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Abstract

Modern programming languages have adopted the floating point
type as a way to describe computations with real numbers. Thanks
to the hardware support, such computations are efficient on modern
architectures. However, rigorous reasoning about the resulting pro-
grams remains difficult, because of a large gap between the finite
floating point representation and the infinite-precision real-number
semantics that serves as the mental model for the developers. Be-
cause programming languages do not provide support for estimat-
ing errors, some computations in practice are performed more and
some less precisely than needed. We present a library solution for
rigorous arithmetic computation. Our library seamlessly integrates
into the Scala programming language, thanks to its extensibility
mechanisms such as implicit conversions and the treatment of arith-
metic operations as method calls. Our numerical data type library
tracks a (double) floating point value, but also an upper bound
on the error between this value and the ideal value that would be
computed in the real-value semantics. The library supports 1) an
interval-based representation of the error, and 2) an affine arith-
metic representation, which is generally more precise and keeps
track of the correlation between different numerical values in the
program. The library tracks errors arising from the rounding in
arithmetic operations and constants, as well as user-provided er-
rors that can model method errors of numerical algorithms or mea-
surement errors arising in cyber-physical system applications. Our
library provides approximations for most of the standard mathe-
matical operations, including trigonometric functions. The library
supports automated demand-driven refinement of computed errors
by lazily increasing the precision of iteratively computed values
to meet the desired precision of the final expression. Furthermore,
the library supports dynamic transformation of the evaluation order
following a set of algebraic rules to reduce the estimated error in
the computed value. The transformed expressions can be used to
suggest static rewrites of the source code to the developer. We eval-
uate the library on a number of examples from numerical analysis
and physical simulations. We found it to be a useful tool for gaining
confidence in the correctness of the computation.

1. Introduction

Numerical computation has been one of the driving forces in the
early development of computation devices. Floating point represen-
tations have established themselves as a default data type for imple-
menting software that approximates real-valued computations. To-
day, floating-point-based computations form an important part of
scientific computing applications, as well as systems that need to
reason about the parameters of the physical world. The IEEE stan-
dard [37] establishes a precise interface for floating point computa-
tion. Over the past years, it has become a common practice to for-
mally verify the hardware implementing this standard [17, 29} 35].
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On the other hand, the software using floating point arithmetic re-
mains difficult to reason about. As an example, consider the exper-
iment in N-version programming [[18], in which the largest discrep-
ancies among different software versions were found in numerical
computation code.

One of the main difficulties is understanding how the approx-
imations performed by the individual arithmetic operations (pre-
cisely specified by the standard) compose into an overall error of
a complex computation relative to a hypothetical ideal value. The
floating point arithmetic is often, but not always sufficient to obtain
a desired result, yet the developer currently receives little feedback
on how accurate the computation is.

The goal of our work is to provide the developer with the infor-
mation on how the inaccuracies propagate, and to suggest changes
to the program to obtain sufficient accuracy and performance. The
sources of inaccuracies that our system analyzes arise from round-
off in floating point computation, but also from the approximate na-
ture of the measured quantities that the variables in a program rep-
resent. We aim to provide programmers with an easy-to-use system,
which they can use in a programming language much like the stan-
dard floating point data types (such as double). For these reasons,
we deploy our solution as a library to track numerical computation,
estimate the errors, suggest alternative forms of expressions, and
suggest a sufficient number of iterations for numerical algorithms.

Contributions. This paper makes the following contributions.

1. We develop a data type that provides rigorous upper bounds on
the errors arising from the floating point computation, as well
as user-specified errors on input variables (arising from, e.g.
physical measurements or iterative numerical methods). Our
data type computes practically useful error bounds through a
combination of affine arithmetic and intervals.

2. Qur affine arithmetic implementation goes beyond the exist-
ing ones because it 1) supports a large number of non-linear
and transcendental functions, and 2) contains a mechanism to
soundly bound the number of error terms, ensuring predictable
performance.

3. We describe the deployment of our data type in the Scala pro-
gramming language [31]. Thanks to Scala’s treatment of oper-
ators as methods and the presence of the implicit conversions,
the developers can use the resulting data type almost identically
as the built-in primitive Double type.

