Unifying Byzantine Consensus Algorithms with
Weak Interactive Consistency

Zarko Milosevic, Martin Hutle, and André Schiper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
{zarko.milosevic,martin.hutle,andre.schiper}@epfl.ch

Abstract. The paper considers the consensus problem in a partially
synchronous system with Byzantine processes. In this context, the liter-
ature distinguishes authenticated Byzantine faults, where messages can
be signed by the sending process (with the assumption that the signature
cannot be forged by any other process), and Byzantine faults, where there
is no mechanism for signatures (but the receiver of a message knows the
identity of the sender). The paper proposes an abstraction called weak in-
teractive consistency (WIC') that unifies consensus algorithms with and
without signed messages. WIC can be implemented with and without
signatures.

The power of WIC is illustrated on two seminal Byzantine consensus
algorithms: the Castro-Liskov PBFT algorithm (no signatures) and the
Martin-Alvisi FaB Paxos algorithms (signatures). WIC allows a very
concise expression of these two algorithms.

1 Introduction

Consensus is probably the most fundamental problem in fault tolerant dis-
tributed computing. Consensus is related to the implementation of state machine
replication, atomic broadcast, group membership, etc. The problem is defined
over a set of processes IT, where each process p; € IT has an initial value v;, and
requires that all processes agree on a common value.

With respect to process faults, consensus can be considered with different fault
assumptions. On the one end of the spectrum, processes fail only by crashing (so
called benign faults); on the other end, faulty processes can exhibit an arbitrary
(and even malicious) behavior. Among the latter, two fault models are considered
in literature [I]: authenticated Byzantine faults, where messages can be signed
by the sending process (with the assumption that the signature cannot be forged
by any other process), and Byzantine faults, where there is no mechanism for
signatures (but the receiver of a message knows the identity of the sender)El
Consensus protocols that assume Byzantine faults (without authentication) are
harder to develop and prove correct [3]. As a consequence, they tend to be
more complicated and harder to understand than the protocols that assume

Y In [2], the latter is called Byzantine faults with oral messages.

T. Abdelzaher, M. Raynal, and N. Santoro (Eds.): OPODIS 2009, LNCS 5923, pp. 300-314] 2009.
© Springer-Verlag Berlin Heidelberg 2009

Unifying Byzantine Consensus Algorithms with WIC 301

authenticated Byzantine faults, even when they are based on the same idea. The
existence of these two fault models raises the following question: is there a way
to transform an algorithm for authenticated Byzantine faults into an algorithm
for Byzantine faults, or vice versa?

This question has been addressed by Srikanth and Toueg in [3] for the Byzan-
tine agreement problemE by defining the authenticated broadcast primitive. Au-
thenticated broadcast is a communication primitive that provides additional
guarantees compared to, e.g., a normal (unreliable) broadcast. Srikanth and
Toueg solve Byzantine agreement using authenticated broadcast, and show that
authenticated broadcast can be implemented with and without signatures.

However, authenticated broadcast does not encapsulate all the possible uses
of signed messages when solving consensus. One typical example is the Fast
Byzantine Paxos algorithm [4], which relies on signed messages whenever the
coordinator changes.

Complementing the approach of [3], we define an abstraction different from
authenticated broadcast that we call weak interactive consistencyﬁ Interactive
consistency is defined in [7] as a problem where correct processes must agree on
a vector such that the ith element of this vector is the initial value of the ith
process if this process is correct. Our abstraction is a weaker variant of inter-
active consistency, hence the name “weak” interactive consistency. Similarly to
authenticated broadcast, weak interactive consistency can be implemented with
and without signatures. We illustrate the power of weak interactive consistency
by reexamining two seminal Byzantine consensus algorithms: the Castro-Liskov
PBFT algorithm, which does not use signatures [§], and the Martin-Alvisi FaB
Paxos algorithm, which relies on signatures [4]. We show how to express these
two algorithms using the weak interactive consistency abstraction, and call these
two algorithms CL (for Castro-Liskov), resp. MA (for Martin-Alvisi).

Both CL and MA are very concise algorithms. Moreover, replacing in CL weak
interactive consistency with a signature-free implementation basically leads to
the original signature-free PBFT algorithm, while replacing in MA weak inter-
active consistency with a signature-based implementation basically leads to the
original signature-based FaB Paxos algorithm. In the latter case, the algorithm
obtained is almost identical to the original algorithm; in the former case, the
differences are slightly more important (the differences are explained in [9]). In
addition, using MA with a signature-free implementation of WIC allows us to
derive a signature-free variant of FaB Paxos.

2 In this problem, a transmitter sends a message to a set of processes, all processes
eventually deliver a single message, and (i) all correct processes agree on the same
message, (ii) if the transmitter is correct, then all correct processes agree on the
message of the transmitter.

In [5], Lamport defines ”Weak Interactive Consistency Problem”, as a general prob-
lem of reaching agreement. In [6], Doudou et al. define an abstraction called ” Weak
Interactive Consistency”, with a different definition than ours. They use this ab-
straction to derive a state machine replication protocol resilient to authenticated
Byzantine faults.

