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Abstract 
 
A 2D phase field model has been developed to describe the shape of a pore formed within 
interdendritic liquid channels. The influence of the solid, which can force the pore to adopt a 
non-spherical shape, is taken into account through the geometry of the domain and appropriate 
boundary conditions. The results show that the presence of solid can substantially influence the 
volume and pressure of the pore. A pore constrained to grow in narrow liquid channels exhibits a 
substantially higher mean curvature, a larger pressure and a smaller volume as compared with a 
pore grown under unconstrained conditions. The effect of pore pinching by the solid network 
was also evidenced by 3D characterization of a pore by X-ray tomography. These measurements 
showed high interface curvatures corresponding to an overpressure of more than 400 kPa. 
 

Introduction 
 
Microporosity is one of the major defects encountered in solidification processes. The presence 
of micropores can considerably reduce the mechanical properties of a cast material, in particular 
the fatigue life and the ultimate tensile strength [1]. The basic mechanisms responsible for the 
formation of micropores are well established. Solidification shrinkage, i.e. the difference in 
specific volume between the liquid and solid phases, is known to play a key role. If shrinkage 
cannot be compensated by liquid flow in the mushy zone due to limited permeability, large 
pressure drops may develop and lead to the formation of pores. Gas dissolved in the liquid metal, 
such as hydrogen in aluminum alloys, can substantially contribute or even govern the formation 
of micropores. Due to a lower solubility in the solid phase, gas concentrate in the remaining 
liquid as solidification proceeds and may reach the critical concentration for the nucleation of a 
bubble. Once a pore has nucleated, it becomes a sink for the gas supersaturated in the liquid 
phase and it will grow until thermodynamic equilibrium is reached. 
Modeling the formation of porosity in castings has been a subject of research for several decades. 
The reader is invited to refer to the review article of Lee et al [2]. State-of-the-art computer 
models describing the formation of microporosity on the scale of the casting process are based 
on volume-averaging methods for the calculation of the local temperature and pressure fields in 
the interdendritic liquid. These quantities are then used to estimate the level of gas segregation 
and to determine if conditions for the nucleation of a pore are met. After nucleation, the growth 
rate of the pores is calculated by solving a hydrogen mass balance. By coupling such an 
approach with a resolution of the micro-macro hydrogen transport in the melt, Carlson et al [3] 
incorporated the effects of finite-rate hydrogen diffusion into porosity modeling, an aspect that 
had been previously experimentally highlighted by Lee and co-workers [4]. Couturier et al [5], 
who used the same technique as Pequet et al [6] for the mesh refinement in the mushy zone, 
examined the influence of alloy components.  
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One aspect that has not previously been examined is the effect of pore morphology, and more 
specifically, the radius of curvature as it directly influences the gas pressure in the pore. As pores 
usually develop at high volume fractions of solid, they adopt complex shapes due to numerous 
contacts with neighboring dendrites arms. Very few studies have been devoted so far to this 
effect, although it is potentially important. The objective of the present work is to present a 
preliminary phase-field approach for a numerical description of the morphology of a pore 
constrained by a dendritic network. X-ray tomography experiments are first presented to show 
the importance of this phenomenon during solidification.  
 

Experimental 
 
X-ray tomography experiments have been carried out in order to characterize the morphology of 
micropores in cast aluminum alloys. Al-4.5wt%Cu ingots (60 mm of diameter, 110 mm of 
height) were directionally solidified under controlled conditions (solidification rate of 1 mm/s, 
and thermal gradient of 30 K/cm). From these ingots, samples were extracted and analyzed by X-
ray tomography using the TOMCAT beamline at the Swiss Light Source and a 0.7 �m camera 
pixel size. 
From the 3D volume data, the mean curvature was then calculated for every pore larger than 
50 �m3, and at every point on the pore surface using the open source program VTK [7]. Figure 1 
shows a volume rendering of one pore pinched by a dendritic network. As can be seen on the 
curvature distribution for this pore shown in Figure 2, the mean curvature can be larger than 
0.2 �m-1, which corresponds to a Laplace – Young overpressure of more than 400 kPa. As the 
pore must have a positive pressure, the mean value of the distribution is positive (black dot at 
0.083 �m-1 in Figure 2). 
 

