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Controlled doping of SrCu2�BO3�2, a faithful realization of the Heisenberg spin-1/2 antiferromagnet on the
Shastry-Sutherland lattice, with nonmagnetic impurities generates bound states below the spin gap. These
bound states and their symmetry properties are investigated by exact diagonalization of small clusters and
within a simple effective model describing a spinon submitted to an attractive extended potential. It is shown
that Raman spectroscopy is a unique technique to probe these bound states. Quantitative theoretical Raman
spectra are numerically obtained.
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I. INTRODUCTION AND MOTIVATIONS

SrCu2�BO3�2 is an experimental realization of a spin-1/2
antiferromagnet living on the two-dimensional �2D� Shastry-
Sutherland lattice �SSL�. Its properties can be well described
with the Heisenberg model

H = J�
nn

Si · S j + J��
nnn

Si · S j , �1�

where J �respectively, J�� is the exchange within �respec-
tively, between� dimers. The experimental compound has a
ratio �=J� /J slightly above1 0.6. The SSL has been first
introduced theoretically as an example of a 2D antiferromag-
net whose ground state �GS� for small enough � is exactly
known:2 it is simply the product of singlets on each dimer up
to1 ��0.7. Indeed, experiments on SrCu2�BO3�2 indicate a
finite spin gap. For larger �, a more usual 2D Néel-ordered
phase is stabilized, possibly with an intermediate plaquette
phase. Previous Raman experiments on this compound3 in-
dicate that some structure in the spectrum can only be ex-
plained by taking into account a realistic model, including
for instance Dzyaloshinski-Moriya �DM� interactions.4 How-
ever, these DM terms are too small to have any sizeable
effects on the low-energy Raman spectra5 discussed here and
thus will be neglected hereafter. Our goal will be to show
that, within a simple Heisenberg model, doping nonmagnetic
impurities generates new spectroscopic signatures below the
two-magnon continuum whose features should persist in a
more realistic model.5

SrCu2�BO3�2 is a Mott insulator and its doping with mo-
bile carriers is predicted to lead to superconductivity.6 In this
paper, we shall rather consider the controlled doping of
SrCu2�BO3�2 with nonmagnetic static impurities such as zinc
or magnesium atoms substituted for copper atoms on a very
small fraction of the N lattice sites. Such atoms acting as
vacant sites provide accurate local real-space probes �which
can be considered as independent for low enough impurity
concentration�. As known in strongly correlated systems, a
small doping of the parent compound can bring crucial in-

formations about its intrinsic properties.7 Substituting Cu
with nonmagnetic Mg impurities has been recently
performed.8,9 Neutron-scattering experiments8 have then
shown the appearance of new magnetic excitations into the
singlet-triplet gap. Here, we shall focus on Raman-
spectroscopic techniques which, by probing �S=0 excita-
tions using light scattering, offer a unique way to identify the
local response to a doped impurity. In particular, we will
show that transitions between different S=1 /2 bound states
can be identified in the Raman spectra. Such features can be
interpreted within a simple phenomenological model de-
scribing the attractive potential between a liberated spinon
and the impurity �vacant site�.

II. THEORETICAL FRAMEWORK

A. Raman scattering

The theory of Raman light scattering is most simple when
the photon energy is much smaller than the Mott gap. In such
a case, it is legitimate to use the Loudon-Fleury approxima-
tion and the Raman operator reads

R = �
nn

��ein · dij��eout · dij�Si · S j

+ �
nnn

���ein · dij��eout · dij�Si · S j , �2�

where ein and eout are the polarization vectors of the incom-
ing and scattered light, and dij is the unit vector connecting
two sites i and j. This operator only couples to zero-
momentum singlet excitations. In principle, the coupling
constants � and �� could depend on the exchange values,10

although such a dependence is neglected in most studies.
However, some simplifications occur for an �a�b�� polariza-
tion �see Fig. 1�: indeed, in this case, the geometry of the
compound implies that only the J� bonds contribute to the
Raman operator. Moreover, the dominant intensity occurs
when triplets can be created on dimer bonds which, in con-
trast, is not allowed in �ab� polarization.11,12 In the follow-
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ing, we will restrict to this polarization where all Raman
coupling constants are equal up to a sign �given in Fig. 1�.