302 7. Milosevic, M. Hutle, and A. Schiper

The rest of the paper is structured as follows. Weak interactive consistency
is informally introduced in Section[2l Section [defines our model, and formally
defines weak interactive consistency. In Section [we show that weak interac-
tive consistency can be implemented with and without signatures. Section
describes the MA consensus algorithm (FaB Paxos expressed using weak in-
teractive consistency) and the CL consensus algorithm (PBFT expressed using
weak interactive consistency). Section [0 discusses related work, and Section [7]
concludes the paper. For space reason, some proofs are omitted. They can be
found in [9].

2 Weak Interactive Consistency: An Informal
Introduction

2.1 On the Use of Signatures

We start by addressing the following question: where are signatures used in
coordinator based consensus algorithms? Signatures are typically used each time
the coordinator changes, as done for example in the FaB Paxos algorithm [4]. The
corresponding communication pattern is illustrated in Fig. 1(a), and addresses
the following issue. Assume that the previous coordinator has brought the system
into a configuration where a process already decided v; in this case, in order to
ensure safety (i.e., agreement) the new coordinator can only propose v. This
is done as follows. First every process sends its current estimate to the new
coordinator (v; sent by p; to p; in Fig. 1(a)). Second, if the coordinator p;
receives a quorum of messages, then p; applies a function f that returns some
value z. The quorum ensures that if a process has already decided v, then f
returns v. Finally, the value returned by f is then sent to all (z sent by p; in
Fig. 1(a)).

This solution does not work with a Byzantine coordinator: the value sent by
the coordinator p; might not be the value returned by f. Safety can here be en-
sured using signatures: Processes p; sign the estimates v; sent to the coordinator
p1, and p; sends x together with the quorum of signed estimates it received. This
allows a correct process p;, receiving x from p1, to verify whether x is consistent
with the function f. If not, then p; ignores .

Are signatures mandatory here? We investigate this question, first addressing
safety and then liveness.

2.2 Safe Updates Requires Neither Signatures Nor a Coordinator

As said, safety means that if a process has decided v, and thus a quorum of
processes had v as their estimate at the beginning of the two rounds of Fig.
1(a), then each process can only update its estimate to v. This property can
be ensured without signatures and without coordinator: each process p; simply
sends v; to all, and each process p; behaves like the coordinator: if p; receives a
quorum of messages, it updates its estimate with the value returned by f.

Unifying Byzantine Consensus Algorithms with WIC 303

init forward echo

(a) Coordinator change: p; is the (b) Three rounds to get rid of signatures
new coordinator. when changing coordinator to p1

Fig. 1.

This shows that updating the estimate maintaining safety does not require a
coordinator. However, as we show in the next section, a coordinator is reintro-
duced for liveness.

2.3 Coordinator for Liveness

The coordinator in Fig. 1(a) has two roles: (i) it ensures safety (using signa-
tures), and (ii) it tries to bring the system into a univalent configuration (if not
yet s0), in order to ensure liveness (i.e., termination) of the consensus algorithm.
A configuration typically becomes v-valent as soon as a quorum of correct pro-
cesses update their estimate to v. This is ensured by a correct coordinator, if
its message is received by a quorum of correct processes. Ensuring that a quo-
rum of correct processes update their estimate to the same value v can also be
implemented without signatures with an all-to-all communication schema, if all
correct processes receive the same set (of quorum size) of values. Indeed, if two
correct processes apply f to the same set of values, they update their estimate
to the same value.

However, ensuring that all correct processes receive the same set of messages
is problematic in the presence of Byzantine processes: (i) a Byzantine process
can send v to some correct process p; and v’ to some other correct process p;,
and (ii) a Byzantine process can send v to some correct process p; and nothing
to some other correct process p;.

These problems can be addressed using two all-to-all rounds and one all-to-
coordinator rounds, as shown in Fig. 1(b) (to be compared with the “init” round
followed by the “echo” round of authenticated broadcast, see [3]).

These three rounds can be seen as one all-to-all super-round that “always”
satisfies integrity and “eventually” satisfies consistency:

Integrity. If a correct process p receives v from a correct process ¢ in super-round
r, then v was sent by ¢ in super-round r.

Consistency. (i) If a correct process p; sends v in super-round r, then every cor-
rect process receives v from p; in super-round r, and (ii) all correct processes
receive the same set of messages in super-round 7.

304 7. Milosevic, M. Hutle, and A. Schiper

As noted in Section 2.2 integrity ensures safety. As noted at the beginning of
this section, eventual consistency allows us to eventually bring the system into
a univalent configuration, thus ensuring liveness.

In the scheme of Fig. 1(b) we combine the concept of a coordinator as depicted
in Fig. 1(a) with the authentication scheme of [3].