 

 

Figure 1: Volume rendering of a pore 
pinched in an Al-4.5wt%Cu matrix 
observed by X-ray tomography. 

 Figure 2: Mean curvature distribution of 
the pore illustrated in Figure 1. The dot 
represents the mean value of the 
distribution. 

  
Model 

 
A phase field model has been developed in order to describe the shape of a pore forming within 
an interdendritic liquid channel and the geometrical effect of mechanical contacts with 
neighboring solid. The problem is solved in a domain that is representative of a small section of 
an interdendritic liquid channel. In this preliminary approach, only the evolution of the liquid/gas 
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interface is considered. The influence of the solid, which can force the pore to adopt a non-
spherical shape, is taken into account through the geometry of the calculation domain and the 
boundary conditions, considering that the exterior of the domain corresponds to solidified 
regions. 
The evolution of the liquid/gas interface is described with a phase equation using a similar 
approach as in solidification phase-field models [8]. The major difference lies in the driving 
force, which is given here by the pressure difference between the interior of the pore and the 
surrounding liquid. 
In the current work, the following phase equation has been used: 
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where �  is the phase variable, which varies continuously through the interface from 0 in the 
liquid to 1 in the pore, pp is the pressure in the pore and pl is the pressure in the liquid. The 
parameters M, W, � and �lg correspond respectively to the interface mobility coefficient, the 
double-well height, the interface thickness and the liquid/gas interfacial energy. 
By solving the steady-state form of Eq. 1 in cylindrical coordinates, one can show easily that the 
Laplace pressure condition, pp - pl = 2�lg / r is recovered for a given pore radius, r, justifying in 
this way the form of this equation. 
In this preliminary approach, the growth kinetics are assumed to be governed by hydrogen 
diffusion in the liquid, which, as pointed out by Lee and Carlson [3, 4], can be the limiting 
factor. (Hereafter the gas responsible for porosity will always be referred to as hydrogen, 
although the model could apply to other systems as well.) A local volumetric molar 
concentration of hydrogen is introduced based on an averaging procedure and considering � as a 
local volume fraction of phase: 
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where H
lc  and H

pc  are volumetric molar concentrations of hydrogen in the liquid and in the gas, 
respectively. 
Assuming thermodynamic equilibrium at the interface, H

lc can be expressed as a function of pp 
using Sievert's law: 
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where Sl is the Sievert’s constant (in atomic moles/m3) and p0 is the standard pressure. 
Introducing also the perfect gas law, Eq. 2 can be rewritten as: 
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A hydrogen conservation equation is then solved, neglecting any hydrogen concentration 
gradient in the gas phase and any hydrogen transport in the liquid due to flow: 
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The resolution of Eq. 1 and Eq. 5 is performed using a finite difference method and an explicit 
time-discretization scheme. At each time-step, the solution of Eq. 5 is used to calculate the 
driving force term of the phase equation. This requires solving the second order polynomial 
expression of Eq. 4 to obtain pp from cH. An averaging procedure eliminating any concentration 
gradient in the pore is applied at every time-step. 
The contact angle between the liquid/gas interface and the domain border (i.e. with the solid) is 
prescribed with a Dirichlet boundary conditions for the phase-field, using the approach 
developed by Sémoroz et al [9]. The average mean curvature of the pore is calculated using 
following expression: 
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since /� �	 
 
n is the normal to the interface and 
 �n  represents the mean curvature of a 
sharp interface. 
 

Results and Discussion 
 
A first test was carried out in order to test the capability of the model to correctly calculate the 
pressure and the radius of a spherical pore for a given set of conditions in terms of hydrogen 
content in the calculation domain, c0, hydrogen solubility, Sl, and liquid pressure, pl. The 
calculation was performed in a 2D square domain at the center of which a pore was initialized 
with an arbitrary radius. Once steady state is reached, the pore radius, r, and the pore pressure, 
pp, can be compared with the analytical solution that is obtained from the following set of 
equations:  
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where req is the equilibrium radius of the circular pore and Vcomp is the volume of the calculation 
domain. 
Table 1 summarizes the different parameters used in the calculation. The calculation was started 
with an initial pore size about 10 times smaller than req. The initial gas content and pressure in 
the pore were chosen in order to satisfy the Laplace-Young equation and the perfect gas law. The 
hydrogen content in the domain was set to 25 mol/m3, which is much larger than the equilibrium 
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concentration given by Sievert's law for the initial pore radius. As the liquid is supersaturated in 
hydrogen, the pore is expected to grow.  
 