4. Our library supports syntactic expression interpretation of arith-
metic operations: it dynamically builds the syntax trees of nu-
merical expressions and evaluates them on demand to control
the precision and performance.

5. As one application of the syntactic interpretation, we describe
rule-based expression rewriting. Expression rewriting automati-
cally discovers alternative expressions that yield the same value
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in real-number semantics, yet produce a more accurate result in
the affine arithmetic.

6. As another application, we present the mechanism to perform
demand-driven iterative numerical computations. The expres-
sion trees at runtime contain leaves with values initially com-
puted with few iterations. Our system refines the values on de-
mand to resolve e.g. the truth values of comparisons.

2. Examples

We illustrate the capabilities of our system through a number of
examples.

2.1 Keeping track of time

In simulations it is common to use a variable to keep track of
time. Developers may forget however, that not all numbers can be
represented in binary and hence a small roundoff error is introduced
at each step. Running the code in with our SmartFloat
library type shows that indeed the first version is not accurate,
but that using 0.125 as an increment, which can be represented in
binary, produces an exact result.

2.2 Quadratic formula

Another common example to show the potential pitfalls of floating-
point numbers is the quadratic formula in [Figure 2] because it pro-
duces less accurate results (two orders of magnitude in this exam-
ple), when one root is much smaller. Our library makes this ef-
fect visible through the computed errors. shows the result
of rewriting this code following the method in [13]. Our library
confirms that both roots are now computed with approximately the
same accuracy.

2.3 Triangle

The textbook formula for computing the area of a triangle exhibits
inaccuracy when the triangle is flat. A formula proposed by W.
Kahan [23]] rearranges the calculation such that more significant
digits are correct. In we apply our automated equation
rewriting technique to one such flat triangle. The

library suggests the following rewritten formula
\/(a+(b+c))*(7a+b+c)*(afb+c)*(a+bfc)
16

which, when evaluated, gives the same result in double precision as
the approach by Kahan.

2.4 Error tolerance

It is often convenient to ignore very small differences between the
numerical quantities. To achieve this, our library supports a user-
defined error tolerance. An illustrative example code is in
Note that the error on z is too small to influence the control flow. For

var time = SmartFloat(0.0)
for (i < 0.until(864000)) time = time + 0.1
printin("time 1: " 4 time.toStringAffine)

var time2 = SmartFloat(0.0)
for (i « 0.until(691200)) time2 = time2 + 0.125
println(”time 2: " + time2.toStringAffine)

> time 1: 86400.00000054126 (4.796186625010571E-11)
time 2: 86400.0 (0.0)

Figure 1. Keeping track of time with time step 0.1 and 0.125. The
numbers in parentheses denote the bounds on the relative errors.
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var a = SmartFloat(3.0)
var b = SmartFloat(56.0)

var ¢ = SmartFloat(1.0)
val discr = bxb — a % c % 4.0

var r2 = (—b + sqrt(discr))/(a * 2.0)
var rl = (—b — sqrt(discr))/(a * 2.0)
printin(" r1="+r1l.toStringInterval +" ,r2="+4r2. toStringlnterval)

> rl = -18.648792408321412 (1.90506366364735E-16) ,
r2 = -0.017874258345252986 (6.63832218741081E-14)

Figure 2. Classic quadratic formula.

val discr = bxb — a % c % 4.0
val (rkl: SmartFloat, rk2: SmartFloat) =
if(bxb — axc > 10.0)

if(b > 0.0) ((—b — sqrt(discr))/(a * 2.0),

c % 2.0 /(—b — sqrt(discr)))
else if(b < 0.0) (c x 2.0 /(—b + sqrt(discr)),
(—b + sqrt(discr))/(a = 2.0))
else ((—b — sqrt(discr))/(a * 2.0),

(—b + sqrt(discr))/(a * 2.0))
else

((—b — sqrt(discr))/(a * 2.0),
(—b + sqrt(discr))/(a * 2.0))
printIn(” r1="+rk1.toStringInterval+" ,r2="+rk2.toStringlnterval)