This scheme provides that in synchronous rounds (which eventually exist in
a partially synchronous model, see Section []), messages received by a correct
coordinator in the “forward” round (see Fig. 1(b)), are received by all correct
processes in the “echo” round (see Fig. 1(b))H Note that without having the
coordinator, the authentication scheme of [3] is not able to provide a super-
round such that all processes receive the same set of messages at the end of this
super-round, since a Byzantine process can always prevent this from happening.

We call the problem of always ensuring integrity and eventually consistency
the weak interactive consistency problem, or simply W1 CH We show below that
WIC is a unifying concept for Byzantine consensus algorithms. WIC can be
implemented with signatures in two rounds (Fig. 1(a)), or without signatures in
three rounds (Fig. 1(b)), as shown in Section [l

3 Model and Definition of WIC

Assuming synchronous rounds is a strong assumption that we do not want to
consider here. On the other side, an asynchronous system is not strong enough:
WIC is not implementable in such a system. We consider a third option, i.e.,
a partially synchronous system [I], or rather a slightly weaker variant of this
model: we assume that the system alternates between good periods (during
which the system is synchronous) and bad periods (during which the system
is asynchronous). As in [I], we consider an abstraction on top of the system
model, namely a round model, defined next. Using this abstraction rather than
the raw system model improves the clarity of the algorithms and simplifies the
proofs.

Among the n processes in our system, we assume that at most ¢ are Byzantine.
We do not make any assumption about behavior of Byzantine processes. The set
of correct processes is denoted by C.

3.1 Basic Round Model

In each round r, a process p sends a message according to a sending function
S, to a subset of processes, and, at the end of this round, computes a new state
according to a transition function 7, based on the vector of messages it received
and its current state. Note that this implies that a message sent in round r can
only be received in round r (rounds are closed). The state of process p in round

4 The relay property of authenticated broadcast ensures that if a messages is received
by a correct process in some round r’, then it is received by all correct processes the
latest in round 7’ + 1 in the synchronous case.

5 The relation with “interactive consistency” [7], is explained in Section [

Unifying Byzantine Consensus Algorithms with WIC 305

7 is denoted by s}; the message sent by a correctf] process is denoted by S} (sp);
messages received by process p in round r are denoted by p.

In every round of the basic round model, if a correct process sends v, then
every correct process receives v or nothing. This can formally be expressed by
the following predicate (L represents no message reception):

Pint(r) =Vp,q € C: (pplal = Sg(sq)) V (ppldl = 1)

3.2 Characterizing a Good Period

During a bad period, except Pj,:, no guarantees on the messages a process
receives can be provided: it can even happen that no messages at all are received.
During a good period it is possible to ensure, for all rounds r in the good period,
that all messages sent in round r by a correct process are received in round r by
all correct processes. This is formally expressed by the following predicate:

Pyood(r) =Vp,q € C 1 pylg] = Sy (sy)

The reader can find in [I] the implementation of rounds that satisfy Pyeeq during
a good period in the presence of Byzantine processes.

3.3 WIC Predicate

We have informally defined WIC by an integrity property and by a consistency
property that must hold “eventually”. The integrity property is expressed by the
predicate P;,;. “Eventual” consistency formally means that there exists a round
r in which consistency holds:

Peons(r) =Vp,a € C: (hla] = S5(55)) A (1 = o)

Therefore, WIC is formally expressed by the following predicate:

V7 Ping (1) A I Pops (1)

Note that Peons(r) is stronger than Pgyeeq(r). Consider two correct processes p
and ¢, and a Byzantine process sending message m to all processes in round 7:
Pgood(r) allows m to be received by p and not by g; Peons(r) does not allow this.

4 Implementing WIC

For implementing WIC, we show in this section that rounds that satisfy Pyooa
can be transformed into a round that satisfies P.ons. This transformation can
be formally expressed thanks to the notion of predicate translation. Given some
round r, we say that an algorithm A is a k-round translation of predicate P (e.g.,
Pgood) into predicate P’ (e.g., Peons), if round r consists of k micro-rounds (r, 1)

5 Note that referring to the state of a faulty process does not make sense.

306 7. Milosevic, M. Hutle, and A. Schiper

Algorithm 1. Translation with signatures

1: Initialization: 9: Round p = (r,2):
2: Vg€ Il : receivedy|q] — L 10: Sp:
. _ X 11: if p = coord(r) then

3: Rm.;nd p=(r1): 12: send received, to all

4: Sp 13: T":

5: send op,(mp,r) to coord(r) 14: Peor all qe I do

6: Ty 15: M,q] — L

7: if p= _COOTd(T) tgleﬂ 16: if signature of up[coord(r)][q] is valid then

8: received, «— py 17: (msg, round) «— U_l(/.,Lg[COOTd(T)][q])
18: if round = r then
19: M, [q] < msg

to (r,k) such that: (i) P holds for each micro-round (r,i), ¢« € [1,k]; (ii) each
process p execute A in each round (r,4), i € [1,k]; (iii) for each process p, the
message m,, sent by p in micro-round (r, 1) is the message sent by p in round r;
(iv) for each process p, the messages received by p in round r are computed by p
at the end of micro-round (r, k); and (v) P’ holds for round r. We also say that
round r is simulated by the k micro-rounds (r, 1) to (r, k).

