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Abstract: With the progress of miniaturization, in many modern applications the
characteristic dimensions of the physical volume occupied by particle-reinforced
composites are getting comparable with the reinforcement size and many of those
composite materials undergo plastic deformations. In both experimental and mod-
elling contexts, it is therefore very important to know whether, and up to which
characteristic size, the description of the composites in terms of effective, homog-
enized properties is sufficiently accurate to represent their response in the actual
geometry. Herein, the case of particle-reinforced composites with elastoviscoplas-
tic matrix materials and polyhedral randomly arranged linear elastic reinforcement
is considered since it is representative of many metal matrix composites of techni-
cal interests. A large parametric study based on 3D finite element microstructural
models is carried out to study the dependence of the Representative Volume Ele-
ment (RVE) size on the mechanical properties of the constituents, the reinforcement
volume fraction and the average strain level. The results show that RVE size mainly
depends on the reinforcement volume fraction and on the macroscopic strain level.
The estimated RVE size for elastoplastic composites with 5% to 10% volume frac-
tion of reinforcements is found in the range of 5-6 times the average size of rein-
forcement particles, while for higher volume fraction, e.g. 15% to 25%vol., the
RVE size increases rapidly to 10 to 20 times the reinforcement size. Moreover
insights on the influence of mesh refinement and boundary conditions on finite el-
ement homogenization analysis are obtained.
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1 Introduction

A fundamental concept when studying composite materials is that of Representa-
tive Volume Element (RVE). Among the different definitions of this entity (Nemat-
Nasser and Hori, 1993) that by Drugan and Willis (1996) is particularly appropriate
for this work: the RVE is ‘the smallest material volume element of the composite
for which the usual spatially constant macroscopic representation is a sufficiently
accurate model to represent mean constitutive response’. This very pragmatic def-
inition implies that random media have a finite RVE whose dimensions vary as a
function of the desired accuracy. In this context it is useful to introduce the con-
cept of mesoscale which is the characteristic lengthscale of the RVE. Moreover the
application of this definition requires the assessment of the error made when inter-
preting the composite mechanical response as it were a homogeneous material and
the actual constitutive behavior with the objective of ascertaining if the approxima-
tion is ‘sufficiently accurate’. In this sense Drugan and Willis (1996) show that,
for linear elastic composites, a mesoscale model or sample of approximately twice
the characteristic reinforcement diameter is sufficient to limit the error to 5% while
the required size increases to approximately 4.5 times the characteristic reinforce-
ment diameter to have an error of 1%. When elastoviscoplastic composites are
considered, larger mesoscale volumes are required to reach similar levels of accu-
racy because of the higher levels of inhomogeneity in the strain field caused by the
development of plastic strain concentrations.

During the last ten years significant progress has been made in the development of
mesoscale finite element (FE) models which can provide representative effective
elastoviscoplastic responses for isotropic random particle-reinforced composites
(McDowell, 2010). Because of the importance of stress triaxiality, homogenization
FE models must be three-dimensional (Böhm and Han, 2001) to provide reliable
estimates of the response of random particle-reinforced composites. As a conse-
quence of the high computational cost of such three dimensional FE models, the
research has mostly been focused on the development of periodic multi-inclusion
unit cells with spherical reinforcement (Böhm et al., 2004; Gonzalez et al., 2004;
Pierard et al., 2007) to predict the representative effective elasto-plastic response of
composites. Assuming periodicity of the microstructure significantly helps to min-
imize the required mesoscale volume, and therefore the computational cost, since
periodic boundary conditions tend to reduce the sensitivity of the simulations to lo-
calization problems. Moreover, considering spherical particles also helps to reduce
the mesoscale volume as the reinforcement shape does not induce any anisotropy
in the composite. Although these periodic models can provide accurate estimates
of the effective medium response they cannot yield the dimensions of the RVE
in Drugan and Willis’ sense, since random particle-reinforced composites are not
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periodic and their response strongly depends on plastic strain concentrations and
therefore on the reinforcement spatial distribution (Ostoja-Starzewski, 2005). The
availability of such information is very important for both the experimental and the
modeling activity in technological applications where relatively limited volumes of
composite are utilized, e.g. reinforced solder and brazing alloys (Sivasubramanian
et al., 2009; Galli et al., 2006) or functionally graded interface layers (Shabana and
Noda, 2002).