> rl = -18.648792408321412 (1.90506366364785E-16),
r2 = -0.01787425834525319 (3.882059758719987E-16)

Figure 3. Rewritten quadratic formula.

val a = SmartFloat(9.01, "a")

val b = SmartFloat(4.503, "b")

val ¢ = SmartFloat(4.5092, "c")

vals = (a+ b + ¢)/2.0

val area = sqrt(s * (s — a) * (s — b) * (s — ¢))
analyze(area)

Figure 4. Rewriting of the textbook formula for the area of a
triangle.

errorTolerance = 1le—10

var x = SmartFloat(11.1)

var y = x + 0.00001

var z = x + 1.0e—11

if(x == z) printIn("x and z are equal”)
else printIn("x and z are not equal”)

if(x == y) printin("x and y are equal”)
else printIn("x and y are not equal”)

errorTolerance = 1.0e—14
var f = (x—x) + (y—y) + (z-2)

if (f == 0.0) printIn("f is indeed 0")
printIn(f.toStringInterval)
printIn(f.toStringAffine)

> x and z are equal
x and y are not equal
f is indeed 0
0.0 (1.4210854715202004E-14)
0.0 (0.0)

Figure 5. Use of user-defined error tolerance.
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Figure 8. Two springs with two different amplitudes. We measure
their collective extension from the middle the grey line.

the last test f == 0, the expression is evaluated first with interval
arithmetic. This test fails, which we can see on the second last
line in the output, as the error computed is larger than the error
tolerance. Then, on the second evaluation with affine arithmetic,
the correct truth value true can be determined. This illustrates
a simple case in which our library gradually estimates the error
using more and more precise methods. The next subsection shows
a more radical approach to automatically refining errors due to the
computation method itself.

2.5 Springs

Our system also supports quantities defined in an iterative fashion.
As an example, consider a spring whose behavior is defined by a
differential equation (Figure 6). The spring’s position is calculated
by simulating its behavior. The accuracy of the simulation is deter-
mined by the parameter ¢ that controls the time step of the simu-
lation. Because the method error outweighs the roundoff errors in
this case, time steps of 0.1, 0.01, ... are acceptable. For an exam-
ple application, consider the setup in [Figure 8] where two springs
with different parameters oscillate inside two tanks. After a certain
time, say 1s, a controller takes an action based on the amount of
the total volume of the displaced fluid. shows the corre-
sponding simplified piece of code. In this case, it is not necessary
to know the exact values; a coarse estimate is sufficient. In the first
case, the position of both springs is determined with a time step of
dt = 0.0001. In the second case, only a very coarse estimate is
computed initially, with dt = 0.1. The estimate is then automati-
cally refined by our library on demand to decide the condition of
the if-statement. The result is a difference in computation times: the
second version takes only half the time to compute, because it turns
out that the first spring should be computed with d¢ = 0.0001,
whereas dt = 0.01 suffices for the second spring. The SmartFloat
prints the number of iterations for each iterative variable that were
needed to achieve the desired accuracy. The developer can then use
this information to improve the final code, even if the final code
ends up using standard Doubles and a pre-determined precision of
iterative algorithms.

3. Interval Arithmetic

In the most basic version of our library, we wish to quantify the
roundoff errors committed at each step of a floating-point calcula-
tion and their propagation. The natural way to do this is to keep for
each value an interval that is guaranteed to contain the value that
would have been computed in the real-number semantics. Using
the standard interval arithmetic [30] we can then follow the com-
putation trace and at each step to calculate the floating-point value
and the associated interval error bound.
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The propagation of errors is then carried out in interval arith-
metic. The roundoft errors at each step can be determined from the
specification of the IEEE 754 floating-point standard [37], which
all recent hardware conforms to and which is also respected in some
subset by main programming languages. The JVM (Java Virtual
Machine), on which Scala’s code is run, supports single and double
precision floating-point values according to the standard as well as
the rounding-to-nearest rounding mode [25]. Also by the standard,
the basic arithmetic operations {+, —, *, /, \ﬁ are rounded cor-
rectly, which means that the result from any such operation must be
the closest representable floating-point number. Hence, it follows
for binary operations that the floating-point result fI() is given by

fllzoy) = (woy)(1+6) [0 <em, oe{+,— %/} (1)

€m is the machine epsilon and determines the upper bound on the
relative error of a floating-point computation. Then the rigorous
bounding interval for each basic operation is computed as

fllzoy) =[(zoy) —em(zoy), (xoy) + em(z 0y)]

where outwards rounding retains rigorousness. The error for square
root follows similarly.

