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SURE-Based Non-Local Means
Dimitri Van De Ville, Member, IEEE, and Michel Kocher

Abstract—Non-local means (NLM) provides a powerful frame-
work for denoising. However, there are a few parameters of the
algorithm—most notably, the width of the smoothing kernel—that
are data-dependent and difficult to tune. Here, we propose to use
Stein’s unbiased risk estimate (SURE) to monitor the mean square
error (MSE) of the NLM algorithm for restoration of an image cor-
rupted by additive white Gaussian noise. The SURE principle al-
lows to assess the MSE without knowledge of the noise-free signal.
We derive an explicit analytical expression for SURE in the set-
ting of NLM that can be incorporated in the implementation at
low computational cost. Finally, we present experimental results
that confirm the optimality of the proposed parameter selection.

Index Terms—Denoising, non-local means, Stein’s unbiased risk
estimate.

I. INTRODUCTION

N ON-LOCAL means (NLM) is a recent denoising method
[1] that has received a lot of attention from the signal

processing community. While standard linear filtering relies on
local spatial correlation, the non-local principle exploits the fact
that similar neighborhoods can occur anywhere in the image and
can contribute for denoising.

The standard NLM algorithm is computationally expensive.
The initial approach by Buades et al. [1] proposed to limit the
search region within which similar neighborhoods are looked
for. Numerous methods were proposed to accelerate the NLM
approach such as a preselection of the contributing neighbor-
hoods based on average value and gradient [2], average and vari-
ance [3] or higher-order statistical moments [4], cluster tree ar-
rangement [5], and singular value decomposition [6]. Also the
computation of the distance measure between different neigh-
borhoods can be optimized using the fast Fourier transform [7]
or a moving average filter [8]. Variations of the NLM algorithm
have also been proposed to improve the denoising performance;
e.g., adaptive neighborhoods [9], iterative application [5], com-
bination with kernel regression [10] and spectral analysis [11],
and other similarity measures based on principal component
analysis [12] or rotation invariance [13]. The most evolved ver-
sion of the NLM framework is probably BM-3D [14], which fur-
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ther processes the selected neighborhoods and gives high quality
results.

A remaining question of the NLM methodology is how to op-
timally set the parameters of the algorithm; i.e., the width of the
smoothing kernel that serves to determine the weights, the size
of the neighborhood, and the search region. In this paper, we
propose to use the principle of Stein’s unbiased risk estimate
(SURE) [15] as an estimator for the mean squared error (MSE)
from the noisy image only. SURE-based selection of optimal
parameters has received a renewed interest for wavelet-based
methods [16], [17]. Also, SURE can be used in a Monte-Carlo
fashion when its expression is analytically not tractable [18]
(e.g., for optimizing the nonquadratic regularization functional
in total-variation), and it can be extended for non-Gaussian dis-
tributions [19].

In Section II, we briefly review the NLM algorithm and the
SURE principle. Next, in Section III, we show that it is possible
to obtain the analytical divergence of the NLM algorithm with
respect to the measurements, which serves as the key ingredient
of SURE. In Section IV, we present the experimental results,
which are discussed in Section V.

II. PRELIMINARIES

A. The Non-Local Means Algorithm

We consider the observation model

(1)

where stands for the vector representation of the noise-
free image, is the zero-mean white Gaussian noise of variance

, and is the observed noisy data. We denote the grayscale
value of the individual pixel at position as , where we
use vector indexing to better reflect the spatial dependencies of
the image. The pixel-based NLM algorithm [1] is a spatially
adaptive filter that maps the measured data into as follows:

(2)

where is the search region around and are the weights
that compare the neighborhoods around pixels and , respec-
tively. The weights are defined as

(3)

where defines the neighborhood and is its total size; e.g.,
and for a 7 7 neighborhood.

B. Mean Squared Error and Stein’s Unbiased Risk Estimate

The MSE of the denoised image with respect to its noise-free
version is
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(4)

where is the Euclidean norm. SURE provides a means
for unbiased estimation of the true MSE. It is specified by the
following analytical expression [15]–[18]:

(5)

where is the divergence of the NLM algorithm with
respect to the measurements

(6)

which needs to be well defined in the weak sense. The derivation
of SURE relies on the additive white Gaussian noise hypothesis
and assumes the knowledge of the noise variance . In practice,

can be easily estimated from the measured data.