In the present work a large scale parametric FE homogenization study was car-
ried out with the objective of obtaining estimates of the physical size of the RVE
of a broad range of elastoplastic and elastoviscoplastic random particle-reinforced
composites. The simulations were carried out under mixed static-kinematic uni-
form boundary conditions which are representative of the actual configuration of
the composites in many applications and experiments. To estimate the RVE, FE
simulations were carried out on increasingly larger three dimensional mesoscale
models until convergence of the effective response was achieved. Moreover differ-
ent levels of mesh refinement and sets of boundary conditions were considered in
order to assess the influence of these parameters on the RVE size.

2 Methods

2.1 Microstructure and Mesh

The FE models of particle-reinforced composites were created using the approach
developed by Galli et al. (2008), which allows for the fast generation of three di-
mensional mesoscale cubic domains. The procedure consists of 3 main steps:

1. A cubic domain is discretized by means of the TetGen software (Si , 2009)
which performs a constrained Delaunay tetrahedralization which respects the
domain boundary and has among its vertices a set of randomly generated
points.

2. Particles are created sequentially by assigning the inclusion material prop-
erties to all the tetrahedra sharing randomly selected vertices. If a particle
shares a face with an already existent one or its volume is not in the pre-
scribed range, it is discarded. The procedure is iterative and ends once the
prescribed reinforcement volume fraction is achieved.

3. The mesh is refined by performing a second constrained Delaunay tetrahe-
dralization which respects not only the domain boundary but also the inter-
face between matrix and particles. The actual mesh refinement is obtained
by imposing the value of the maximum admissible element volume.
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For a more extensive description of the procedure the reader is referred to the work
by Galli et al. (2008). Five different reinforcement volume fractions VR were con-
sidered: 0.05, 0.10, 0.15, 0.20 and 0.25. In the following the five composites are
indicated as ‘p05’, ‘p10’, ‘p15’, ‘p20’ and ‘p25’, for the sake of brevity. For all
the compositions five mesoscale models of increasing dimensions were generated,
with the ratios of the larger volumes to the smallest being 8, 27, 64 and 125, respec-
tively. Again, for the sake of brevity, in the following the five volumes are indicated
as ‘v1’, ‘v2’, ‘v3’, ‘v4’ and ‘v5’. Following Galli et al. (2008) the model size was
measured with respect to the particle dimension by using the metric ξ :

ξ = 3

√
V
VP

, (1)

where V is the volume of the model and VP the average particle volume. Three
different levels of mesh refinement were considered: the coarser mesh was that
obtained from the original tetrahedralization, with no refinement, while for the finer
meshes constraints on the maximum element volume were imposed. Analogously
to the other features of the models, in the following the three mesh refinement levels
are indicated as ‘r1’, ‘r2’ and ‘r3’, respectively. The main geometrical and mesh-
related features of the models are summarized in table 1. Some example meshes are
shown in figure 1. The differences between the levels of mesh refinement can be
appreciated by examining the evolution of the numbers of nodes and elements, NN

