
Asymptotically Optimal Joint Source-Channel
Coding with Minimal Delay

Marius Kleiner, Bixio Rimoldi
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne
CH-1015 Lausanne, Switzerland

E-mail: firstname.lastname@epfl.ch

Abstract—We present and analyze a joint source-channel
coding strategy for the transmission of a Gaussian source across
a Gaussian channel in n channel uses per source symbol. Among
all such strategies, the scheme presented here has the following
properties: i) the resulting mean-squared error scales optimally
with the signal-to-noise ratio, and ii) the scheme is easy to
implement and the incurred delay is minimal, in the sense that
a single source symbol is encoded at a time.

I. INTRODUCTION

In this paper we propose and analyze a scheme for the
transmission of a discrete-time memoryless Gaussian source
across a discrete-time memoryless Gaussian channel, where
the channel can be used n times for each source symbol. The
parameter n is arbitrary but fixed, given as part of the problem
statement.

It is well known that if the source has variance σ2
S and

the channel noise has variance σ2
Z then the average transmit

power P and the average mean-squared error D of any
communication scheme for this scenario are related by

R(D) ≤ nC(P ), (1)

where R(D) = 0.5 log(σ2
S/D) is the rate-distortion function

of the source and C(P ) = 0.5 log(1 + P/σ2
Z) is the capacity-

cost function of the channel (see e.g. [1]). Inserting into (1)
yields

σ2
S

D
≤

�
1 +

P

σ2
Z

�n

,

or equivalently
SDR ≤ (1 + SNR)n

, (2)

where we have defined SNR = P/σ2
Z and SDR = σ2

S/D. In
the limit when SNR goes to infinity,

lim
SNR→∞

log SDR

log SNR
≤ n. (3)

At large SNR, the SDR (signal-to-distortion ratio) behaves
thus at best as SNRn. In this sense n is the best possible scaling
exponent that any communication scheme can hope to achieve
for a fixed n.

The scheme proposed in this paper achieves this optimal
scaling exponent for any fixed n, yet has small complexity and
minimal delay in the sense that it operates on a single source
symbol at a time. It works by quantizing the source and then
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(a) Shannon’s original proposition.
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(b) Mapping proposed in this paper
(for n = 2).

Fig. 1. A minimum-delay source-channel code for n = 2 can be visualized
as a curve in R2 parametrized by the source. Here we compare the mapping
presented in this paper (right) to Shannon’s original suggestion (left).

repeatedly quantizing the quantization error. The quantized
points are sent across the first n − 1 channel uses and the
last quantization error is sent uncoded in the nth channel use.

If the quantization resolution is chosen correctly (as a func-
tion of the SNR), then the decoding error of the quantization
symbols is dominated by that of the uncoded transmission in
the last channel use, which is shown to have an asymptotic
scaling exponent of n.

Schemes similar to the one proposed here have been con-
sidered before. Indeed, one of the first schemes to transmit
an analog source across two uses of a Gaussian channel
was suggested by Shannon [2]. Notice its resemblance to the
constellation studied here, shown in Figure 1.

After Shannon, Wozencraft and Jacobs [3] were among
the first to study source-channel mappings as curves in n-
dimensional space. Ziv [4] found important theoretical limi-
tations of such mappings. Much of the later work is due to
Ramstad and his coauthors (see [5], [6], [7], [8], [9], [10]). A
proof that the performance of minimal-delay codes is strictly
smaller than that of codes with unrestricted delay when n > 1
was given in 2008 by Ingber et al. [11].

For n = 2, the presented scheme is almost identical to the
HSQLC scheme by Coward [12], which uses a numerically
optimized quantizer, transmitter and receiver to minimize the
mean-squared error (MSE) for finite values of the SNR.
Coward correctly conjectured that the right strategy for n > 2



would be to repeatedly quantize the quantization error from
the previous step, which is exactly what we do here.

Another closely related communication scheme is the shift-

map scheme due to Chen and Wornell [13]. Vaishampayan and
Costa [14] showed in their analysis that it achieves the scaling
exponent n − � for any � > 0 if the relevant parameters are
chosen correctly as a function of the SNR. Up to rotation and
a different constellation shaping, the shift-map scheme is in
fact virtually identical to the one presented here, a fact that
was pointed out recently by Taherzadeh and Khandani [15].
In their own paper they develop a scheme that achieves the
optimal scaling exponent exactly and is in addition robust to
SNR estimation errors; their scheme, however, is based on
rearranging the digits of the binary expansion of the source
and is thus quite different from the one presented here.