We give two translations, one with and one without digital signatures. Both
translations rely on a coordinator. The translation with signatures requires two
micro-rounds with the communication pattern of Fig. 1(a) whereas the trans-
lation without signatures requires three micro-rounds with the communication
pattern of Fig. l(bﬂ. The coordinator of round r is denoted by coord(r).

We will analyze the two translations in the following cases: (i) coord(r) is
correct and the micro-rounds satisfy Pgooq, and (ii) coord(r) may be faulty and
only P holds for the micro-rounds. In case (i), we have a translation of Pgyooq
into Peons. Case (ii) ensures that the translation is harmless during bad periods,
or if the coordinator is faulty.

Therefore, the big picture is the following. If we assume a sufficient long good
period, then [I] shows how to implement rounds for which P04 eventually holds.
Moreover, the rotating coordinator paradigm eventually ensures rounds with a
correct coordinator. Together, this eventually ensures case (i).

4.1 Translation with Signatures

Algorithm [I] is a 2-round translation with signatures that preserves P, (i.e.,
if P holds for every micro-round, then P;,; holds for the round). Moreover,
when coord(r) is correct, it translates Pgyooq into Peons. At the beginning of
Algorithm [f every process p has a message m,, (line[d); at the end every process
p has a vector M, of received messages (lines [I9] . Vector received,, (line [)
represents the messages that p received (one element per process). Message m
signed by p is denoted by o,(m). The function o~! allows us to get back the
original message out of a signed message.

7 In Section @] we used terms super-round and round. From here on, we use term round
for what we called super-round and micro-round for what we called round.

8 When round 7 is simulated using Algorithm [m,, is initially set to the Sp(sp) and
in the end p,, is set to M.

Unifying Byzantine Consensus Algorithms with WIC 307

(r,1) (r,2) (r,3)

Fig. 2. Translation without signatures from the point of view of vz sent by p2 (p1 is
the coordinator)

Algorithm []is straightforward: each process p sends its signed message m,, to
the coordinator (line [Bl) in micro-round (r,1). In micro-round (r, 2), the coordi-
nator forwards all messages received (line [I2)).

Proposition 1. Algorithm [l preserves Py (r).

Proposition 2. If coord(r) is correct, then Algorithm [1 translates Pgooq into

,PCO’ILS .

4.2 Translation without Signatures

Algorithm [is a 3-round translation with signatures, inspired by [§], that pre-
serves P, (i.e., if Py holds for every micro-round, then P;,; holds for the
round). Moreover, when coord(r) is correct, it translates Pgooq Into Peops. It re-
quires n > 3t + 1. At the beginning of Algorithm [every process p has a message
my (line [7); at the end every process p has a vector M, of received messages
(lines 22] IEE

We informally explain Algorithm 2] using Fig. 2] Compared to Fig. 1(b), Fig.
shows only the messages relevant to vo sent by po. Process p; is the coordina-
tor. In micro-round (r, 1), process ps sends vz to all. In micro-round (r,2), all
processes send the value received from ps to the coordinator. The coordinator
then compares the value received from py in micro-round (r, 1), say vs, with the
value indirectly received from the other processes. If at least 2¢t + 1 values wvo
have been received by the coordinator pi, then p; keeps vy as the value received
from po. Otherwise p; sets the value received from ps to L. This guarantees that,
if p1 keeps wvo, then at least ¢t 4+ 1 correct processes have received vy from po in
micro-round (r,1).

Finally, in micro-round (r,3) every process sends the value received from py
in micro-round (r, 1) to all. The final value received from py at the end of micro-
round (r,3) is computed as follows at each process p;. Let val; be the value
received by p; from coordinator p; in micro-round (r,3). If val; is L then p;
receives L from ps. Process p; receives L from po in another case: if p; did not

9 When round 7 is simulated using Algorithm B m,, is initially set to the Sp(sp) and
in the end p,, is set to M.

308 7. Milosevic, M. Hutle, and A. Schiper

Algorithm 2. Translation without signatures (n > 3t + 1)

1: Initialization: 16: Round p = (1,3):
2: Vg € II: receivedy,[q] — L 17: Sp:
3: Round p = (r, 1) : 12 Tps.end (receivedy,) to all

. P. . :
: Sps'end e to all 20: Pfor all q € IT do
6 Té;: P 21: if (ph[coord(r)][q] # L) A
7: receivedy, «— pb Hz € IT : phli]lq] = ug[com“d(r)][q]}‘ >t+1

then
8: Rot;nd p=(r2): 29: M, lq] — p8[coord(r)][d]
9: Sp: 23: else
10: send received, to coord(r) 24: Mg — L
11 Ty
12: if p = coord(r) then
13: for all ¢ € IT do
14:
if‘{q/ € 11 : pf[q’l[q] = received, [q]}‘ < 2t + 1 then

15: receivedp[q] — L

receive t + 1 values equal to val; in micro-round (r, 3). Otherwise, at least ¢ + 1
values received by p; in micro-round (r, 3) are equal to val;, and p; receives val;
from po.