and NE , respectively, for ξ = 4.64 in table 1. If the model with 5% volume fraction
is considered, it can be seen that the NN approximately quadruplicates from mesh
refinement level r1 to r2 and doubles from r2 to r3. The three corresponding meshes
are shown in the left column of figure 1: a) v1p05r1, b) v1p05r2 and c) v1p05r3.
If the mesh on the particle surfaces is considered it can be seen that in the case
of r2 each triangular facet is discretized with approximately 3 to 6 elements while
for r3 this figure increases to approximately 7 to 14. The dimensional range of
the models considered in the study is well illustrated by comparing the number
of particles NP for the same reinforcement volume fraction VR for different values
of ξ in table 1: NP in the largest models is approximately 100 times larger than
in the smallest. This can also be appreciated by comparing figure 1 c) and f): for
VR = 0.05 the smallest mesoscale volume contains 6 particles while the largest 661.
The three dimensional view also helps to quantify the reinforcement density: the
three meshes in the right column of figure 1, d) v5p05r1, e) v3p15r1, f) v2p25r1 are
characterized by different values of reinforcement volume fraction. It can be noted
how densely reinforced p25 composites are. Actually, their reinforcement volume
fraction, 0.25, is close to the jamming limit of the algorithm which generates the
particle distribution, approximately 0.26 (Galli et al., 2008).
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The FE models were solved using ABAQUS (version 6.8, Simulia, Providence, RI,
USA). Ten-node modified quadratic elements were employed to avoid possible vol-
umetric locking in yielded regions. Simulations were carried out under the small
deformation assumption. For the elastoplastic simulations the domain decomposi-
tion iterative linear equation solver was employed to minimize the computational
time. In the case of the elastoviscoplastic simulations the default direct sparse
solver was used and a value of 1E-3 was chosen for the maximum admissible dif-
ference in the creep strain increment calculated from the creep strain rates based on
conditions at the beginning and on conditions at the end of a time increment.

2.2 Boundary Conditions

The uniaxial response of a material with random microstructure can be simulated
by using four different sets of boundary conditions. When considering a mesoscale
cube with edge length L, one vertex in the origin and the others in the first octant
(xi ∈ [0,L]3), the boundary conditions for tension or compression in the x1 direction
can be written as:



t1 (0,x2,x3) =−σ

t1 (L,x2,x3) = σ

t2 (x1,0,x3) = 0
t2 (x1,L,x3) = 0
t3 (x1,x2,0) = 0
t3 (x1,x2,L) = 0

(2)



u1 (0,x2,x3) = 0
u1 (L,x2,x3) = εL
t2 (x1,0,x3) = 0
t2 (x1,L,x3) = 0
t3 (x1,x2,0) = 0
t3 (x1,x2,L) = 0

(3)
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Table 1: Main features of the FE mesoscale models used in the parametric study:
ξ , characteristic size defined according to (1); VR, reinforcement volume fraction;
NP number of particles; r1, r2, r3, different levels of mesh refinement (see section
2.1); NN number of nodes; NE number of elements.

ξ VR NP Name Mesh refinement
r1 r2 r3

NN NE NN NE NN NE

4.64 0.05 6 v1p05 4.9E3 3.1E3 2.1E4 1.1E4 3.8E4 2.4E4
0.10 13 v1p10 4.9E3 3.1E3 2.7E4 1.6E4 4.4E4 2.8E4
0.15 19 v1p15 4.9E3 3.1E3 3.4E4 2.1E4 5.2E4 3.4E4
0.20 29 v1p20 4.9E3 3.1E3 4.1E4 2.6E4 5.7E4 3.7E4
0.25 36 v1p25 4.9E3 3.1E3 5.6E4 3.7E4 7.0E4 4.7E4

9.30 0.05 47 v2p05 3.3E4 2.3E4 1.4E5 8.3E4 - -
0.10 94 v2p10 3.3E4 2.3E4 2.1E5 1.3E5 - -
0.15 146 v2p15 3.3E4 2.3E4 2.6E5 1.7E5 - -
0.20 196 v2p20 3.3E4 2.3E4 3.4E5 2.3E5 - -
0.25 248 v2p25 3.3E4 2.3E4 4.2E5 2.9E5 - -

13.9 0.05 153 v3p05 1.1E5 7.6E4 4.7E5 2.8E5 - -
0.10 302 v3p10 1.1E5 7.6E4 6.8E5 4.4E5 - -
0.15 459 v3p15 1.1E5 7.6E4 9.1E5 6.1E5 - -
0.20 614 v3p20 1.1E5 7.6E4 1.2E6 8.1E5 - -
0.25 781 v3p25 1.1E5 7.6E4 1.5E6 1.0E6 - -