Shamai, Verdú and Zamir [16] used Wyner-Ziv coding to
extend an existing analog system with a digital code when
additional bandwidth is available. Mittal and Phamdo [17] (see
also the paper by Skoglund, Phamdo and Alajaji [18]) split
up the source into a quantized part and a quantization error,
much like we do here, but they use a separation-based code (or
“tandem” code) to transmit the quantization symbols. Reznic
et al. [19] use both quantization and Wyner-Ziv coding, and
their scheme includes Shamai et al. and Mittal & Phamdo as
extreme cases. All three schemes, however, use long block
codes for the digital phase and incur correspondingly large
delays, so they are not directly comparable with minimum
delay schemes.

While the basic idea of the scheme considered in this paper
is not new, the analysis provided is and, to our knowledge, we
are the first to give an exact mathematical formulation of the
quantization resolution (as a function of the SNR) that leads
to the optimal scaling exponent.

II. PROPOSED COMMUNICATION SCHEME

A. Encoder

To encode a single source letter S into n channel input
symbols X1, . . . , Xn, we proceed as follows. Define E0 = S

and recursively compute the pairs (Qi, Ei) as

Qi =
1
β

int(βEi−1)

Ei = β(Ei−1 −Qi) (4)

for i = 1, . . . , n− 1 where int(x) is the unique integer i such
that

x ∈
�
i− 1

2
, i +

1
2

�

and β is a scaling factor that grows with the power P in a way
to be determined later. The following result will be useful in
the sequel.

Lemma 1: As β goes to infinity, the variance of Qi con-
verges to that of Ei−1 for all i = 1, . . . , n− 1.

Proof: Intuitively this is so since Qi is Ei−1 quantized,
and the quantization step becomes smaller as β goes to infinity.
A rigorous proof is given in Appendix A.

Proposition 2: The Qi and Ei satisfy the following prop-
erties:

1) The map S �→ (Q1, . . . , Qn−1, En−1) is one-to-one and

S =
n−1�

i=1

1
βi−1

Qi +
1

βn−1
En−1. (5)

2) The variance of E0 is σ2
S and for all i = 1, . . . , n− 1,

Ei ∈ [−1/2, 1/2) and Var(Ei) ≤ 1/4.
3) For any δ > 0 there exists β0 such that for β > β0,

Var(Qi) ≤
�

σ2
S + δ for i = 1

1/4 + δ for i = 2, . . . , n− 1.
(6)

Proof:

1) From the definition (4) we have

Ei−1 =
1
β

Ei + Qi. (7)

Repeated use of this relationship leads to the given
expression for S.

2) First, Var(E0) = Var(S) = σ2
S . Next, Ei ∈ [−1/2, 1/2)

follows trivially from the definition of Ei. Furthermore,
the variance of any random variable with support in an
interval of length 1 is bounded from above by 1/4.

3) The result follows directly from Lemma 1 and from the
bound on the variance of the Ei in point 2 above.

Without loss of generality we assume hereafter that σ2
S >

1/4 so that the first bound of (6) applies to all Qi.
We determine the channel input symbols Xi from the Qi

and from En−1 according to

Xi =

�
P

σ2
S + δ

Qi for i = 1, . . . , n− 1 and

Xn =

�
P

σ2
E

En−1,

where σ2
E = Var(En−1). Following Proposition 2, this ensures

that E[X2
i ] ≤ P for all i and for β > β0(δ). Since we are

interested in the large SNR regime and since we have defined
β to grow with P , we can thus assume for the remainder that
the power constraint is satisfied.

B. Decoder

The Xi are transmitted across the channel, producing at the
channel output the symbols

Yi = Xi + Zi, i = 1, . . . , n,

where the Zi are iid Gaussian random variables of vari-
ance σ2

Z . To estimate S from Y1, . . . , Yn, the decoder first
computes separate estimates Q̂1, . . . , Q̂n−1 and Ên−1, and
then combines them to obtain the final estimate Ŝ. While this
strategy is suboptimal in terms of achieving a small MSE, we
will see that it is good enough to achieve optimal scaling.