The definition of constants requires the following considera-
tion. A single value, say 0.1, is represented in a real valued in-
terval semantics as the point interval [0.1,0.1]. This no longer
holds for floating-point values that cannot be represented exactly in
the underlying binary representation. The library tests each value
for whether it can be represented or not. If not, it computes the
interval bound using outwards rounding. In this way the over-
approximation is limited by only increasing the interval bounds
where necessary. The library has the exact values at runtime, so that
the error bounds computed will be as tight as the IEEE standard
allows it. Our library can thus generally compute tighter bounds
compared to a static analysis-based approach.

Thanks to dedicated floating-point units in most hardware,
floating-point computations are fast, so that our library uses dou-
ble precision floating-point values only (i.e. €, = 27°). This is
also the precision of choice for most numerical algorithms, but it
is straight-forward to adapt the error computations for single pre-
cision, or any other precision with a corresponding semantics (in-
cluding, for example, custom representations using a small number
of bytes, as used in certain embedded applications). The outwards
rounding on the interval bounds can be achieved easily by using
the Java library function nextUp (added in Java 1.6 and accessi-
ble from Scala). The symmetric equivalent nextDown follows as
—nextUp(—z) since negation does not incur any rounding errors.

In addition to this, our library supports a subset of the scala.math
library functions, which we consider the most useful:

® log, expr, pow, cos, sin, tan acos, asin, atan
® abs, max, min
e constants Piand E

The goal is to make the library as applicable for real applications
as possible. That is, for any common code the developer should be
able to easily adapt it, so that it will be also bounding its roundoff
errors. This also includes support for the special values NaN and
+o00 with the same behavior as the original code.

The library utilizes the ‘soft’ policy advocated in [10]], whereby
slight domain violations for some of the functions are attributed
to the inaccuracy of our over-approximations and are ignored. For
example, the square root of [—1, 4] results in the interval [0, 2]. This
behavior is important in reducing false alarms due to the inherent
over-approximation.

The calculation of nonlinear library functions log, exp, cos, . . .
requires specialized rounding, since these are correct to 1 ulp (unit
in the last) only, and hence less accurate than the elementary arith-
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def springFnc(k: SmartFloat, m: SmartFloat, xmax: SmartFloat) =
(i Int) => {
var t = SmartFloat(0.0)
val dt = 1.0/(math.pow(10, (i4+1))) //0.1, 0.01, 0.001 etc.
var x: SmartFloat = xmax
var v = SmartFloat(0.0)
var a = — (k/m) % x
val errX = 0.5xdtxdt*(k/m)xxmax
val errV = 0.5xdtxdt*(k/m)xsqrt(k/m)+xmax

while (t <=1.0) {
x = addNoise(x + dtxv, errX)
v = addNoise(v + dtxa, errV)
a=— (k/m) % x
t=t+dt

}

x

val springl
val springl

= new SmartFloat(springFnc(6.0, 1.0, 12.0), 3)
= new SmartFloat(springFnc(1.0, 1.0, 1.0), 3)
var volume = (2.3 * springl + 1.3 * spring2) + 5
if(—15.60 < volume && volume < —15.50)

printin(" take some action”)

val springl = new SmartFloat(springFnc(6.0, 1.0, 12.0), 0)
val spring2 = new SmartFloat(springFnc(1.0, 1.0, 1.0), 0)

var volume = (2.3 x springl + 1.3 x spring2) + 5
if(—15.60 < volume && volume < —15.50)
printIn(" take some action”)

Figure 6. Function modeling the behavior of a spring.

metic operations, which are correct to within 1/2 ulp. The directed
rounding procedure is thus adapted in this case to produce larger
interval bounds.

