## **Abstract Preview - Step 3/4**

- print version -

Topic: 7. Brain imaging: MRI/FMRI

Title: GLUTAMINE SYNTHESIS RATE IN THE HYPERAMMONAEMIC RAT BRAIN USING SIMULTANEOUS LOCALIZED IN VIVO <sup>1</sup>H AND <sup>15</sup>N MRS

Author(s): C. Cudalbu<sup>1</sup>, B. Lanz<sup>1</sup>, F. Morgenthaler<sup>1</sup>, Y. Pilloud<sup>1</sup>, V. Mlynárik<sup>1</sup>, R. Gruetter<sup>1,2</sup>

Institute(s): <sup>1</sup>Laboratory for Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, <sup>2</sup>Departments of Radiology, Universities of Lausanne and Geneva, Lausanne and Geneva, Switzerland

Text:

## **Objectives:**

Glutamine synthetase is a critical step in the glutamate-glutamine cycle, the major mechanism of glutamate neurotransmission and is implicated in the mechanism of ammonia toxicity. <sup>15</sup>N MRS is an alternative approach to <sup>13</sup>C MRS in studying glutamate-glutamine metabolism. <sup>15</sup>N MRS studies allow to measure an apparent glutamine synthesis rate (Vsyn) which reflects a combination of the glutamate-glutamine cycle activity (Vnt) and net glutamine accumulation. The net glutamine synthesis (Vsyn-Vnt) can be directly measured from <sup>1</sup>H NMR. Therefore, the aim of this study was to perform in vivo localized <sup>1</sup>H MRS interleaved with <sup>15</sup>N MRS to directly measure the net glutamine synthesis rate and the apparent glutamine synthesis rate under <sup>15</sup>N labeled ammonia infusion in the rat brain, respectively. **Methods:** 

<sup>1</sup>H and <sup>15</sup>N MRS data were acquired interleaved on a 9.4T system (Varian/Magnex Scientific) using 5 rats. <sup>15</sup>NH<sub>4</sub>Cl solution was infused continuously into the femoral vein for up to 10h (4.5mmol/h/kg) (1).

The plasma ammonia concentration was increased to 0.95±0.08mmol/I (Analox GM7 analyzer). <sup>1</sup>H spectra were acquired and quantified as described previously (2). <sup>15</sup>N unlocalized and localized spectra were acquired using the SIRENE sequence (3); and quantified using AMARES and an external reference method (4). The metabolic model used to analyze the total Gln and 5-<sup>15</sup>N labeled Gln time courses is shown on Fig 1a.

**Results:** 

Glutamine concentration increased from  $2.5\pm0.3$ mmol/kg to  $15\pm3.3$ mmol/kg whereas the total glutamate concentrations remained unchanged (Fig. 1b). The linear fit of the time-evolution of the total Gln from the <sup>1</sup>H spectra gave the net synthesis flux (Vsyn-Vnt), which was  $0.021\pm0.006\mu$ mol/min/g (Fig. 1d). The  $5^{-15}$ N Gln peak (-271ppm) was visible in the first and all subsequent scans, whereas the  $2^{-15}$ N Gln/Glu peak (-342ppm) appeared after ~1.5h (Fig. 1c). From the in vivo  $5^{-15}$ N Gln time course,

Vsyn=0.29±0.1 $\mu$ mol/min/g and a plasma NH<sub>3</sub> fractional enrichment of 71±6% were calculated. Vnt was 0.26±0.1 $\mu$ mol/min/g, obtained assuming a negligible Gln efflux (5). Vsyn and Vnt were within the range of <sup>13</sup>C NMR measurements (6).

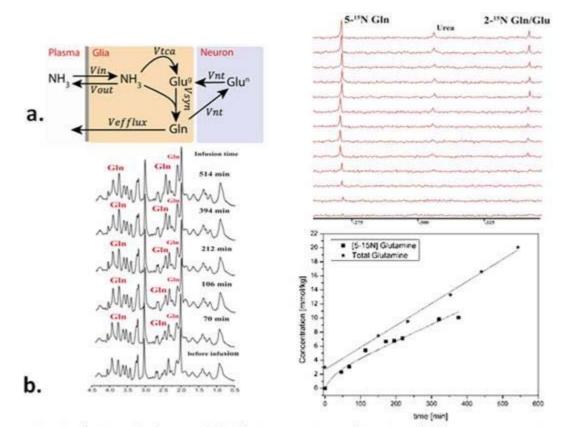



Fig 1: a) Metabolic model; b) One series of *in vivo* <sup>1</sup>H spectra acquired 9.4T in the rat brain; c) A series of in vivo unlocalized <sup>15</sup>N spectra acqui at 9.4T in the rat brain at different time points (from bottom to top: 23, 69, 115, 173, 193, 218, 321, 376, 398, 420, 463, 529min). The <sup>15</sup>N chem shifts were referenced to nitromethane; d) The time courses corresponding fits of total Gln and 5-<sup>15</sup>N Gln from one rat.

[Fig. 1]

## **Conclusion:**

The combination of <sup>1</sup>H and <sup>15</sup>N NMR allowed for the first time a direct and localized measurement of Vnt and apparent glutamine synthesis rate. Vnt is approximately one order of magnitude faster than the net glutamine accumulation. **References:** 

[1] Kanamori K et al., NMRBiomed 1993;6:21. [2] Mlynarik V et al., JMagnReson 2008;194:163. [3] Choil Y et al., MagnResonMed 2000 ;44 :387 [4] Gruetter R, et al., MagnResonMed 1991;20:327 [5] Kanamori K et al., BiochemJ 1993 ;293 :461. [6] Sibson NR et al, ProcNatlAcadSci 1997;94:2699.

## Preferred Presentation Oral Presentation Type:

Conference: XXIVth International Symposium on Cerebral Blood Flow, Metabolism and Function and the IXth International Confe Quantification of Brain Function with PET · Abstract: A-164-0007-00456 · Status: Submitted