At zero temperature, the Raman intensity is given by the
dynamical correlations of the Raman operator

IR��� = −
1

�
Im��0�R 1

� − H + i�
R��0�

= �
n

��n�R��0��2 ��� − �En − E0�	 , �3�

where ��0� is the GS of the system and the sum runs over the
excited states �n� with energy En. Note that because of the
symmetry of the Raman operator, only singlet states with
zero momentum contribute. Moreover, in the chosen polar-
ization, only states which are odd with respect to reflections
along a� or b� axis give a signal.

B. Results for the pure compound

As studied in Ref. 11, the Raman spectrum of the undoped
material shows four sharp peaks at 1.25, 1.9, 2.3, and 2.9
times the spin gap �01. Naively, one would expect the Raman
spectrum to start at the two-magnon continuum �i.e., twice
the spin gap� since it is a singlet operator. In fact, a singlet
bound state made of two triplets does exist on this lattice12

and was identified as the low-energy state.11 The first two
peaks are attributed to two-triplet bound states, while the two
others are interpreted in terms of three-particle excitations.
Although the high-intensity peaks are above the two-magnon
continuum �starting at 2�01�, the very small magnon disper-
sion leads to a very narrow continuum so that the two higher-
energy peaks are observable.

In Fig. 2, we present our exact-diagonalization �ED� spec-
tra for various �. As expected, for small �, the finite-size
effects are rather weak due to the large energy scales �i.e.,
short correlation lengths�, so that results are almost identical
on N=16 and N=32 clusters. Clearly, spectral weight is
present below the two-magnon threshold. On the other hand,
for larger �, finite-size effects become sizeable so that a
direct comparison with experimental values is difficult.
However, one can still notice spectral weight well below the
two-magnon continuum, corresponding to the above men-
tioned singlet bound states. Note also that, for N=32, the first
peak is located at an energy 1.2�01 as seen in experiments.

C. Results for the doped case

We now turn to the doped case for which additional low-
energy states appear. We shall assume a small enough impu-
rity concentration so that a single impurity description be-
comes legitimate. Using a variational approach, El Shawish
and Bonča13 have proposed anisotropic spin-polaronic states
with a finite spatial extension around the impurity. Adding a
single impurity �i.e., creating a vacant site by removing a
spin� indeed generates a polarization 1/2 that will distribute
around the impurity. On Fig. 3, we show the GS magnetiza-
tion pattern computed exactly on a N=32 cluster with one
impurity. The local polarization oscillates from one site to
the other similar to the Friedel oscillations reported around a
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FIG. 1. �Color online� Shastry-Sutherland lattice. 	 signs cor-
respond to Raman coupling in the �a�b�� polarization case.
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FIG. 2. �Color online� Raman spectra for pure SSL for various �
on N=16 and 32 clusters. The spin gap �01 �
0.95, 0.80, 0.50 J in
�a�, �b�, and �c�, respectively	 is used as a unit of frequency. An
artificial width �=0.01 has been given to the delta peaks.
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localized triplet in the 1/8 plateau.14 Note however that each
strong dimer has a global positive polarization. Our results
are in good agreement15 with the GS variational estimate of
Ref. 13. These authors have also found low-energy states
appearing below the undoped spin gap. Since these states are
well localized, we expect that finite-size calculations can
provide accurate results for these excitations as well. In par-
ticular, we expect a much better accuracy than in the pure
case.

The existence of several Sz=1 /2 low-energy states has led
to various experimental signatures: by flipping spins, they
can be observed in neutron experiment8 �which is sensitive to
�S=1 transitions�; moreover, since these states can be con-
nected by �S=0 transitions, they are also expected to be
Raman active, which is the main purpose of our study. Figure
4 shows the Raman spectra obtained by exact diagonaliza-
tions on N=16 and 32 clusters with one impurity for various
�. The spectra are plotted as a function of � /�01, where the
spin gap of the pure sample �01 is very close to the spin gap
�1

2
3
2

in the doped cluster �both computed on the largest clus-

ter�. In the small � regime, all energy scales are well sepa-
rated and finite-size effects are negligible so that one can
understand all features. For the pure system, as discussed
above, there is a bound state below 2�01 and then another
peak at 2�01 corresponding to a singlet excitation made of
two distant triplets. Since the triplets have a small dispersion,
there is no continuum above. In the presence of a single
impurity, these features still represent much of the spectral
weight but, in addition, new peaks appear below the spin
gap. Namely, one can make a singlet excitation by creating a
triplet in the bulk while flipping the polarization cloud �so
that the number of such peaks scales as the number of dimers
Nd= N

2 −1�. Moreover, there is a possibility to form a bound
states of these two excitations, which can even lower the

energy below the spin gap �see Fig. 4�, as found numerically.
Another feature of this additional spectral weight is that it
scales with the concentration of impurity, i.e., is reduced by

2 when doubling the system size.