3.1 Why intervals can fail

This would be the end of the story, if intervals did not have the un-
fortunate disadvantage of ignoring correlations between variables
and thus often over-approximating the errors far too much. For
example, £ — x = returns O in interval arithmetic only if z is a
point interval, otherwise the interval width is doubled. To illustrate
this effect on a real-world example, consider the following piece of
code that uses Halley’s method [36]] to compute the cube root of 10.
After 5 iterations we notice that the result starts to oscillate in the
last significant digit, so we stop.

val a: SmartFloat = 10
var xn = SmartFloat(1.6)

for(i < 1 until 5) {
xn = xn % ((xn#xn#xn + 2.0%a)/(2.0xn*xn*xn + a))

non

println(xn.toStringlnterval + + xn.interval)

The result returned by interval arithmetic is the following

> 2.1544346900318834 (5.689131468487283E-14)
[2.1544346900317617,2.154434690032006]

where the numbers in brackets show the computed interval. This
result suggests that only 12 significant digits are correct. However,
comparing the computed result to the result computed to an accu-
racy of 30 digits in Mathematica [38]], we can see that only the last
significant digit is wrong:

2.154434690031883721...

In the next section, we show that fortunately, there is a way to
get around this problem and how to recover some of the accuracy.
Indeed, if we use affine arithmetic on the same computation instead
of intervals to track the errors, we obtain the following result:

> 2.1544346900318834 (8.245118070271899E-16)
[2.1544346900318816, 2.154434690031885]

from which we can tell that the digits 2.15443469003188 are
definitely correct. We gave gained 3 correct significant digits!
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Figure 7. Example usage of the two-spring example.

4. Affine Arithmetic

Affine arithmetic was introduced in [[10] and addresses the problem
of correlations between variables by representing variables as affine

forms
n
T =x9+ E Ti€;
i=1

where o denotes the central value and each ¢; € [—1, 1], called
noise symbol, is a formal variable denoting a deviation from the
center. The maximum magnitude of each deviation is given by
the corresponding x;. The sign of x; does not matter in isolation,
however it reflects the relative dependence between values. For
example, take x = xo + x1€1, then

x—x=2x0+2x161 — (To+2x1€1) =0 — X0 + 2161 — X161 =0

in real number semantics. In floating-point semantics the result is
not entirely zero due to roundoff errors.
The interval represented by an affine form is computed as

[2] = [xo — rad(Z), xo + rad(Z)] rad(z) = Z |5 ]

Thus, by internally replacing intervals to track roundoft errors by
affine forms and converting them in the end into intervals, the
library keeps the resulting error bounds much tighter and is thus
much more useful.

4.1 Sources of errors

Our system automatically introduces the roundoff errors arising
from the declaration of constants and arithmetic operations. Addi-
tionally, the developer may specify further attached errors. As illus-
trated in the examples in[Figure 3|and[Figure 6] this facility is very
useful, because it allows the library to propagate domain-specific
errors. One source of these errors are measurement inaccuracies
in systems that interact with the physical world through sensors.
Another source are method errors, i.e., the differences between a
(hypothetical) analytical solution and a result computed with an it-
erative method.

4.2 Nonlinear operations

The calculation of linear operations is straightforward:

ai + B+ (= (awo + Byo +¢) + Y _(awi + Byi)ei ()

i=1
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(a) Chebyshev approximation
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(b) Min-range approximation

Figure 9. Approximations of the inverse function.

and is apart from roundoff errors exact (see |subsection 4.4)), but

nonlinear operations must be approximated. Multiplication is de-
rived from multiplying the two affine forms:

—

9 = ToYo ToYi+YoTi)€; TiYi LiYjT;Yil)€En+
) _(@oyityozi)eit( ) |wiyil+) | )

i=1 i=1 i<j

The first two terms are linear and thus exact. The last term over-
approximates the nonlinear contribution and is added as the coeffi-
cient of a new ‘fresh’ (not yet used) noise symbol. In general, the
nonlinear contribution is smaller than the linear part or the roundoff
errors, so that the library does not use a more accurate approxima-
tion for performance reasons.