Table 1: parameters used in the phase-field calculations. 
Parameters symbol, unit numerical value
Mesh size 
Volume of the calculation domain 
Contact angle of the l/g interface at the boundaries 
Interface thickness 
Atmospheric pressure 
Liquid pressure 
Temperature 
Interface mobility coefficient 
Hydrogen diffusion coefficient in liquid aluminum 
Sieverts’ constant 
Liquid-gas interfacial energy 

a  [m] 
Vcomp [m3] 
� [-] 
� [m] 
p0 [Pa] 
pl [Pa]] 
T [K] 
�0 [m2s/kg] 
Dl [m2/s] 
Sl [mol/m3] 
�lg [J/m2] 

2.5 10-8 
1.5625 10-10 
�/3 
4 10-8 
101325 
101325 
1000 
1 10-6 
1 10-6 
0.69 
0.8 

 
As can be seen in Figure 3, the pore radius calculated with the phase-field model increases 
rapidly, whereas its pressure decreases, until a steady-state is reached at a time of about 5 10-5 s. 
Both the pressure and the radius of the pore stabilize very close to the analytical solution. Similar 
calculations started with different pore radii, either larger or smaller than req, yielded the same 
steady state solution. Thus, the phase-field model is capable of correctly describing a bubble in 
equilibrium with its surrounding liquid, satisfying simultaneously the mechanical and chemical 
equilibrium conditions. 
The transient regime of the calculation corresponds to the time required to homogenize the 
hydrogen concentration in the liquid. Although hydrogen diffusion can be the limiting factor for 
pore growth, the transient regime of the simulation cannot be exploited quantitatively in this 
preliminary approach. The reason is that the liquid flow induced by the expansion of the bubble, 
and thereby hydrogen transport by convection, are not considered in the simulation. For this 
reason only the steady state solutions of the simulation will be discussed hereafter. 
 

 
Figure 3: Radius and pressure of a circular 2D pore calculated with the phase-field model and 
with the analytical solution for a hydrogen solubility in the liquid of Sl = 0.69 mol/m3 and an 
overall hydrogen content, c0, of 25 mol/m3. 
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The model was then used to investigate the morphology and the pressure in a pore growing under 
the constraint of a surrounding solid. The calculations were performed in a 2D domain composed 
of a series of rectangular channels connected together by a central canal (see Figure 4). This 
geometry is aimed at simulating the growth of a pore in between presumably fixed dendrite arms. 
The contact angle between the liquid/gas interface and the border was set arbitrarily to �/3 for all 
boundaries. The overall hydrogen content in the calculation domain, c0, was set to 25 mol/m3.  
The calculation was initialized with a pore size 10 times lower than req without any contact with 
the boundaries. The other calculation parameters are given in Table 1. 
As the liquid is supersaturated in hydrogen, the pore grows until some equilibrium is reached. 
The final shape of the pore is shown in Figure 4 for three different channel widths, L, but 
identical volumes of calculation. The pressure in the pore, the mean radius of curvature and the 
volume of the pore were extracted from the calculations once a steady state was reached. The 
results are presented in Figure 5 and 6. 
 

 
L = 3.725 �m L = 2.475 �m L = 1.225 �m 

Figure 4: Equilibrium pore shape for different liquid channel widths, L. 
 
As can be seen in Figure 5, a smaller channel width leads to a higher pressure, a higher radius of 
curvature and a lower pore volume as compared with a less constrained pore. This effect is 
directly related to the fact that the growth of a pore inside a narrow liquid channel requires 
highly curved gas/liquid interfaces in order to satisfy the contact angles that have been prescribed 
on the boundary. The pressure in the pore is consequently larger in such pores since the Laplace - 
Young equation has to be satisfied. 
 
The effect of the constraining solid can also be observed in Figure 6, which shows that the 
average mean radius of curvature becomes substantially smaller than the unconstrained radius 
when the channel width is small.  
In the calculations shown here the influence of the solid morphology on the volume fraction and 
the morphology of the pores is substantial. By dividing the channel width by a factor 3 the 
pressure raises and the volume drops also by similar factor. The magnitude of this effect is 
naturally linked to the fact that the channel widths used in the calculations are rather small. 
However such narrow liquid channels are not unrealistic at the end of solidification.  
  