Proposition 3. Algorithm[Q preserves P (r).

Proof. Let p, g be two correct processes. Assume for the sake of contradiction
that S)(s}) = v, M[p] = v/, where v # v, v' # L. Therefore, by line 2I] we
have |{i : pf[i][p] = v'}| > t + 1. Consequently, for at least one correct process
c we have pf[c][p] = v'. Element pf[c][p] is the message received by ¢ from p in
round (r, 1), which is received.[p]. However, received.[p] = v’ is in contradiction
with the assumption that p and ¢ are correct. a

Proposition 4. If coord(r) is correct, then Algorithm [A translates Pgooq into

,PCO’ILS .

Proof. Let p, g be two correct processes, and s some other process (not necessar-
ily correct). Let ¢ be the correct coordinator. Let Pgooq((r, 1)), Pgood((r,2)) and
Pgood((r,3)) hold. We first show (i) M,[q] = Sy (sy) > and then (ii) (M,[s] =
v # L) = (M,[s] = v). Note that from (ii) it follows directly that (M,[s] =
1) = (M[s] = 1).

(i): In micro-round (r, 1), process ¢ sends v = S;(sy) to all, and because of
Pgood({r,1)), v is received by all correct processes. For all those correct processes
i, we have received;[q] = v (*). In micro-round (r,2), every correct process for-
wards v to the coordinator ¢, and c receives all these messages. Since n > 3t + 1
there are at least 2t + 1 correct processes. Therefore the condition of line [I4] is
false for ¢ because [{¢' € IT : p?[¢'][q] = received. [q]}| > 2t+1 , i.e., received.[q]
is not set to L. By (*) above, we have received[q] = v. Because of Pyo0a((r,3))
all messages sent by correct processes in micro-round (r,3) are received by all
correct processes. Thus, for p at line 2T} we have pf[coord(r)][q] # L. Moreover,

Unifying Byzantine Consensus Algorithms with WIC 309

by (*), condition |{i € IT : ps[i]lq] = ph[coord(r)][q]}| > t+1is true. This leads
p to execute line 22 i.e., assign v to M, [q].

(11): Let us assume M,[s] = v # L, and consider Algorithm [from the
point of view of p. Consider the loop at line for process s. By line 22 we
have pf[coord(r)][s] = v. Since the coordinator is correct, in order to have
pplcoord(r)][s] = v, the condition of line [[4 is true at ¢ for process s, i.e.,
{q' € IT : p?|q][s] = received.[s]}| > 2t + 1. This means that at least 2¢ + 1
processes, including at least ¢ + 1 correct processes, have received from s in
micro-round (r,1) the same message that ¢ received from s, namely v (x). In
micro-round (r,3), these ¢ + 1 correct processes send received to all. Because
Pgood((r,3)) holds, all these messages are received by ¢ in round (r,3) ().
Consider now Algorithm P] from the point of view of ¢, and again the loop at
line 20 for process s. Since the coordinator is correct, it sends at line [[8 the same
message to p and to g, i.e., at ¢ we also have uf[coord(r)][s] = v. By (x) and (xx),
the condition |{i € IT : p#[i][s] = pt[coord(r)][s]}| >t + 1 is true. Therefore ¢
executes line 22 with pf[coord(r)][s] = v. |

5 Achieving Consensus with WIC

In this section we show how to express the consensus algorithms of Castro-
Liskov [8] and Martin-Alivisi [4] using WIC. The algorithm of Castro and Lisko
solves a sequence of instances of consensus (state machine replication). For sim-
plicity, we consider only one instance of consensus.

Consensus is defined by agreement, termination and a validity property. We
consider two validity properties, weak and strong validity [I]:

Agreement. No two correct processes decide differently.

Termination. All correct processes eventually decide.

Weak Validity. If all processes are correct and if a correct process decides v,
then v is the initial value of some process.

Strong Validity. If all correct processes have the same initial value v and a correct
process decides, then it decides v.

Both, [8] and [4] achieve only weak validity. Weak validity allows correct
processes to decide on the initial value of a Byzantine process. With strong
validity, however, this is only possible if not all correct processes have the same
initial value. We give algorithms for both, weak and strong validity, and show
that strong validity is in fact easy to ensure.

5.1 On the Use of WIC

We express the algorithms of this section in the round model defined in Section Bl
All rounds of MA and CL require P;,: to hold. Some of the rounds require Peons
to eventually hold. These rounds can be simulated using, e.g., Algorithm [or
Algorithm 2l We explicitly mention those rounds of MA and CL as rounds “in
which P.ons must eventually hold”. The other rounds of MA and CL are ordinary
rounds.