18.6 0.05 352 v4p05 2.5E5 1.8E5 - - - -
0.10 687 v4p10 2.5E5 1.8E5 - - - -
0.15 1054 v4p15 2.5E5 1.8E5 - - - -
0.20 1427 v4p20 2.5E5 1.8E5 - - - -
0.25 1814 v4p25 2.5E5 1.8E5 - - - -

23.2 0.05 661 v5p05 4.8E5 3.5E5 - - - -
0.10 1341 v5p10 4.8E5 3.5E5 - - - -
0.15 2037 v5p15 4.8E5 3.5E5 - - - -
0.20 2734 v5p20 4.8E5 3.5E5 - - - -
0.25 3463 v5p25 4.8E5 3.5E5 - - - -
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a)

c) f)

e)b)

d)

Figure 1: Six illustrative examples of the mesoscale FE models (part of the ma-
trix material elements are not displayed): a) v1p05r1, b) v1p05r2, c) v1p05r3,
d)v5p05r1, e)v3p15r1, f) v2p25r1. Refer to sections 2.1 and 2.3 for the meaning of
abbreviations.
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t1 (0,x2,x3) =−σ

t1 (L,x2,x3) = σ

u2 (x1,0,x3) = 0
u2 (x1,L,x3) |x2,x3 6=L= u2(0,L,L)
u3 (x1,x2,0) = 0
u3 (x1,x2,L) |x2,x3 6=L= u3 (0,L,L)

(4)



u1 (0,x2,x3) = 0
u1 (L,x2,x3) = εL
u2 (x1,0,x3) = 0
u2 (x1,L,x3) |x2,x3 6=L= u2(0,L,L)
u3 (x1,x2,0) = 0
u3 (x1,x2,L) |x2,x3 6=L= u3 (0,L,L)

(5)

where εL and ti are the imposed displacement and stress in the xi direction. Bound-
ary conditions (2) and (3) correspond to load- and displacement-controlled exper-
iments, in which load or displacement is imposed in the tension-compression di-
rection while the specimen lateral surface is stress-free. The other two sets, (4)
and (5), correspond to load controlled and displacement controlled uniaxial tests in
which the planarity of the faces parallel to the tensile direction is imposed as well.
They have no direct experimental counterpart, nevertheless they can describe the
response of a material rather than that of a single specimen (e.g. inside a structure
much larger than the volume element). Note that set (5) can also be seen as de-
scribing a special case of microstructure, in which a volume element eight times
the size of the original cell repeats periodically.

In the case of a homogeneous material all the sets of boundary conditions would
lead to the same uniaxial stress-strain curve, independently of the size of the model.
Following the classification by Jiang et al. (2001), set (2) corresponds to purely
static uniform boundary conditions

ti = σi jn j ∀xi j ∈ ∂Ω, (6)

set (5) to purely kinematic uniform boundary

ui = ε i jx j ∀xi j ∈ ∂Ω, (7)

while the other two are mixed static-kinematic uniform boundary conditions

(ti−σi jn j)(ui− ε i jx j) = 0 ∀xi j ∈ ∂Ω. (8)
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In the present work, each set of boundary conditions was first tested in a separate
parametric study in order to evaluate its influence on the predictions of effective
elasto-plastic response and on the convergence of the volume of interest towards
the RVE. In the second part of the work dedicated to the evaluation of the RVE
size, only mixed static-kinematic boundary conditions (3) were used. Note that
boundary conditions (2) and (3) are computationally less expensive than (4) and (5)
since they do not impose any constraints on the displacements perpendicular to the
load direction. As discussed in the introduction, periodic boundary conditions are
usually preferred for the prediction of mean effective response but cannot provide
good estimates of the physical RVE size of random particle reinforced composites
and are thus not considered here.