For the approximation of unary functions, the problem is the
following: given f(Z), find v, ¢, 0 such that

[f(@)] C [ag + (£

« and (¢ are determined by the linear approximation of the function
f and ¢ represents all (roundoff and approximation) errors commit-
ted, thus yielding a rigorous bound.

In [10] two approximations are suggested: a Chebyshev (min-
max) or a min-range approximation. These two are illustrated
in For both, the approximation is computed by convert-
ing the affine form into an interval and working with its endpoints.
For the min-range approximation it suffices to compute the slope
« at one of the endpoints and from this to compute the maximum
deviation ¢ from the (dashed) middle line. For the Chebyshev ap-
proximation a third point is needed and the slope is calculated at
this point. The Chebyshev version indeed generally computes a
tighter approximation (the area of the bounding parallelogram is
smaller), on the other hand though, requires more and more com-
plex calculations, especially for the trigonometric functions. Every
computation step carries with it a roundoff error, which also has to
be added to the resulting affine form, so that the more calculations
are needed, the more the errors accumulate. Especially for small
initial errors on the order of machine epsilon, the Chebyshev ap-
proximation sometimes computes the third (middle) point outside
of the initial interval (this was not considered in [[10]). For this rea-
son, the library uses the min-range approximation, as it was found
to work reliably. Division is decomposed into an inverse function
application and a multiplication and the power function is com-
puted as e¥!°8% Hence, by a careful choice of the approximation,
we avoid using an expensive computation with, for example, an ar-
bitrary precision library, while still computing accurate bounds.
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4.3 Combining Intervals and Affine Forms

The mentioned computational inaccuracies for very small errors
many times also cause the calculated § to be (unnecessarily) too
large. To limit this over-approximation, the library uses interval
arithmetic to provide a maximum bound with which the error ¢ in-
troduced in the affine approximation can be limited. Note that this
works so neatly here because the geometric interpretation of the ap-
proximation of unary functions is an interval on the y-axis. While
the library computes the same error bound in interval and affine
arithmetic with this procedure, it also retains the correlation infor-
mation, which helps to compute smaller bounds in the following
calculations. For variables with bigger attached errors, the affine
arithmetic’s advantages prevail and no special treatment is needed.

4.4 Dealing with roundoffs

Each operation carries a roundoff error and all of them must be
taken into account to achieve truly rigorous bounds. For each arith-
metic operation or library function application the library collects
the absolute values of all roundoff and approximation errors and
adds them to the resulting affine form with a new ‘fresh’ noise
symbol. The sign here is of no interest, since no correlations ex-
ist between this new error and any other variable.

The challenge hereby consists of accounting for all roundoff
errors, but still creating a tight approximation. While for the ba-
sic arithmetic operations the roundoff can be computed with[Equa-]
there is no such simple formula for calculating the roundoff
for composed expressions (e.g. a * o + (), as the precise roundoff
errors depend on the exact values of the variables. These errors can
be determined by the following procedure [[10]:

z= f(x1,22,...)

a= | f(z1,22,...)

b= 1 f(z1,22,...) T
rdoff = max(b— 2,z — a)

where | denotes rounded towards negative infinity and 1 denotes
towards positive infinity. The JVM does not provide access to
the different rounding modes of the floating-point unit, so that
the expressions that need directed rounding are implemented as
native C methods. It turns out that this approach does not incur a
big performance penalty, but provides the needed precision, which
cannot be achieved by simulated directed rounding. The native
C code has to be compiled for each architecture separately, but
since no specialized functionality is needed this is a straightforward
process and does not affect the portability of our library. Using
directed rounding also enables the library to determine when a
calculation is exact so that no unnecessary noise symbol is added.
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This particular preciseness makes the exact analysis in the example
in feasible, i.e. the library can certify that the second
calculation is indeed exact.