To estimate the Qi we use a maximum likelihood (ML)
decoder, which yields the minimum distance estimate

Q̂i =
1
β

arg min
j∈Z

�����

�
P

σ2
S + δ

j

β
− Yi

����� . (8)

To estimate En−1, we use a linear minimum mean-square
error (LMMSE) estimator (see e.g. [20, Section 8.3]), which
computes

Ên−1 =
E[En−1Yn]

E[Y 2
n ]

Yn. (9)

Finally we use the relationship (5) to obtain

Ŝ =
n−1�

i=1

1
βi−1

Q̂i +
1

βn−1
Ên−1. (10)

C. Error Analysis

The overall MSE E[(S − Ŝ)2] can be broken up into
contributions due to the errors in decoding Qi and En−1 as
follows. From (5) and (10), the difference between S and Ŝ

is

S − Ŝ =
n−1�

i=1

1
βi−1

(Qi − Q̂i) +
1

βn−1
(En−1 − Ên−1).

The error terms Qi − Q̂i depend only on the noise of the
respective channel uses and are therefore independent of each
other and of En−1− Ên−1, so we can write the error variance
componentwise as

E[(S − Ŝ)2] =
n−1�

i=1

1
β2(i−1)

EQ,i +
1

β2(n−1)
EE , (11)

where EQ,i
def= E[(Qi− Q̂i)2] and EE

def= E[(En−1− Ên−1)2].
Lemma 3: For each i = 1, . . . , n− 1,

EQ,i ∈ O
�
exp{−kSNR/β

2}
�
, (12)

where SNR = P/σ2
Z and k > 0 is a constant.

(The O-notation is defined in Appendix B.)
Proof: Define the interval

Ij =

�
(j − 1

2 )
√

P

β
�

σ2
S + δ

,
(j + 1

2 )
√

P

β
�

σ2
S + δ

�
.

According to the minimum distance decoder (8), Q̂i − Qi =
j/β whenever Zi ∈ Ij . The error EQ,i satisfies thus

E[(Qi − Q̂i)2] =
1
β2

�

j∈Z
j
2 Pr[Zi ∈ Ij ]

=
2
β2

∞�

j=1

j
2 Pr[Zi ∈ Ij ], (13)

where the second equality follows from the symmetry of the
distribution of Zi. Now,

Pr[Zi ∈ Ij ] = Q

�
(j − 1

2 )
√

SNR

β
�

σ2
S + δ

�
−Q

�
(j + 1

2 )
√

SNR

β
�

σ2
S + δ

�
,

where

Q(x) =
1√
2π

� ∞

x
e
−ξ2/2

dξ,

which can be bounded from above for x ≥ 0 as

Q(x) ≤ 1
2
e
−x2/2

.

For β ≥ 1 we can now bound (13) as

EQ,i ≤
∞�

j=1

j
2 exp

�
− (j − 1/2)2SNR

2β2(σ2
S + δ)

�
.

Note that for j ≥ 2, (j − 1/2)2 > j. Thus

EQ,i ≤ exp
�
− SNR

8β2(σ2
S + δ)

�

+
∞�

j=2

j
2 exp

�
− jSNR

2β2(σ2
S + δ)

�
. (14)

To bound the infinite sum we use
∞�

j=2

j
2
p

j ≤
∞�

j=1

j
2
p

j =
p2 + p

(1− p)3
(15)

with p = exp{−SNR/2β2(σ2
S + δ)}. The first term of (14)

thus dominates for large values of SNR/β2 and

EQ,i ≤ c exp
�
− SNR

8β2(σ2
S + δ)

�

for some c > 0, which completes the proof.
Lemma 4: EE ∈ O(SNR−1).

Proof: The mean-squared error that results from the
LMMSE estimation (9) is

EE = σ
2
E −

(E[En−1Yn])2

E[Y 2
n ]

. (16)

Since

Yn = Xn + Zn =

�
P

σ2
E

En−1 + Zn,

we have E[En−1Yn] =
�

Pσ2
E . Moreover, E[Y 2

n ] = E[X2] +
E[Z2] = P + σ2

Z . Inserting this into (16) we obtain

EE = σ
2
E −

Pσ2
E

P + σ2
Z

= σ
2
E

�
1− P

P + σ2
Z

�

=
σ2

E

1 + SNR

<
σ2

E

SNR
.

