP for too long or if there are no more IP s above the attention threshold,

C will look back in front of him/her, i.e, will return to its original posture. The duration of

the deactivation td is randomly generated within an adequate range.

Our gaze movements are not performed at a linear velocity. They start with an accel-

eration or ease-in phase, reach a peak velocity, and end with a deceleration or ease-out

phase [25]. They are also desynchronized in time. The eyes move before the head, which

moves before the torso. To reproduce this, we further weight our rotation contributions ci

with a temporal propagation function fP (t) which follows a Gauss error function curve:

fP (t) = erf(n/2) =
2√
π

∫ n/2

−n/2

e−t2 (11)
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where n is the number of frames over which the gaze motion will be done. This com-

putation is done with the different activation time values for the three sets of joints (eyes,

head and cervicals, and torso). As depicted in Figure 3, we thus obtain a slight delay in the

movement initiation between these three sets of joints. Our final movement therefore allows

for the eyes to converge on the IP and then partially recenter with respect to the head as

the remainder of the joints move to satisfy li. In our examples, most characters are in move-

ment and the majority of the constraints are associated to other entities in movement. These

constraints are thus dynamic. We therefore recompute the displacement map to satisfy li

at each timestep. We can assume that its position from one frame to the next one does not

change much. We therefore recompute the rotation to be done at each frame but maintain

the total contribution fP (t)ci to apply which we calculated before the initiation of the gaze

motion. However, we reset the contributions to 0 if the gaze constraint changes, i.e., if it

is associated to another entity situated elsewhere in the scene. More specifically, it is the

case when the current constraint location is farther than a pre-determined threshold from the

constraint location at the previous frame. The newly calculated rotations to attain the new

constraint position are then distributed over the appropriate number of frames.

Experimental Results

We used our framework to create examples of the possibilities of our method. The motion

clips for our examples have been sampled at 30 fps. All the animations were generated on
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an Intel Core 2 Duo 3.0 GHz, 2GB RAM and an NVidia GeForce 8800 GT graphics board.

For these examples, we have used the crowd simulation engine described in [32].

Our first example illustrates the desynchronization between the three sets of joints and

various parameters by applying them individually to a single character C. Figure 4 depicts

the desynchronization and the periphery parameter. On the left, C’s eyes converge on the IP

while the head and spine have not yet satisfied the constraint. On the right, maximal values

have been set to the periphery and attention parameters. The maximum looking duration is

not activated in this example since it aims at demonstrating solely the motion editing.

In our second example, we illustrate the use of our scoring algorithm together with the

motion editing over 130 characters walking up and down a street, standing, or sitting on a

bench. This is depicted in Figure 5. The maximum distance threshold was set to 10m. The

attention threshold and the importance of each parameter was randomly generated by our

application and is different for each character. For each one, the scoring algorithm is applied

to all other eligible entities. Additionally, it is applied to all eligible scene objects defined as

potential IP s (60 in all). We can thus simulate a simple form of top-down attention in the

sense that some characters seem to be looking for something or trying to find their way. An

interesting aspect emerging from those results is that some characters walking or standing

next to each other regularly look at each other. They seem to be talking to each other.

Concerning complexity and computational times, our automatic IP detection algorithm

is in O(n2) with n being the number of characters. Indeed, for each character C, we have

to evaluate all other entities E. However, since we do not compute the IP s for entities out
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of C’s field of view and farther than a distance threshold from it, this is greatly reduced and

depends on population density. For the last example, the computational time for the IP de-

tection, per character and per frame, was of 0.036ms. We have also tested our IP detection’s

computational times. These are expressed in milliseconds, per character and per frame. For

100 characters, the computational time was of 0.017ms, for 200, it was of 0.033ms, for

500, it was of 0.088ms, and for 1000, it was of 0.177ms. The automatic IP detection can

thus be done for hundreds of characters in real-time. However, the computational times for

1000 characters is prohibitive. Nevertheless, this is hardly necessary since users would only

perceive those behaviors in the foreground. We have also compared our IK solver with a

typical Jacobian-based IK approach [33]. To perform this comparison, the same skeleton

has been used in both cases. We then placed an IP in several different locations. On av-

erage, the Jacobian-based approach took 20ms per iteration to satisfy the constraint. This

method needs about 15 iterations before converging, which amounts to 300ms to solve a

constraint. Our method took a mean time of 0.3ms to solve a constraint. Since it is an

analytical approach, we do not need more than 1 iteration to solve it. The complexity of our

IK solver is therefore in O(n) with n being the number of characters.

Conclusion

In this paper, we introduced a novel method to enhance crowd animation realism by adding

attention behaviors to the characters composing it. We first proposed an automatic interest
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point detection algorithm which determines, for each character, where and when it should

look. We additionally presented an extensible and flexible set of criteria to determine interest

points in a scene and a method to combine them. Our method also allows the fine-tuning of

character attention behaviors by introducing an attention parameter as well as the possibility

to modify the relative importance of each criterion if desired. As a second contribution, we

introduced a robust and very fast dedicated gaze IK solver to edit the character motions.

Our solver deals with the spatial and temporal resolution of the gaze constraints defined by

our detection algorithm. Finally, we illustrated our method with visually convincing results

obtained with the combination of both our contributions.
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Figure 1: Overall maximum scores Smax(t) for a character C. Different colors represent
different interest points. tb and te represent the beginning and the end of a look-at constraint.
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Figure 2: Schematical representation of the parameters used for the elementary scoring.
pc(t) is the character position at time t, pe(t) is the entity position at time t, α is the entity
orientation in the character’s field of view, and β is the angle between the character and the
entity forward directions.
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Figure 3: Desynchronization between the eyes, head, and torso. The eyes start moving
before the head and satisfy the constraint first. The head and cervicals start moving and
satisfy the constraint before the remainder of the spine.
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Figure 4: A character following an interest point with different sets of parameters. Left:
Desynchronization between eyes, head, and torso. Right: Periphery parameter illustration.
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Figure 5: Examples of attention behaviors in a crowd animation.
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Overall maximum scores Smax(t) for a character C. Different colors represent different interest 
points. tb and te represent the beginning and the end of a look-at constraint.  
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Schematical representation of the parameters used for the elementary scoring. pc(t) is the character 

position at time t, pe(t) is the entity position at time t, α is the entity orientation in the character's 
field of view, and β is the angle between the character and the entity forward directions.  
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Desynchronization between the eyes, head, and torso. The eyes start moving before the head and 
satisfy the constraint first. The head and cervicals start moving and satisfy the constraint before the 

remainder of the spine.  
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A character following an interest point with different sets of parameters. 
Desynchronization between eyes, head, and torso.  
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A character following an interest point with different sets of parameters. 
Periphery parameter illustration.  
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Examples of attention behaviors in a crowd animation.  
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Examples of attention behaviors in a crowd animation.  
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Examples of attention behaviors in a crowd animation.  
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