In order to be more quantitative, we compare these
bound-state energies with the variational results of Ref. 13
for �=0.62 where the two lowest S=1 /2 states have excita-
tion energies 0.238 and 0.264 J, while the undoped spin gap
is 0.450 J. In our exact calculations on N=32 cluster for the
same �, we find that the three lowest excitations have a total
spin 1/2 and are located at 0.217, 0.245, and 0.268 J, while
the spin gap is 0.479 J in good agreement with these varia-
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FIG. 3. �Color online� Magnetization pattern around the impu-
rity �marked as x� on N=32 SSL for �=0.6 �Sz

tot=1 /2�. Periodic
boundary conditions are used. Since the reflection around the b�
axis is still a good symmetry, we observe identical values on both
sides.
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FIG. 4. �Color online� Raman spectra for SSL doped with a
single nonmagnetic impurity for various � on N=16 and 32 clus-
ters. The spin gap �01 �
0.95, 0.80, 0.50 J in �a�, �b�, and �c�,
respectively	 is used as a unit of frequency. An artificial width �
=0.01 has been given to the delta peaks.
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tional results, except that we have an additional low-energy
state. Concerning their Raman signatures, one has to discuss
their symmetry properties: in the presence of a single impu-
rity, the translation symmetry is lost and only one reflection
along dimers �i.e., along a� or b�� remain. Since the Raman
operator is odd with respect to this reflection, a simple in-
spection at the odd/even character of these excited states al-
low to determine if they are/are not Raman active. In Figs.
5�a� and 5�b�, we have indicated all even and odd Stot=1 /2
states below the first Stot=3 /2 state on N=16 and 32 clusters.
A careful comparison with the Raman spectra does confirm
that only states with Stot=1 /2 and which are odd w.r.t. re-
flection give Raman peaks at low energy.

III. EFFECTIVE MODEL FOR THE BOUND STATES

Interestingly, a phenomenological description of these
bound states can be given similarly to the case of doped
quasi-one-dimensional CuGeO3.16,17 For J�=0, a free S
=1 /2 �spinon� is located next to the vacant site, on the bro-
ken dimer bond. Switching on J� allows this spinon to delo-
calize with a hopping term of order �J��2 /4J. However, each
time the spinon hops one dimer away from the impurity, a
strong bond is broken resulting in an additional “string” en-
ergy cost 
�J−J��. Therefore, the physics is similar to a
particle in a linear potential and bound states can occur. Of
course, when the string energy exceeds the spin gap, the
whole picture breaks down and the spinon can “escape” in a
flat potential by the spontaneous creation of a spinon-
antispinon pair out of the vacuum. We have considered this
effective quantum-mechanical model on an effective square
lattice for one particle allowed to hop with amplitude �2 /4
on its neighboring sites �except between the impurity dimer
and the neighboring dimer facing the vacant site� and with a
potential energy equals to V�r�=J min��1−��d�r� ,1	, where
d is the Manhattan distance from the impurity dimer. This

one-particle problem can be easily solved on large clusters
and its spectrum is presented on Fig. 5�c�. For vanishing J�,
the low-energy S=1 /2 spectrum is extensively degenerate:
the Nd= N

2 −1 triplets of excitation energy J located on the
remaining bonds can be combined with the impurity spin in
total S=1 /2 states �degenerate with their S=3 /2 counterparts
not described by the model�. The next set of states which
appears at energy 2 J �corresponding to two isolated triplets�
and above are also not described by the effective model.
Switching on J� lifts the degeneracy of the first group of Nd
S=1 /2 states resulting in a rich spectrum well described by
the effective model for which the N→
 limit can be taken.
Common features are observed both in the microscopic and
the effective models such as �a� bound states due to the
short-range stringlike part of the potential and �b� a con-
tinuum of S=1 /2 excitations above the spin gap �given in
Figs. 5�a� and 5�b� by the lowest S=3 /2 state	. In fact, the
estimation of the spin gap from high-order perturbation,18

�01=J�1−�2− 1
2�3− 1

8�4�, agrees very well with the ED
value obtained on the largest N=32 cluster up to �=0.6 and
with the effective model up to �=0.3. For small �, the num-
ber of bound states below the spin gap is four: in the effec-
tive language, it corresponds to a spinon delocalized on one
of the nearest-neighbor dimers of the impurity dimer. The
situation for larger � is less clear as many states go down,
possibly with stronger finite-size effects on ED data. Still,
our numerical data would be compatible with up to 12 bound
states, some of them being very close to the spin gap. How-
ever, with our choice of polarizations and due to the selection
rule, only odd states are Raman active, which gives two �re-
spectively, six� low-energy states for �
0.2 �respectively,
�
0.6�.