III. SURE-BASED NON-LOCAL MEANS

The divergence term in (5) plays a crucial role in the expres-
sion of SURE. Fortunately, for the NLM algorithm, we can ex-
plicitly obtain the divergence from (2) as shown in the following
Proposition.

Proposition 1 (Divergence of NLM): The individual terms of
the divergence of the NLM algorithm are given by

(7)

with . Moreover, is the result of the NLM
algorithm that uses the squared input values

(8)

Notice that the weights in this filter are identical to the ones
from the regular algorithm; i.e., the same as in (2).

We see that the divergence term in (7) has a variance-like con-
tribution (the first part) and a cross-correlation-like contribution
(the last part). Plugging the divergence into the SURE expres-
sion leads to our proposed estimator.

Proposition 2 (SURE for NLM): The SURE for the NLM
algorithm can be expressed as

(9)

Fig. 1. Performance measures (true MSE, SURE for exact , SURE for esti-
mated ) as a function of the smoothing parameter . The optimal setting of
for each measure is indicated by a vertical line in the same drawing style. Lena
test image, neighborhood 7 7. (a) . (b) . (c) .

The computation of the divergence term can be readily incor-
porated within the core of the NLM algorithm. Specifically, im-
plementing (9) requires two additional memory arrays to store

and , and its computational complexity takes only
operations, which is negligible compared to

of the NLM algorithm, where is the total size of the search
region.

IV. EXPERIMENTAL RESULTS

We implemented the proposed approach in Matlab (R2008b)
using C for the core calculations. For all experiments, we used
a search region . The computation
time on an Apple MacBook Pro 2.53 GHz Intel Core 2 Duo
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Fig. 2. Performance measures (true MSE, SURE for exact , SURE for esti-
mated ) as a function of the smoothing parameter . The optimal setting of
for each measure is indicated by a vertical line in the same drawing style. Cam-
eraman test image, . (a) Neighborhood . (b) 7 7. (c) .

(only a single core is used) was 132 s for a 256 256 image
and 7 7 neighborhood. The additional cost of SURE was com-
pletely negligible; indeed, for the chosen search re-
gion .

We evaluated SURE using both the true noise variance
and the estimated one; i.e., we used the well-known wavelet
estimator where we filtered the image by the diagonal high-
pass filter of the Haar wavelet transform and computed a frac-
tion of the median of absolute deviation. In Fig. 1,
we plot true MSE and SURE for true and estimated , as
a function of , for various noise levels. In Fig. 2, we show
the same measures for various neighborhood sizes. Finally, in
Table I, we report the peak signal-to-noise ratios (PSNR) for

various test images and neighborhood sizes; we used
.

V. DISCUSSION AND OUTLOOK

The results in Fig. 1 and Table I confirm that the performance
of the NLM algorithm depends on and that the MSE can be
monitored using SURE. The optimal is data-dependent and
noise-level dependent; i.e., the ratio of optimal versus true
is changing for different . When SURE is based on the esti-
mated , the result is also satisfactory—although is known
be slightly overestimated for images with high-frequency con-
tent (e.g., barbara). Fixing seems to be good compro-
mise for our test set, but it would be slightly suboptimal and also
suffer from the bias in estimating . In practice, one useful ap-
proach is to combine our SURE with an optimization strategy to
find the optimal in a few iterations; e.g., golden section search
does fine due to the convex behavior of MSE/SURE.

Fig. 2 and Table I illustrate that the influence of the neigh-
borhood size is minor and that the smallest size performs best.
However, this result might depend on the image content and the
noise level and thus monitoring with SURE is useful.

The surprising aspect of our work is that it is possible to ob-
tain an explicit analytical form for the divergence term of NLM,
which is rather exceptional for nonlinear algorithms. Moreover,
the additional computational cost to calculate the SURE is ex-
tremely low. We hope that this work will inspire further im-
provements of the NLM algorithm and its variations.

APPENDIX A
DERIVATION OF THE DIVERGENCE TERM

To obtain the divergence term, we introduce
and we derive with respect to , which re-

sults in

(10)

Further on, deriving the weights gives

which allows us to further manipulate (10) into
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TABLE I
PSNR RESULTS (DB). FOR THE SURE-BASED NLM, THE OPTIMAL IS INDICATED BETWEEN PARENTHESES.

ALL EXAMPLES USE THE SEARCH WINDOW
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