4.5 Bounding the number of noise symbols for performance

The performance of affine forms is approximately proportional to
the number of noise symbols used. For short calculations, this is
of no consequence, since every operation adds at most one noise
symbol, however longer or iterative ones can accumulate so many
noise terms that it makes a computation infeasible. Figure

shows this relationship for selected computations: > —1, an it-

-2
erated computation using basic arithmetic, and the sprirrllg function
from [Figure 6] once with dt = 0.1 and once with d¢ = 0.01. The
library limits the number of noise symbols an affine form can ac-
cumulate. Once this number is reached, all error terms with an ab-
solute value smaller than the average are replaced by a new noise
term, with magnitude equal to their sum (rounded towards infin-
ity). The number of noise symbols also affects the accuracy, since
correlations are lost in the process of replacement. This is illus-
trated by the graph in Figure for the example of the spring
with dt = 0.1, which shows the correlation between the number
of noise symbols and the resulting relative error. We decided ex-
perimentally on a default limit of around 40 as a good compromise
between performance and accuracy, but the developer may change
this value for particular calculationsﬂ

4.6 Correctness

The correctness of each step of the interval or affine arithmetic
computation implies the correctness of our overall approach: for
each operation in interval or affine arithmetic the library computes a
rigorous over-approximation, and thus the overall result is an over-
approximation. This means, that for all computations, the resulting
interval is guaranteed to contain the result that would have been
computed on an ideal real-semantics machine.

This also implies that we can make statements about the ro-
bustness of a piece of code, i.e. we can show that the control
flow is invariant to small perturbations in the input. Comparisons
are performed with error bounds taken into account so that if the
truth value of a condition cannot be unambiguously determined, a
(sticky) global flag is set (subsection 6.2). Thus, if a computation
can be performed for a value x with some given error bound with-
out setting of this flag, it implies that the code is robust for this
value within small perturbations (with the maximum size of the
initial error).

5. Integration into a Programming Language

This section explains how the error tracking is integrated into Scala
in a seamless way. Our library provides a wrapper type SmartFloat
that tracks all errors and that is meant to replace all Double types in
the user-selected parts of a program. All that is needed to put our
library into action are two import statements at the beginning of a
source file

import smartfloats.SmartFloat
import smartfloats.SmartFloat._

and the replacement of Double types by SmartFloat. Any remaining
conflicts are signaled by the compiler’s strong typechecker. To
accomplish such an integration, we had to address the following
issues:

operator overloading: Developers should still be able to use the
usual operators +, —, *, / without having to rewrite them as

! Actually, the number used by default is 42.
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functions, e.g x.add(y). Fortunately, Scala allows x m y as syn-
tax for the statement x.m(y) and (nearly) arbitrary symbols as
method names [31] , including +, —, *, /.

equals: Comparisons should be symmetric, i.e., the following
should hold

val x: SmartFloat = 1.0
val y: Double = 1.0

assert(x ==y && y == x)

The == will delegate to the equals method, if one of the
operands is not a primitive type. However, this does not result
in a symmetric comparison, because Double, or any other built-
in numeric type, cannot compare itself correctly to a SmartFloat
(see for details). Fortunately, Scala also pro-
vides the trait (similar to a Java [14] interface) ScalaNumber
which has a special semantics in comparisons with ==. If y
is of type ScalaNumber, then both x ==y and y == x del-
egates to y.equals(x) and thus the comparison is symmetric [33].

mixed arithmetic: Developers should be able to freely combine
our SmartFloats with Scala’s built-in primitive types, as in the
following example

val x: SmartFloat = 1.0
valy = 1.0 + x
if (5.0 <x){...}

This is made possible with Scala’s implicit conversions, strong
type inference and companion objects [31]. In addition to
the class SmartFloat, the library defines the (singleton) object
SmartFloat, which contains an implicit conversion similar to

implicit def double2SmartFloat(d : Double):
SmartFloat = new SmartFloat(d)

As soon as the Scala compiler encounters an expression that
does not type-check, but a suitable conversion is present, the
compiler inserts an automatic conversion from the Double type
in this case to a SmartFloat. Therefore, implicit conversions
allow a SmartFloat to show a very similar behavior to the one
exhibited by primitive types and their automatic conversions.

library functions: Having written code that utilizes the standard
mathematical library functions, developers should be able to
reuse their code without modification. Our library defines these
functions with the same signature (with SmartFloat instead of
Double) in the companion SmartFloat object and thus it is pos-
sible to write code such as

val x: SmartFloat = 0.5
val y = sin(x) = Pi

concise code: For ease of use and general acceptance it is desirable
not having to declare new variables always with the new key-
word, but to simply write SmartFloat(1.0). This is possible as
this expression is syntactic sugar for the special apply method
which is also placed in the companion object.