2.3 Material Properties

For both the elastoplastic and the elastoviscoplastic simulations the inclusion ma-
terial was assumed linear elastic with a Young’s modulus EP five times that of the
matrix EM while the same Poisson’s ratio, 0.3, was assigned to the two materials.
In the elatoplastic simulations the matrix material was assumed to be elastoplastic
and to follow the Von Mises yield criterion with an isotropic bilinear hardening of
the form

σy(εp) = σ
0
y +hεp/0.05 0≤ εp < 0.05

σy(εp) = σ
0
y +h εp ≥ 0.05,

(9)

where σy is the yield stress, εp the equivalent plastic strain and h the hardening
coefficient. For σy the value EM/1000 was chosen. Three different values of h
were considered: 0, 0.2σy and 0.4σy. In the following these three materials are
referred to as ‘h0’, ‘h2’, ‘h4’.

In the elastoviscoplastic simulations the matrix material was assigned a power law
creep viscoplastic response:

ε̇vp = Aσ
n (10)

where ε̇vp is the equivalent viscoplastic strain rate and σ is the equivalent von Mises
stress. The proportionality coefficient A was kept constant while two values of
the stress exponent n = 4 and n = 8 were considered. In the following these two
materials are referred to as ‘n4’, ‘n8’.

For the sake of the generality of the results, the effective stress-strain curves of the
composites will be represented in a normalized form (section 3). For elastoplas-
ticity, stress values are normalized by the yield stress of the matrix material σ0

y

and strain values by the corresponding yield strain σ0
y /Em. For the normalization
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of the elastoviscoplastic stress-strain curves an analogous strategy is used: stress
values are divided by the yield stress of the matrix material at imposed strain rate
σ0

vp = (ε̇/A)(1/n), strain values by the corresponding yield strain ε0
vp = σ0

vp/EM.

2.4 Representativeness Metric

According to the definition by Drugan and Willis (1996) the RVE size is achieved
when the effective mesoscale response is sufficiently accurate. Considering the
simulated stress-strain response of the largest mesoscale model (namely ‘v5’ with
ξmax=23.2) as a reference, the relative cumulative error norm R is proposed as rep-
resentativeness metric

R(ε,ξ ) =
∫

ε

0 |σ(ε ′,ξ )−σ(ε ′,ξmax)|dε ′∫
ε

0 σ(ε ′,ξmax)dε ′
, (11)

where ε is the imposed average strain level and σ and ε are the volumetric average
values of the stress and strain components in the tensile direction. Note that this
error function R represents a surface of relative prediction error as a function of the
total applied strain ε and the size of the simulated mesoscale volume ξ . Therefore,
given a maximum relative error threshold, the size of the RVE can be estimated
by finding the smallest mesoscale volume for which the cumulative error norm is
below the chosen error threshold value. In the present work, a maximum error
value of 2% was chosen and bilinear interpolation was used to approximate the
error surface from the discrete FE simulation results.

3 Results and Discussion

3.1 Effect of Boundary Conditions

The results of the parametric study dedicated to the influence of the boundary con-
ditions are summarized in figure 2. It can be noted that with purely static boundary
conditions (2) only very limited effective strain levels could be obtained. The non-
linear FE solver could not converge because of significant plastic strain localization
in the corners of the mesoscale models. This problem clearly shows that purely
stress-based boundary conditions are inappropriate for the homogenization of plas-
tic materials as they do not sufficiently constrain the development of the plastic
field and yield to premature localization in the corner regions of the model. On the
other hand the other three sets of boundary conditions did not suffer from any nu-
merical problem. Nevertheless, the macroscopic response obtained with kinematic
boundary conditions (5) despite converging to a unique stress-strain curve for larger
mesoscale volumes, overestimates the stiffness of the composite since the imposed
planarity of all the boundary faces strongly prevents the development of plastic
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deformation near the boundaries of the mesoscale volume. Therefore an upper es-
timate of the effective response of the medium is obtained. The two sets of mixed
boundary conditions (3) and (4) clearly exhibit convergence to the same response
for increasing mesoscale volumes. As expected, the converged predictions of the
stress-strain curve obtained with hybrid boundary conditions predict significantly
smaller stress values than those obtained by applying (5). Note that the stiffness of
the obtained response is proportional to the number of faces of the mesoscale vol-
ume which are constrained to stay planar during deformation: none for (2), two for
(2), four for (4) and all the six faces for (5). These results confirm those formerly
obtained by Jiang et al. (2001), Ostoja-Starzewski (2008) and Galli et al. (2008)
and show that similarly to linear elasticity the stiffness of the obtained response is
proportional to the number of faces which keep planar during the deformation pro-
cess (Huet, 1997). If progressively larger volumes of material are considered the
difference between the curves obtained with the same set of boundary conditions
decreases. The first two sets of boundary conditions whose responses become con-
stant with ξ are (3) and (4) moreover the differences between the respective stress
strain curves are negligible, therefore the RVE size is achieved.

