000158844 001__ 158844
000158844 005__ 20180925134102.0
000158844 02470 $$2ISI$$a000280464301398
000158844 037__ $$aCONF
000158844 245__ $$aFractional Laplacian Pyramids
000158844 269__ $$a2009
000158844 260__ $$bIeee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa$$c2009
000158844 336__ $$aConference Papers
000158844 520__ $$aWe provide an extension of the L-2-spline pyramid (Unser et al., 1993) using polyharmonic splines. We analytically prove that the corresponding error pyramid behaves exactly as a multi-scale Laplace operator. We use the multiresolution properties of polyharmonic splines to derive an efficient, non-separable filterbank implementation. Finally, we illustrate the potentials of our pyramid by performing an estimation of the parameters of multivariate fractal processes.
000158844 6531_ $$apolyharmonic splines
000158844 6531_ $$amultiresolution analysis
000158844 6531_ $$aLaplacian pyramids
000158844 6531_ $$afractals
000158844 700__ $$aDelgado-Gonzalo, Ricard
000158844 700__ $$aTafti, Pouya Dehghani
000158844 700__ $$0240182$$aUnser, Michael$$g115227
000158844 7112_ $$a16th IEEE International Conference on Image Processing$$cCairo, EGYPT$$dNov 07-10, 2009
000158844 773__ $$q3765-3768$$t2009 16Th Ieee International Conference On Image Processing, Vols 1-6
000158844 8564_ $$uhttp://bigwww.epfl.ch/publications/delgadogonzalo0902.html$$zURL
000158844 8564_ $$uhttp://bigwww.epfl.ch/publications/delgadogonzalo0902.pdf$$zURL
000158844 8564_ $$uhttp://bigwww.epfl.ch/publications/delgadogonzalo0902.ps$$zURL
000158844 909C0 $$0252054$$pLIB$$xU10347
000158844 909CO $$ooai:infoscience.tind.io:158844$$pSTI$$pGLOBAL_SET$$pconf
000158844 917Z8 $$xWOS-2010-11-30
000158844 917Z8 $$x148230
000158844 937__ $$aEPFL-CONF-158844
000158844 970__ $$adelgadogonzalo0902/LIB
000158844 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000158844 980__ $$aCONF