310 7. Milosevic, M. Hutle, and A. Schiper

Algorithm 3. MA (weak validity)

1: Initialization: 10: Round r = 2:
2: Tp —vp €V 11: Sy
12: send x, to all
3: Round r =1: 13: ",
4: ST P _
: : >
c P » = coord then 14. if 3o # L_ #(0) > [(n+3t+1)/2] then
15: DECIDE v
6: send z, to all
7: T,Zr 16: Round r > 3:
8 if pp[coord] # L then 17: Same as Algorithm [] without Initialization
9 Tp pp[coord]

Algorithm 4. MA (strong validity)

1: Initialization: 10: Round r = 2¢:
2: Tp —vp €V 11: ;:
12: send x, to all

3: Round r =2¢ —1: 13: Tr.

. * : *) p’
451 gr.ln which Peons must eventually hold */ 14: if 30 £ L #() > [(n+3t+1)/2]

: P d n then
6: send x;, to a 15: DECIDE ©
7: T,
8: if #(L) <t then
9: xp — min{v:Av € V s.t. #(v') > #(v)}

5.2 MA Algorithm

The algorithm of Martin and Alvisi [4] is expressed in the context of “proposers”,
“acceptors” and “learners”. For simplicity, we express here consensus without
considering these roles.

We give two algorithms. The first solves consensus with weak validity and is
given as Algorithm [Bl In the first phase it corresponds to the “common case”
protocol of []. All later phases correspond to the “recovery protocol” of [4]
(cf. Algorithm H). The second algorithm solves consensus with strong validity,
and is even simpler: all phases are identical, see Algorithm [l In both algorithms,
the notation #(v) is used to denote the number of messages received with value
v, Q.e., #() = ’{q eIl : pylq = U}’

For MA with weak validity, the first phase needs an initial coordinator, which
is denoted by coord. Note that WIC is relevant only to rounds 2¢ — 1, ¢ > 1,
of Algorithm Ml If rounds 2¢ — 1 are simulated using Algorithm [, we get the
original algorithm of [4]. If rounds 2¢ — 1 are simulated using Algorithm 2] we
get a new algorithm. In this new algorithm, similarly to the algorithm in [4],
fast decision is possible in two rounds; however, signatures are not used in the
recovery protocol.

Both algorithms require n > 5t+1. Agreement, weak validity and strong validity
hold without synchrony assumptions. Termination requires (i) one phase ¢ such
that Peons(2¢ — 1) holds, and (ii) one phase ¢’ > ¢ such that Pyoeq(2¢") holds.

Theorem 1. Ifn > 5t + 1 then Algorithm[3 (resp. Algorithm [J]) ensures weak
(resp. strong) validity and agreement. Termination holds if in addition the fol-
lowing condition holds:

El(b : Pcons (2¢ - 1) A El(b/ Z ¢ : Pgood(2¢/)

Unifying Byzantine Consensus Algorithms with WIC 311

Algorithm 5. CL (weak validity)

1: Initialization: 13: Round r=3¢p—1=2:

2: Tp —vp €V 14: Sy

3: pre-vote,, — 0 /* see Algorithm[Bl1*/ 15. if 3(v, ¢) € pre-vote,, then

4 vote, «— L /* see Algorithm[G@*/ 16: send (v) to all

5 tVote, < 0 /* see Algorithm[Gl*/ 17: Ty

6: Round r = 3¢ — 2 = 1: 18: if #(v) > [(n+t+1)/2] then

7. ST, 19: vote, < v

P .

8 if p = coord then 20: tVotep — ¢

9: send (zp) to all 21: Round r =3¢ = 3:

10: Ty 29 T,

11: if N; [coord] # L then 23: pif tVote, = ¢ then

12: add (pp[coord],) to pre-vote, 24: send (votep) to all
25: T;:
26: if 30 # L : #(v) > [(n+t+1)/2] then
27: DECIDE v

28: Round r > 4:
29: Same as Algorithm [B] without Initializa-
tion

Note that n > 5t 4+ 1 is only needed for terrmination, while only n > 3t + 1 is
needed for agreement and strong validity.

5.3 CL Algorithm

The algorithm of Castro and Liskov [8] solves a sequence of instances of consen-
sus (state machine replication). For simplicity, we consider only one instance of
consensus. As for MA, we give two algorithms.

The first solves consensus with weak validity and is given as Algorithm[Bl In the
first phase it corresponds to the “common case” protocol of [§]. All later phases
correspond to the “view change protocol” of [§] (cf. Algorithm[@]). The second al-
gorithm solves consensus with strong validity, and is even simpler: all phases are
identical, see Algorithm[Gl In both algorithms, the notation #(v) is used to denote
the number of messages received with value v, i.e., #(v) = [{q € I : pilq] =v}|.