The results of the study of the influence of boundary conditions support the choice
of adopting mixed boundary conditions (3) throughout the rest of the work. Com-
parisons with experiments (Sivasubramanian et al., 2009) show that hybrid bound-
ary conditions usually tend to provide more realistic estimates of the overall re-
sponse of elastoplastic composites as they do not excessively constrain the devel-
opment of plastic strain in the model. The choice of mixed uniform boundary
conditions is in line with the results by Jiang et al. (2001), who studied the shear
response of an elastoplastic random composite under mixed boundary conditions.
Moreover Pahr and Böhm (2008) validated the applicability of mixed boundary
conditions for assessment of the elastoplastic response of orthotropic composites.
The present results also confirms those obtained in the case of linear elasticity with
and without damage (Huet, 1997; Pahr and Zysset, 2008).

After this study on the influence of boundary conditions on the composite response,
all the subsequent results in the present work were obtained by applying mixed
boundary conditions (3). Note that for homogenization studies, that is to say with
the objective of assessing effective properties, the use of periodic boundary con-
ditions is in general preferred, e.g. Böhm and Han (2001); Pierard et al. (2007),
since compared to purely static or kinematic boundary conditions they provide a
sufficiently accurate effective behaviour with smaller unit cells. However, to the
authors’ knowledge a rigorous comparative study on their computational perfor-
mance compared with that of boundary conditions (3), (4) (5) is not reported in the
literature. Moreover periodic boundary conditions require mesh periodicity and in
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Figure 2: The influence of boundary conditions (b.c.) on the effective elastoplastic
stress-strain curve: purely kinematic b.c. (5) lead to an overestimation of the effec-
tive stiffness; mixed b.c. (3) and (4) lead to the same stress-strain curve as larger
volumes are considered (v3 and v5); the solution diverges for small normalised
strain values when purely static b.c. (2) are applied. See table 1 for the model main
features and sections 2.1 and 2.3 for the abbreviations.

general, e.g. for spherical inclusions, microstructure periodicity, which is not an
applicable assumption for random particle reinforced composites as studied herein.

3.2 Mesh Convergence

Some significant results which illustrate the influence of mesh refinement on the ef-
fective properties are displayed in figure 3. It can be seen, figure 3 a), that for small
volume fractions, p05, coarse meshes are already sufficient to catch the material re-
sponse: both in elastoplasticity and elastoviscoplasticity the curves for r1, r2 and r3
are superposed. On the contrary, for higher reinforcement volume fractions mesh
refinement is fundamental to get accurate results. As the volume fraction increases,
the interaction distance between particles gets smaller and thus a finer mesh is re-
quired to capture the development of plastic deformation between particles. For
this reason the responses for r2 and r3 are significantly more compliant than for r1.
Moreover in all cases the difference between the stress-strain curves for r2 and r3 is
negligible proving that the level of refinement r2, corresponding to approximately
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225 elements per particle, is sufficient to obtain converged FE solutions. Figure 3 b)
summarizes some of the results of the study of the influence of mesh refinement on
the convergence of the mesoscale models towards the RVE. The relative differences
between the stress-strain curves obtained with models of different dimensions, v1,
v2 and v3, is approximately the same for refinement r1 and r2. Note that v3 is
representative for the level of strain considered, therefore mesoscale models with
r1 and r2 mesh refinements become representative for the same values of ξ . This
leads to the important conclusion that in the considered framework – small strain
and non-softening material response (Gitman et al., 2007) – the level of mesh re-
finement does not significantly affect the estimation of the RVE size. Nevertheless
it is of paramount importance to obtain quantitatively accurate predictions of the
effective stress-strain response of the elastoplastic or elastoviscoplastic compos-
ites. This result concurs with the findings by Li and Ostoja-Starzewski (2006) and
supports the choice of using the first level of mesh refinement r1, computationally
more affordable, to assess the RVE size throughout the rest of the study.