Since σ2
E is bounded (cf. Proposition 2), EE ∈ O(SNR−1) as

claimed.



D. Achieving the Optimal Scaling Exponent

Recall the formula for the overall error

E[(S − Ŝ)2] =
n−1�

i=1

1
β2(i−1)

EQ,i +
1

β2(n−1)
EE .

According to Lemma 3, EQ,i decreases exponentially when
SNR/β2 goes to infinity. This happens for increasing SNR if
we set e.g.

β
2 = SNR1−�

for some � > 0, in which case EQ,i ∈ O (exp(−kSNR�)).
From this and Lemma 4, the overall error satisfies

E[(S − Ŝ)2] ∈ O(SNR−(n−��)), (17)

where �� = (n − 1)� can be made as small as desired. The
scaling exponent for a fixed � satisfies therefore

lim
SNR→∞

log SDR

log SNR
≥ lim

SNR→∞

log σ2
S + (n− ��) log SNR

log SNR
= n−�

�
.

(18)
Note that the choice of � represents a tradeoff: for small �

the error due to the “discrete” part vanishes only slowly, but
the scaling exponent in the limit is larger. For larger �, EQ

vanishes quickly but the resulting exponent is smaller. In the
remainder of this section we show how we can choose � as a
function of SNR to achieve the optimal scaling.

Let now

� = �(SNR) =
log(n log SNR/k)

log SNR
, (19)

where k is the constant indicating the decay of EQ,i in (12).
With this choice of �,

EQ,i ∈ O (exp (−kSNR�))
= O(SNR−n),

hence the overall error is still dominated as in (17), and (18)
still applies. Inserting (19) in (18), we find

lim
SNR→∞

log σ2
S + (n− (n− 1)�) log SNR

log SNR

= lim
SNR→∞

log σ2
S + n log SNR − (n− 1) log(n log SNR/k)

log SNR

= n,

which is indeed the optimal scaling exponent.
Remark 1: While the limiting exponent above is indeed the

optimal one, the SDR scales as SNRn(log SNR)−(n−1) rather
than the theoretic optimum SNRn. This means that the gap

(in dB) between the theoretically optimal SDR value and our
lower bound grows to infinity as SNR → ∞. According to
a result in [15], however, no scheme combining quantization
and uncoded transmission as done here can achieve a better
SDR scaling than SNRn(log SNR)−(n−1). In the scaling sense,
our bound is therefore tight.

III. CONCLUSIONS

We have presented and analyzed a joint source-channel
communication strategy that achieves the optimal scaling
exponent if the channel is to be used n times per source
symbol. The given scheme incurs the smallest possible delay
and its implementation is straightforward.

While the basic structure of this scheme – separating the
source into a quantized part and the associated error – is
not new, the simple analysis provided here yields an explicit
expression for the quantization resolution in terms of the SNR
that leads to the optimal scaling exponent.

APPENDIX A
PROOF OF LEMMA 1

Since all involved distributions are symmetric, E[Qi] = 0.
Writing Qi as a function of Ei−1, we have

Var(Qi) = E[Q2
i ] =

� ∞

−∞
Qi(ξ)2f(ξ)dξ, (20)

where f(ξ) is the pdf1 of Ei−1. Now, Qi(ξ) = j/β whenever

ξ ∈
�
j − 1/2

β
,
j + 1/2

β

�
.

With this, the integral (20) becomes

Var(Qi) =
1
β2

�

j∈Z
j
2

� j+1/2
β

j−1/2
β

f(ξ)dξ

=
�

j∈Z

�
j

β

�2 �
F

�
j+1/2

β

�
− F

�
j−1/2

β

��
,

where F (ξ) is the cdf2 of Ei−1. As β goes to infinity, this
sum converges to a Riemann-Stieltjes integral:

Var(Qi) −→
�

ξ
2
dF (ξ) = Var(Ei−1) as β →∞.

APPENDIX B
BIG-O NOTATION

The “Big-O” asymptotic notation used at various points in
the paper is defined as follows. Let f(x) and g(x) be two
functions defined on R. We write

f(x) ∈ O(g(x))

if and only if there exists an x0 and a constant c such that

f(x) ≤ cg(x)

for all x > x0.
As a simple consequence of this definition, if f(x) ∈ O(xn)

then
lim

x→∞

log f(x)
log x

≤ n.

1probability density function
2cumulative distribution function
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