For CL with weak validity, the first phase needs an initial coordinator, which is
denoted by coord. In round 1 of this phase the coordinator sends its initial value to
all. In round 2 every process that has received the initial value from the coordinator
in round 1 resends this value to all. Every process p, upon receiving this value from
at least [(n 4t + 1)/2] processes, updates vote, and tVote,, (lines[[9and20), and
then sends vote,, to all in round 3. A process receiving in round at least [(n + ¢ +
1)/2] messages with the same value v, decides v. For CL with weak validity, WIC is
relevant only to rounds 3¢ — 2, ¢ > 1 (cf. Algorithm[6]). If rounds 3¢ — 2, ¢ > 1 are
simulated using Algorithm 2, we get an algorithm close to the original algorithm
of [8] (the differences are explained in [9]). If rounds 3¢ — 2, ¢ > 1 are simulated
using Algorithm[I] we get a variant of PBFT with signatures.

CL with strong validity (see Algorithm [G) consists of a sequence of phases ¢,
where each phase ¢ has three rounds 3¢ — 2, 3¢ — 1 and 3¢. The role of the
variables is explained in comments, see lines BHEl WIC is needed only in round
3¢ — 2. Rounds 3¢ — 1 and 3¢ are the same as rounds 2 and 3 of Algorithm

312 7. Milosevic, M. Hutle, and A. Schiper

Algorithm 6. CL (strong validity)

1: Initialization:
2: mp v, €V /* vp is the initial value of p */
3: pre-vote,, — 0 /* set of (v, ¢), where ¢ is the phase in which v is added to pre-vote,, */
4 vote, «— L /* the most recent vote */
5 tVote, «— 0 /* phase in which vote, was last updated */
6: Procedure pre-vote,.add(v, ¢) :
7: if 3(v, ¢") € pre-vote, then
8: remove (v, ¢’) from pre-vote,,
9: add (v, ¢) to pre-vote,,
10: Round r = 3¢ — 2: /* round in which P.,,s must eventually hold */
11: Sy
12: send (votey, tVoteyp, pre-vote,,, xp) to all
13: Ty
14: proposals,, < 0 ; I, + 0 /* temporary variables */
15: if p,, contains at least [(n + ¢ + 1)/2] messages (vote, tVote, pre-vote, z) then
16: for all m € p;, do
17: if
Hm' Epy (m/.tVote < m.tVote) V (m’.tVote = m.tVote A m’.vote = m.m)te)}‘ >
[(n+t+1)/2] and
Hm' € Hy I(v, ¢') € m'.pre-vote s.t. ¢' > m.tVote ANv = m.vote}‘ >t+ 1 then
18: proposals,, < proposals, U m.vote
19: if |proposalsp| > 0 then
20: pre-vote,,.add(min(proposals,,), $)
21: else if exist at least [(n + ¢ + 1)/2] messages m’ € My m/.vote = | then
22: Ip<—{m.:t s.t.méu;}
23: z — min{v:Av € I s.t. #(v') > #(v)}
24: pre-vote,,.add(z, ¢)
25: Round r =3¢ —1:
26: S;:
27: if 3(v, ¢) € pre-vote, then
28: send (v) to all
29: Ty
30: if #(v) > [(n+t+1)/2] then
31: vote, < v
32: tVote, «— ¢
33: Round r = 3¢:
34: ;:
35: if tVote, = ¢ then
36: send (votep) to all
37: Ty
38: if 35 # 1 : #(3) > [(n+t+1)/2] then
39: DECIDE ©

Both algorithms (CL with weak validity and CL with strong validity) require
n > 3t+1. Agreement, weak validity and strong validity hold without synchrony
assumptions. Termination requires (i) one phase ¢ such that P.ons(3¢ — 2),
Pgood(30 — 1) and Pyooq(3¢) hold.

Theorem 2. If n > 3t + 1 then Algorithm[A (resp. Algorithm[@) ensures weak
(resp. strong) validity and agreement. Termination holds if in addition the fol-
lowing condition holds:

01 Peons (30 — 2) A Pgood (3¢ — 1) A Pyood(30).

Unifying Byzantine Consensus Algorithms with WIC 313

6 Related Work

Unification. To the best of our knowledge, there is little work that has tried to
unify algorithms for Byzantine faults that use signatures and algorithms that do
not use signatures. We are only aware of the work of Skrikanth and Toueg [3]
related to authenticated broadcast (as already mentioned in Section [I). Further
there is the work of Neiger and Toueg [10] who have developed methods to au-
tomatically translate protocols tolerant of benign faults to ones tolerant of more
severe faults, including Byzantine faults, in the context of synchronous systems.
Abstractions introduced by Lampson in [II] are relevant only to PBFT [§],
and its hard to see how these abstractions can be extended to other Byzantine
consensus protocols. Orthogonal to our approach, [I2] proposes a solution for
implementing digital signatures using MACs (message authentication codes).