3.3 RVE size

An example of the obtained results for the relative error R as a function of strain
is reported in figure 4 where the elastoplastic composite p15h2 is considered. The
chosen error threshold is 0.02. It can be seen that v3 is representative up to an
average strain of approximately 0.02 while if the level of deformation of interest is
larger v4 is required.

The plots of the evolution of the RVE size with the effective strain are summarized
in figures 5 and 6 for elastoplastic and elastoviscoplastic composites, respectively.
In the following the influence of composition, material properties and strain mag-
nitude, on the size of the RVE will be analysed individually with the objective of
assessing their relative importance.

The RVE sizes of all the composites with the exception of those with 5% reinforce-
ment volume fraction exhibit a strong dependence on the imposed effective strain.
As the imposed macroscopic strain increases, already at effective stress levels well
below the yield stress of the matrix material, plastic strain develops because of the
stress concentrations due to the difference in the elastic properties of matrix and
particles. The resulting strain field is highly inhomogeneous and large mesoscale
volumes are required to obtain a representative average response. This effect is less
evident in the composites with low reinforcement volume fraction because parti-
cles are almost isolated and therefore a nearly homogeneous strain field develops
in most of the mesoscale volume.

If composition is considered, i.e. the reinforcement volume fraction, it can be ob-
served that the size of the RVE is strongly related to the reinforcement volume
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Figure 3: Study of the mesh convergence. Mesh refinement level r2 is required for
composites with a reinforcement volume fraction larger than 5%, a). In b) it can be
noted that the different models exhibit very similar shifts in the stress-strain curves
due to mesh refinement.
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Figure 4: An example plot of the evolution of the relative error R, defined in (11),
for an elastoplastic composite with 15% vol. reinforcement. The simulated volume
is considered representative if R≤ 0.02.

fraction and this dependence is nontrivial. The RVE size for composites with 5%
vol. reinforcement is in the interval 5 < ξ < 6 for all the materials, therefore close
to the value ξ = 4.5 reported by Drugan and Willis (1996) to have a 1% error for
linear elastic composites. As the reinforcement volume fraction increases the size
of the RVE becomes significantly larger and its dependence on strain more marked.
It can be noted that the RVE size increases up to 20% vol. reinforcement and then
decreases, with the 25% vol. reinforcement composites exhibiting approximately
the same RVE size as those with 15% vol. reinforcement. This reduction of the
RVE size can be explained by the fact that 25% vol. reinforcement is very close
to the jamming limit of the distribution, therefore the linear elastic reinforcement
forms a quasi continuous stiff network in the composite which limits the devel-
opment of plastic strain concentrations. On the other hand in the composite with
20% vol. reinforcement the particles are not sufficiently packed to constrain plastic
strain development. Overall, the estimated RVE size for high reinforcement volume
fractions (15% to 25%) falls in the range of 10 < ξ < 20, so approximately two to
four times larger than the size of the RVE of elastic particle reinforced composites.

The results relative to the elastoplastic composites (figure 5) show that while the
composition proves to have a very marked influence on the RVE size, the same can-
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not be said for the hardening coefficient. The difference in the RVE size between
the elastic perfectly plastic composite, h0 and that with the largest hardening, h2,
is negligible, with the composites with perfectly plastic matrices having slightly
larger RVEs (figure 5). Since the hardening range considered herein is wide, these
results are likely to apply to a wide range of elastoplastic particle-reinforced com-
posites and in particular to most of the PRMMC of technological interest. The same
conclusion can be drawn for the elastoviscoplastic composites (figure 6), which un-
der constant strain rate can be assimilated to elastic perfectly plastic materials: the
estimated RVE sizes for n = 4 and n = 8 are very similar. Moreover, the considered
range of stress exponents 4 ≤ n ≤ 8 covers the majority of engineering materials,
to which the present results apply.

