
A Paper Interface for Code Exploration

Quentin Bonnard
CRAFT - EPFL

Rolex Learning Center
Station 20

CH-1015 Lausanne
quentin.bonnard@epfl.ch

Frédéric Kaplan
CRAFT - EPFL

Rolex Learning Center
Station 20

CH-1015 Lausanne
frederic.kaplan@epfl.ch

Pierre Dillenbourg
CRAFT - EPFL

Rolex Learning Center
Station 20

CH-1015 Lausanne
pierre.dillenbourg@epfl.ch

ABSTRACT
We describe Paper Code Explorer, a paper based interface
for code exploration. This augmented reality system is de-
signed to offer active exploration tools for programmers con-
fronted with the problem of getting familiar with a large
codebase. We first present an initial qualitative study that
proved to be useful for informing the design of this system
and then describe its main characteristics. As discussed in
the conclusion, paper has many intrinsic advantages for our
application.

Author Keywords
Paper interface, code exploration, augmented paper, tangible
interface

ACM Classification Keywords
H.5.1 Information Interfaces and Presentation: Artificial, aug-
mented, and virtual realities; H.5.2 Information Interfaces
and Presentation: Training, help, and documentation

General Terms
Design, Human Factors.

CONTEXT AND MOTIVATION
Programmers are often confronted with the problem of get-
ting familiar with a large codebase. In a typical scenario,
new programmers coming to an institution have to learn about
a project in order to start their own contribution. This is usu-
ally a difficult challenge. Different strategies are commonly
used. The new programmer can browse the documentation,
when it exists. This gives a broader overview, but does not
allow for in-depth exploration. In a complementary manner,
he can follow goal-oriented tutorials. He may also actively
learn about the code by fixing bugs or developing unit tests.
While usually more motivating for a programmer and useful
for the project, this solution does not give a good overview
of the overall architecture.

In this article, we present a novel tool for code exploration,

Copyright is held by the author/owner(s).
UbiComp ’10, Sep 26-Sep 29, 2010, Copenhagen, Denmark.
ACM 978-1-60558-843-8/10/09.

based on a paper interface. Paper interfaces intend to provide
computing abilities to paper, while trying to keep its simplic-
ity and advantages over electronic devices. They can be used
to augment traditional documents, but also create music [2],
design warehouses [7], etc. However, programming appears
as one of the tasks least adapted for paper interfaces, as it
is one of the few intellectual activities that did not exist be-
fore the digital age. Indeed, very mature software exist for
coding, and text input only makes paper a very poor com-
petitor to a keyboard/mouse/screen system. Nevertheless we
believe that paper has a rich set of properties that fits partic-
ularly well in the specific scenario we just described.

We describe hereafter Paper Code Explorer, a system de-
signed to take the most of paper for code exploration. This
is a Digital Desk-like system [5] and follows in a long tra-
dition of using tagged paper for interaction control [1]. This
tool focuses on code understanding and is not meant to be
used for testing, debugging or developing. Nevertheless,
code exploration plays an important role in any of such pro-
gramming activities. Several techniques are commonly used
to navigate between the portions of code displayed on the
rather limited screen real estate: bookmarks, hyperlinks be-
tween definitions and occurrences, hierarchical index of the
components of the workspace, outline of the displayed re-
source, tabs, etc. The contexts in which such active explo-
ration has positive learning outcomes have been the subjects
of many studies. One findings is the crucial need of a global
map/representation to make the best use of hypertextual nav-
igation: allowing flexible in-depth exploration while not get-
ting lost in the process [4]. We believe that paper interfaces
are good candidates to offer alternative solution to this clas-
sical problem.

In the next section, we describe an initial study involving a
new programmer getting familiar with a code library using
a mock-up of Paper Code Explorer. Informed by this initial
study, we then present the main characteristics and compo-
nents of our code exploration system.

AN INITIAL STUDY
Before designing the system, we set up a mock up of Paper
Code Explorer and used the opportunity of a new colleague
joining our team. A member of the team (the expert) was to
explain him (the novice) how to start working in our code-
base. Naturally, the expert would have walked through the
code, and the novice would have asked question as they ar-



Figure 1. Paper sheets and a computer mocked up Paper Code Ex-
plorer.