374



 
Figure 5: Effect of liquid channel width on pore 
pressure (squares) and pore volume (dots) 
calculated with the phase-field model. The 
dashed and dotted lines represent respectively 
the unconstrained pore volume and 
unconstrained pore pressure. 

 Figure 6: Effect of liquid channel width 
on the mean radius of curvature of a pore 
calculated with the phase-field model (see 
Eq. 6). The dashed line represents the 
unconstrained equilibrium radius of 
curvature. 

 
The calculations presented here were performed with very high hydrogen contents (25 mol/m3). 
These values become more realistic if one considers that the calculation domain is a small 
window centered on a pore, or in other words, that the simulation is focused on a particular area 
of the microstructure where the hydrogen content is locally very high. In this prospect, it is 
interesting to calculate, for a given pore volume and morphology obtained with the simulation, 
the number of pores per unit volume of liquid, np , that should be considered in order to reach a 
given nominal hydrogen content per unit weight, [H]0: 
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where #, Vp and H
lc  are the liquid density, the volume of the pore and the liquid concentration 

obtained in the simulation, respectively. 
The calculation of np yields directly the volume fraction of pores corresponding to a certain [H]0: 
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The values of gp and np corresponding to [H]0 = 6.51 mol/m3 (3 ccSTP/100g Al) have been 
reported in Table 2 for the unconstrained situation and for the 3 previously presented calculations 
at different channel widths. As can be seen, at fixed [H]0, all calculations exhibit very similar 
conditions in terms of number of pores per unit volume. The major difference regarding the 
conditions of these calculations is thus essentially the size of the channel width. The large 
differences observed in the volume fractions of the pore and the pore pressure are therefore 
clearly due to the influence of the contacts with the solid, which may constrain the pore to adopt 
a high interface curvature and high pressure, if the liquid channels are narrow. 
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Table 2: Results of the simulations carried out with various liquid channel geometries. 

Liquid 
channel 
width, L 

Pressure 
in the 

pore, pp 

Pore 
volume, 
Vp 

Radius of 
curvature

1/� 

number of pore per 
unit volume, np  

([H]0 = ccSTP/100 gAl) 

volume fraction 
of pore, gp  

([H]0 = 
3ccSTP/100 gAl) 

[μm] [Pa] [m3] [m] [m-3] [-] 
unconstrained 3.48 105 3.29 10-11 3.23 10-6 1.90 109 5.88% 

3.725 4.68 105 2.42 10-11 2.16 10-6 1.85 109 4.28% 
2.475 7.02 105 1.58 10-11 1.37 10-6 1.76 109 2.71% 
1.225 13.6 105 7.91 10-12 0.68 10-6 1.54 109 1.21% 

 
Conclusion 

 
A 2D phase field model has been developed in order to describe the shape of a pore forming 
within interdendritic liquid channels and the geometrical effect of mechanical contacts with 
neighboring solid. The influence of the solid, which can force the pore to adopt a non-spherical 
shape, is taken into account through the geometry of the domain and appropriate boundary 
conditions. The results show that the presence of solid can substantially influence the volume 
and pressure of the pore. A pore constrained to grow in narrow liquid channels exhibits a higher 
mean curvature, a larger pressure and a smaller volume as compared with a pore grown under 
unconstrained conditions. The effect of pore pinching by the solid network was also evidenced 
by 3D characterization of a pore by X-ray tomography. It was shown that high values of the 
mean curvature can be reached locally, which corresponds to a Laplace – Young overpressure of 
more than 400 kPa. 
Although the model accounts for hydrogen diffusion in the liquid, which is one of the main 
aspects governing the growth kinetics of a pore, this approach does not allow at this stage to 
correctly describe the dynamics of pore formation. To do so, the model should be combined with 
a description of the liquid flow induced by the pore growth. This would permit to properly take 
into account the effect of hydrogen transport by convection. In order to make a more quantitative 
investigation of the influence of the solid on the pore morphology the approach should be 
extended to 3D and an additional phase equation should be introduced to account for the 
evolution of the solid/liquid interface. 
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