The assessment of the small influence of constitutive parameters on the RVE size
leads to the conclusion that the main parameter that determines it for an elastoplas-
tic or elastoviscoplastic composite is the amount of plastic deformation developed
in the matrix material. Note that the macroscopic plastic strain is an indicator of the
average plastic strain in the material but it is not the volume average of the actual
plastic strain in the matrix material (Suquet, 1985). If the results of the RVE sizes
for the two mechanical behaviours are compared it can be noted that the RVE sizes
at corresponding values of normalised strain are comparable. The curves in figures
5 and 6 can be used to have estimates of the RVE size for elastoplastic and elasto-
viscoplastic composites in the considered range of compositions with two caveats:
1) normalised strain values can correspond to very different levels of actual strain
therefore the compatibility with the small strain assumption has to be verified, in
particular it is recommended that the macroscopic strain is not larger than 5%, 2)
the curves are representative of uniaxial monotonic loading and therefore have to
be used with extreme caution when different loading histories are considered.

3.4 Stress-strain curve predictions

Two sets of normalized stress strain curves for representative elastoplastic and elas-
toviscoplastic composites are summarized in figures 7 and 8, respectively. The
curves were obtained from models with ξ = 13.9 therefore they are plotted up
to the maximum strain level at which the volume is representative. Note that the
caveats for the employment of the RVE size curves (figures 5 and 6) hold for these
stress-strain curves as well, in particular the macroscopic strain should not exceed
5% to satisfy the small strain assumption used in the FE models.

4 Summary and Conclusions

In this work, a large scale parametric study was carried out to assess the RVE size
of elastoplastic and elastoviscoplastic particle-reinforced composites with a ran-
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Figure 5: RVE size for elastoplastic composites. The hardening coefficient has a
small influence on the RVE size compared to the reinforcement volume fraction
and the strain level.
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Figure 7: Non dimensional stress-strain curves for elastoplastic composites.
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dom microstructure. Reinforcement volume fractions up to 25% were considered.
The range of values of the constitutive parameters of the base materials covers the
majority of particle-reinforced metal matrix composites used in applications. Four
different sets of uniform boundary conditions were employed: kinematic, static
and two different types of mixed boundary conditions. The respective results were
compared to evaluate their influence on the effective response. The two types of
mixed uniform boundary conditions resulted the most appropriate since they lead
to the same stress-strain response. Purely static boundary conditions resulted to
be inappropriate because of premature plastic strain localization while kinematic
boundary conditions lead to an overestimation of the stiffness of the composite ma-
terial and therefore can be regarded as an upper estimate. A mesh convergence
study showed that the convergence of the mesoscale model towards the RVE was
not affected by the mesh refinement, nevertheless the level of mesh refinement is
of key importance to obtain quantitative predictions of the macroscopic response
of the material. The physical size of the RVE was estimated for each material be-
havior by taking the largest mesoscale model as a reference and constructing an
error function depending on both model size and on the applied strain and then es-
timating the size corresponding to a maximum error of 2%. The RVE size proved
to mostly depend on the volume fraction of reinforcement and on the accumulated
plastic strain; on the contrary the material properties resulted to have a small in-
fluence on it. The estimates of the RVE size provided herein are instrumental to
both numerical and experimental mechanics. For experiments, the RVE size esti-
mates can be applied, for example, to evaluate the minimum size of a test specimen
to obtain representative results while for numerical homogenization and multiscale
modeling, the RVE size is the main parameter that determines the transition of scale
between mesoscale microstructural models and macroscopic models, in which the
response of a composite is described in terms of effective properties.
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