rive. We asked them to use a simple mock-up of Paper Code
Explorer, to identify some flaws and validate some ideas.
The mockup, shown on Figure 1, consists of small sheets of
paper for each of the classes selected beforehand by the ex-
pert. Each class was represented by a box containing three
boxes: one for the name of the class, one for the list of the
name of the fields of the class, and the list of the name of the
methods of the class. Both lists were ordered by decreasing
visibility of the member (public, then protected, then pri-
vate). Common paper related tools were placed on the table:
sticky notes, stapler, pens, scissors, tape and paper clips. A
large sheet of paper was placed as a support. The screen of
the expert’s computer was projected in front of them, and a
regular keyboard/mouse controlled the computer. We inter-
rupted the session several time to ask the novice some ques-
tions. This experience was not exactly what Paper Code Ex-
plorer is intended for: the expert guided the novice similarly
to a tutorial documentation, as opposed to the novice ex-
ploring the code alone to build his own representation. This
is linked to the fact that the novice only needed to know a
small subset of the framework, as he would only work on
a restricted aspect (improving a path finding algorithm); the
novice does not need to learn everything about the software,
only where to contribute.

This informal experiment is not an evaluation, but a first step
in the design, which made possible following observations:

• Paper representation of classes supports large overview.
Before even starting to discuss the architecture, the novice
identified a design flow almost immediately when looking
at the sheets in front of him: “There is a GetInstance()
method everywhere so it’s probably useless”. (In fact, it
corresponds to an abuse of the singleton design pattern for
convenience reasons.)

• Paper interfaces for code exploration should support a
flexible navigation system adapted to the different gran-
ularity levels of the codebase. The vertical navigation
(from package to line of code and vice-versa) is at least as
important as the horizontal navigation (from a class to an-
other). Most notably, the expert started by drawing main

components of the software and their relationship to each
other, or walked through the main method block of code
by block of code. Moreover, the expert navigated mostly
using show definition of commands.

• Paper representation of classes should include the visual
characteristics of the corresponding source code. The
novice noted that the plain list of members does not give
a feeling of the size of the file (in number of lines) as the
size of the scrollbar cursor does on the computer. Fur-
thermore, the list of methods does not show how big each
method is, which is an important data. The novice fur-
ther suggested that the ordering of the members by visi-
bility is not very helpful; it would be more interesting to
group private functions with the public function calling
them. These comments inspired the design of the flash
cards shown on Figure 2.

• Code understanding tools should support visual, active
exploration. An interview with the novice the day after
the experiment revealed that he was remembering the size
of the classes better than their names. Even if short ques-
tions during the experiment showed that the expert’s ex-
planations were clear, the novice did not remember most
of them the day after, which is another example that pas-
sive learning as in a walk through is not effective.

DESIGNING PAPER CODE EXPLORER
This section describes the design choices for the on-going
implementation of Paper Code Explorer.

Base Components
Paper Code Explorer is a software meant to be used with an
augmented lamp, i.e. a projector and a camera above a desk.
It uses the ARTag fiducial markers system 1 to track and
project an augmentation paper sheets of various sizes and
forms. It is integrated in the Eclipse environment2, which
provides a very mature framework to handle code, and is
easily extensible and customizable. Java is hence a good
candidate as the language of the codebase to explore, as it
is a broadly used language, and big open source projects in
Java are not hard to find.

Paper Classes for a Broad Overview
Paper Code Explorer uses papers sheets in two ways: as sup-
port for objects and as ways of triggering contextual com-
mands. We print flash cards containing the name of the
class, the list of its members, and a tag allowing Paper Code
Explorer to map the paper to its logical counterpart. Using
classes as the unit of paper objects is a good compromise
for our code understanding objective: printing line does not
scale to big codebases, which is our target, and packages
are too coarse for a deep enough understanding. These flash
cards could be made out of cardboard or paper, depending
on the relation we want to build between the user and the ob-
jects. We prefer using cheap, easily duplicable paper flash-
cards which can be cut, annotated or thrown away without
1http://www.artag.net/
2http://www.eclipse.org/

http://www.artag.net/
http://www.eclipse.org/


Figure 2. Three classes (MyClass, SomeClass and AnotherClass) are
used for this illustration. The paper command show source is ap-
plied on MyClass, and projects its result in red. The paper command
print group has been used to produce the paper object representing
the three classes circled by the yellow box. The surface taken into ac-
count is delimited by a yellow projection. The paper paper command
show occurrences is applied on one of the methods of MyClass,
and the resulting set of class is restricted to the previously mentioned
group. The results are projected in blue.

consequence and therefore should allow for more flexible
usages.

Using paper classes on a desktop rather than a class diagram
on a screen has the main advantage of providing a clearly
bigger surface, which is important for such a layout based
visualization. This allows for a navigation in the layout that
does not require scrolling, which takes full advantage of spa-
tial memory. Paper is tangible, so it is more natural to ma-
nipulate than a window with a cursor: moving is easy, sev-
eral objects (close to each other) can be selected and moved
at once. The motivation here is to allow the user to layout
the classes according to relationships that make sense to her,
and offload the working memory of these relationship onto
the spatial organization.