IV. FINITE IMPURITY CONCENTRATION

To finish, we quickly address the case of a finite impurity
concentration for which a two-impurity effective interaction
starts to operate. Since each impurity will create a spin-1/2
polarization around it, it is natural to expect some ordering,
possibly at low temperature. For instance, antiferromagnetic
�AF� ordering occurs in doped CuGeO3 �Ref. 19� and has
been predicted for CaV4O9.20 One can imagine an effective
diluted spin-1/2 model with a very small exchange interac-
tion �typically, the overlap between two polarization clouds
is exponentially small when the impurities are quite far� and
such a model is expected to order at low temperature.

In order to estimate the effective coupling constant be-
tween two impurities at site r and r�, we start from the
formula Jeff=2�E�↑↑�−E�↑↓�	. Now, E�↑↑�=��ij�Jij�S� i ·S� j�,
where the expectation value is calculated in the triplet state
with two impurities. Choosing the polarization along z, and
in order to get an estimate, we can approximate the expecta-
tion value by �Si

z��Sj
z�. We further approximate the polariza-

tion of a given site as the sum of the polarizations coming
from the two impurities, which would be true to first order in
perturbation, leading to

�Si,1
z + Si,2

z ��Sj,1
z + Sj,2

z �

= �Si,1
z ��Sj,1

z � + �Si,2
z ��Sj,2

z � + �Si,1
z ��Sj,2

z � + �Si,2
z ��Sj,1

z � ,

�4�

where �Si,1
z � ��Si,2

z �� is the average magnetization created at
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FIG. 5. �Color online� Low-energy S=1 /2 excitations vs �. The
dashed line indicates the perturbative estimation of the spin gap �see
text�. ��a�–�b�	 Microscopic model on N=16 and 32 SSL. The states
are classified according to their reflection symmetry. The two low-
est S=3 /2 states also shown give the onset of the continuum. �c�
Effective model �see inset for a schematic plot of the effective po-
tential� on a N=625 square lattice of dimers for which finite-size
effects are not visible.
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site i by a single impurity located at r �r��. The same ap-
proximation for the correlation functions of E�↑↓� leads to
the same terms with the same sign for the 1–1 and 2–2 terms,
and opposite signs for the 1–2 and 2–1 terms. The 1–1 and
2–2 terms will drop from the difference, leading to the for-
mula

Jeff�r,r�� = 2�
�ij�

Jij��Si,1
z ��Sj,2

z � + �Si,2
z ��Sj,1

z �� . �5�

From the polarization shown in Fig. 3, the resulting effective
exchange can be obtained by considering various configura-
tions of two impurities. Our results �data not shown� indicate
that, when both impurities are located on vertical dimers, the
effective interaction decreases very fast and is mostly AF.
Since these bonds belong to the same sublattice, the presence
of strong frustration can prevent magnetic ordering. On the
contrary, when both impurities are located on different dimer
types �one vertical and one horizontal�, the effective interac-
tion is mostly ferromagnetic, thus competing with the AF
and often resulting in a disordered state. Anyhow, if mag-
netic order occurs, it would be at a temperature much below
the effective energy scale, which is already quite small. This
argument can be generalized to an arbitrary distribution of
impurities. In conclusion, we predict the absence of magnetic
ordering, even for quite large doping and at extremely low
temperature, which seems compatible with experiments.9

V. CONCLUSION

In summary, doping a Shastry-Sutherland lattice with
nonmagnetic impurities leads to novel low-energy states be-
low the spin gap, that could be probed by Raman spectros-
copy. We have proposed a simple effective model to under-
stand bound-state formation as binding of a spinon to an
impurity site. For a particular polarization of light, some of
these bound states are Raman active with sizeable spectral
weights: two of these bound states are located well below the
continuum �and exist for any J� /J�, while up to four more
bound states could be observed for realistic parameters.
Moreover, since the effective interactions between impurities
is frustrated, we expect no magnetic ordering down to ex-
tremely low temperature.
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