Byzantine consensus algorithms. Several models with Byzantine faults have been
considered for solving consensus or closely related problems, such as Byzantine
agreement or state machine replication. The early work of Lamport, Shostak
and Pease [7)2] considers a synchronous system and proposes algorithms for
Interactive Consistency and Byzantine agreement with and without signatures. A
weaker system model, namely partial synchrony, has been considered by Dwork,
Lynch and Stockmeyer [I]. This is also the model we consider in this paper.
In [I], the authors propose two consensus algorithms for Byzantine faults: one
that uses signatures, and one without signatures. In [I3], the authors consider a
system with less synchrony than provided by partially synchrony, and describe a
consensus algorithm that does not use signatures. Randomized consensus can be
solved in an asynchronous system with Byzantine faults, as shown first in [I4].
In [15], the authors solve consensus with Byzantine faults assuming a system
equipped with a Trusted Timely Computing Base (TTCB).

Our CL algorithm is a simplified version of PBFT. Other authors have tried to
increase the efficiency of PBFT, e.g. [16]. Recently, [I7] has proposed a consensus
algorithm for Byzantine faults that ensures strong validity, in which the decision
is possible in the first round.

7 Conclusion

The paper has introduced the weak interactive consistency (or WIC) abstrac-
tion, and has shown that WIC allows to unify Byzantine consensus algorithms
with and without signatures. This has been illustrated on two seminal Byzan-
tine consensus algorithm, namely on the FaB Paxos algorithm [4] and on the
PBFT algorithm [§]. In both cases this leads to a very concise algorithm. Apart
from these two algorithms, we also managed to express two other algorithms
for Byzantine faults using WIC: the algorithms for Byzantine faults of [I] and a
deterministic version of the algorithm for Byzantine faults of [14], which is the
basis for the algorithm in [I3]. Therefore, we conjecture that WIC is the abstrac-
tion that underlines all Byzantine consensus algorithms for partial synchronous
systems.

314 7. Milosevic, M. Hutle, and A. Schiper

Acknowledgements. We would like to thank Nuno Santos for his comments on
an earlier version of the paper.

References

1. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial syn-
chrony. Journal of the ACM 35(2), 288-323 (1988)
2. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans.
Program. Lang. Syst. 4(3), 382-401 (1982)
3. Srikanth, T.K., Toueg, S.: Simulating authenticated broadcasts to derive simple
fault-tolerant algorithms. Distributed Computing 2(2), 80-94 (1987)
4. Martin, J.P., Alvisi, L.: Fast byzantine consensus. Transactions on Dependable and
Secure Computing 3(3), 202-214 (2006)
5. Lamport, L.: The weak byzantine generals problem. J. ACM 30(3), 668676 (1983)
6. Doudou, A., Guerraoui, R., Garbinato, B.: Abstractions for devising byzantine-
resilient state machine replication. In: SRDS (2000)
7. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults.
Journal of the ACM 27(2), 228-234 (1980)
8. Castro, M., Liskov, B.: Practical byzantine fault tolerance and proactive recovery.
ACM Transactions on Computer Systems 20(4), 398-461 (2002)
9. Milosevic, Z., Hutle, M., Schiper, A.: Unifying byzantine consensus algorithms with
weak interactive consistency (LSR-REPORT-2009-003)
10. Neiger, G., Toueg, S.: Automatically increasing the fault-tolerance of distributed
algorithms. J. Algorithms 11(3), 374-419 (1990)
11. Lampson, B.: The abced’s of paxos. In: PODC, p. 13. ACM Press, New York (2001)
12. Aiyer, A.S., Alvisi, L., Bazzi, R.A., Clement, A.: Matrix signatures: From mACs
to digital signatures in distributed systems. In: Taubenfeld, G. (ed.) DISC 2008.
LNCS, vol. 5218, pp. 16-31. Springer, Heidelberg (2008)
13. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg, S.: Consensus with
byzantine failures and little system synchrony. In: DSN, pp. 147-155 (2006)
14. Ben-Or, M.: Another advantage of free choice: Completely asynchronous agreement
protocols. In: PODC, pp. 27-29. ACM, New York (1983)
15. Correia, M., Neves, N.F., Lung, L.C., Verissimo, P.: Low complexity byzantine-
resilient consensus. Distributed Computing 17(3) (2005)
16. Kotla, R., Alvisi, L., Dahlin, M., Clement, A., Wong, E.L.: Zyzzyva: speculative
byzantine fault tolerance. In: SOSP, pp. 45-58 (2007)
17. Song, Y.J., van Renesse, R.: Bosco: One-step byzantine asynchronous consensus.
In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438-450. Springer, Hei-
delberg (2008)

	Unifying Byzantine Consensus Algorithms with Weak Interactive Consistency
	Introduction
	Weak Interactive Consistency: An Informal Introduction
	On the Use of Signatures
	Safe Updates Requires Neither Signatures Nor a Coordinator
	Coordinator for Liveness

	Model and Definition of WIC
	Basic Round Model
	Characterizing a Good Period
	WIC Predicate

	Implementing WIC
	Translation with Signatures
	Translation without Signatures

	Achieving Consensus with WIC
	On the Use of WIC
	MA Algorithm
	CL Algorithm

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