Augmenting the Paper for In-depth Exploration
The list of the members of a class is usually not sufficient
to understand it; we need to be able to show the code of
the class or its documentation. The lamp can provide for
such an augmentation of the objects, as shown on Figure 2
The scenario is comparable to a menu-based interface: the
user selects selects an object and a command to apply on
it. In our case, we put a command paper sheet correspond-
ing for instance to show the documentation of or
show the source code of a nearby object. A pop-
up is then projected with the corresponding content, which
can be scrolled by moving up and down the object paper rel-
atively to a fixed, projected reference point.

On this aspect, the interaction zone is limited to the area cov-
ered by the lamp, which is comparable to the one of a screen.
However, the advantage of a paper interface is that the menu
can exist outside of this area. The user does not have to
find a compromise between accessibility of various actions
in menu and the space allocated to objects. More over, the
same manipulability advantage of paper applies to actions:
they can be organized and grabbed easily. Command results
being linked spatially to them can be moved in an equally
easy manner.

Manipulable Queries
The chosen granularity of the classes does not mean that
command inputs can not have a finer granularity. Let us con-
sider the command show occurrences of a member
of a class (a method or field). This command is augmented
with a pointer projected at a fixed position relatively to the
paper. This precise pointer can be manipulated as easily as
the paper, and allows a communication with Paper Code Ex-
plorer as precise as a mouse. It can also be interesting to
apply actions on augmented content, e.g. show defini-
tion of a variable in the projected source code of a class.

Actions are not limited to unary operators. For example, it is
important in our scenario to show the relationships between
several classes: inheritance, aggregation, function calls, etc.
Code can be considered as a semi-structured database which
can be queried [3], for example on private methods returning
a String and using a given member. We make such queries
tangible and manipulable: the user can modify them eas-
ily (changing the input or the parameters) and observe the
changes in real time. For example, a query on all occur-
rences of a method can give too many results, so the user
can restrict them to occurrences within a given class. If this
is too restrictive, the occurrences can be restricted to a wider
set of classes. All these modifications on the query happen
by incrementally adding and removing paper objects as a
feedback to the result.

Also, some queries can have a result mentioning classes that
are not in the augmented area. In this case, we use the fact
that printed paper have a fixed text layout which can be eas-
ily remember. To be more concrete, let us consider the com-
mand find classes using a given member. When
used, it projects thumbnails of the corresponding flashcards
rather than the full flashcard in order to spare the display
area. The user is maintaining a spatial arrangement of the
printed classes on the side. This way she can match the form
of the projected thumbnails with the one of the classes dis-
played on the side. Of course, other techniques can replace
thumbnails if they are not adapted to the size of the code-
base. The goal is not to remember the fixed layout of the
whole codebase, but rather offload the working memory us-
ing features of the human vision.

Active Reading Using the Paper Interface as Information
Support
A musician or a writer, for example, annotate heavily the
document they are working on. This behavior can be found
in most, if not all processes involving documents. On this
topic, source code does not appear as a document: it is the
same before and after spending time to understand it. Code
can be commented, but these comments are usually not per-
sonal understanding notes.

Compared to screen-based exploration, it is clear that paper
interfaces offer a much larger variety of tools to read in an
active manner. In our scenario it is very easy to annotate
the printed code in much the same way one would annotate
a printed article. The flash cards corresponding the classes
can be underlined or highlighted in any color in a natural



way, free text can be written simply (consider for example
writing the mathematical formula computed by a method),
free forms can be drawn, etc. In addition, a reader can book-
mark, highlight, link elements, underline or circle. The issue
of extracting annotations have been addressed already [6],
and the extracted data can easily be associated to the digital
content used to generate the paper object.

To go one step further, one can save a layout by pasting the
papers on a sheet. This creates a new composite object, that
in turn can be annotated, named for a faster recall, linked
with one another, etc. Alternatively, the paper classes can be
stacked, folded, cut or teared apart.

A Printer on the Desktop for Memory Cycles
There are 3 layers on Paper Code Explorer. The printed layer
forms the base of the interface, the augmentation displays
digital information on it, and the user writes on the printed
layer, possibly using the augmented information. The differ-
ence between the printed and written information is that the
printed information can be duplicated easily. The interesting
point is that these three layers can be merged into a printed
or an augmented layer. This allows for a physical or virtual
snapshot of the interface/memory, respectively. Such snap-
shots are useful for versioning the exploration work: they
allow the user to save the state of the interface, e.g. save
a grouping of the paper classes in case the new one is not
as good. They are also useful for recovering from inter-
ruption. Moreover, the physical snapshot are paper objects
themselves, and can be annotated too: giving it a title for
example helps the interruption recovery furthermore.

To integrate the Print-Augment-Write (PAW) iterations in
the workflow, it should be as easy as possible to create a
new paper object. These new objects have to be usable by
the user and by the Paper Code Explorer. To do so, they are
assigned a tag so that the system can map the paper object to
its information. A printer allows such a controlled creation
process. Receipt printers are very adapted to our case: they
are relatively small, and can be placed on the desktop, mak-
ing them reachable but not too invasive. They can achieve
sufficient speed (e.g. 7 inch per second) and receipts are
not valuable per se (they are valuable if they prove the pay-
ment of something expensive, but are discarded in all other
cases), removing the restraints a user could have to print and
use temporary documents.

Practically, Paper Code Explorer allows to create a paper
object representing a group of other paper objects. This
group can be used as an alias of its content in a manipula-
ble query (e.g. show the relationships between
this group), or as a manipulable abstraction (e.g. a module to
relate to other modules). The creation of new paper objects
can be triggered with paper commands, such as print one
of the classes shown in the result set displayed by a manipu-
lable query. Paper commands can be duplicated too, or even
combined, allowing a user defined menu of commands. The
printer also allows to give more freedom in the starting point
of the exploration: printing all the classes would not be very
scalable for example; it is more interesting to start with an

overview in which the user zooms by printing the details of
chosen elements.

RELEVANCE OF PAPER-BASED INTERFACE
Although the definitive implementation of the Paper Code
Explorer is still on going, we can already discuss the rele-
vance of paper-based interfaces in this context. The manipu-
lability of paper is an excellent way to navigate in a complex
system such as a software architecture. The fact that pa-
per remains visible outside the interaction zone eases the ac-
cess and organization of commands. Complex objects such
as queries can be built and modified intuitively. Code can
be annotated freely with a pen, which, among other things,
helps a lot the activity of reading for understanding.

One of the main objectives of paper and tangibles interfaces
consists of augmenting the functionalities of a physical ob-
ject without reducing its simplicity of usage and original ad-
vantages. In Paper Code Explorer, most of the fundamen-
tal advantages of paper are preserved. However, the aug-
mentations do not offer the same level of interactivity than a
traditional computer interface. Our system focuses on code
exploration and does not support the input of code. The reso-
lution of the projected augmentation or of the pointers is not
as high as those of a screen or mouse, respectively. Never-
theless, we believe that the intrinsic benefits of a paper-based
interface for learning justify this compromise at the interac-
tivity level. In order to evaluate this choice more thoroughly,
we intend to perform a comparative study with a tabletop
display interface.

REFERENCES
1. T. Arai, D. Aust, and S. Hudson. PaperLink: a technique

for hyperlinking from real paper to electronic content. In
Proc. SIGCHI conference on Human factors in
computing systems, pages 327–334. ACM, 1997.

2. E. Costanza, M. Giaccone, O. Kueng, S. Shelley, and
J. Huang. Tangible interfaces for download: initial
observations from users’ everyday environments. In
Proc. CHI EA 2010, pages 2765–2774.

3. E. McCormick and K. De Volder. Jquery: finding your
way through tangled code. In Proc. OOPSLA 2004.

4. J. Rouet and A. Tricot. Task and activity models in
hypertext usage. In Cognitive aspects of electronic text
processing, pages 239–264. 1996.

5. P. Wellner. Interacting with paper on the DigitalDesk.
Communications of the ACM, 36(7):87–96, 1993.

6. Y. Zheng, H. Li, and D. Doermann. Machine printed text
and handwriting identification in noisy document
images. IEEE transactions on pattern analysis and
machine intelligence, 26(3):337–353, 2004.

7. G. Zufferey, P. Jermann, A. Lucchi, and P. Dillenbourg.
Tinkersheets: using paper forms to control and visualize
tangible simulations. In Proc. TEI 2009, pages 377–384.


	Context and Motivation
	An Initial Study
	Designing Paper Code Explorer
	Base Components
	Paper Classes for a Broad Overview
	Augmenting the Paper for In-depth Exploration
	Manipulable Queries
	Active Reading Using the Paper Interface as Information Support
	A Printer on the Desktop for Memory Cycles

	Relevance of Paper-based Interface
	REFERENCES 