6. Tracking and Transforming Expressions

The library described so far is a fully functioning replacement for
the standard Double data type. Developers can use this library to
track rounding errors and to obtain rigorous answers. However, us-
ing affine arithmetic to track all the errors at each arithmetic oper-
ation can be time consuming and can slow down the calculation.
Many times though, the added accuracy of affine arithmetic may
not even be needed, for example when a comparison only needs a
few correct significant digits. Therefore, we chose a lazy approach
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Figure 10. The effect of the number of noise symbols.

to implement the underlying operations of interval and affine arith-
metic: initially, expressions are not evaluated, but the computation
is stored in form of an expression abstract syntax tree (AST) and is
evaluated on request. In our system, the evaluation is triggered only
at the following points in program execution:

e call to the toString method

® at comparisons <, ==, >

e at conversions to other numeric types
e on explicit user request

e when expressions become too large

The expression trees are immutable, thus preserving the ability of
viewing a SmartFloat as a numerical data type. This also allows
the library to internally use sharing of expressions and reference
equality.

6.1 Compacting large expressions

For performance and stack size reasons, our library compacts ex-
pressions as soon as they reach a certain size (each variable and
each operation adds 1 to the overall expression size). Each expres-
sion stores its size. As soon as this size reaches a limit, our library
replaces subtrees by leaves that store their values, which are com-
puted using affine and interval arithmetic. Because this preserves
the evaluation order, the computed results and error bounds remain
the same. The maximum expression size is in the control of the
user, but we have found experimentally that a maximum size on the
order of 1000 is reasonable.

6.2 Comparisons

If a variable participates in a comparison (see for a con-
crete example), it necessarily needs to be evaluated. The evaluation
is initially performed only in the faster interval arithmetic. Only
if the result of the comparison still cannot be determined, will the
expression be evaluated also in affine arithmetic. If this test fails
as well, that is, given the attached errors, the library cannot con-
clusively determine whether the condition is true or false, the ac-
tual Double value of the expression is used to determine the truth
value of the condition (the control flow is not altered) and a global
(sticky) flag is set. Again, this feature integrates nicely into Scala as
the lazy evaluation can be implemented by using the built-in 1azy
keyword .
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def getRewrites(node: Expr): Set[Expr]
if node is of form op(el, e2)
exprs = { op(rl, r2) | r1 € getRewrites(el),
r2 € getRewrites(e2)}
else if node is of form op(el)
exprs = { op(rl) | rl € getRewrites(el)}

return top(k, {applyRules(e) | e € exprs})

Figure 11. Rewriting algorithm.

6.3 Rule-Based Rewriting

We have demonstrated in that two expressions that are
mathematically equivalent can produce different floating-point re-
sults. Our library can use the collected computation trace and
rewrite an expression to find a formulation that produces a more
accurate result or a tighter error bound for the same input values.

A prerequisite for this is the assumption that the computation
is meant in real semantics, not floating-point, i.e. all mathemati-
cally equivalent rewritings of the expression are permitted. The al-
gorithm is given in The expressions are sorted first by
accuracy, then by size, so that the head of the resulting set holds
the most accurate expression that can be generated. Syntactically
equivalent expressions are automatically discarded.

Depending on the number of rules applicable, the number of
expressions can grow exponentially. To limit the number of expres-
sions at each step and also the complexity of the overall algorithm,
only the locally k best expressions are propagated. The value k is
user-controlled, but £ = 25 has been experimentally determined as
a suitable limit.

This procedure does not generate all possible rewritings of
equations, since it only moves up through the tree and does not
backtrack. This is however, powerful enough to reformulate the ex-
pression in the triangle example [Figure 4] or to rewrite the formula
for the redshift parameter z

LRy e YUFeoveow
v N

An important part of this rewriting is the simplification of the ex-
pressions prior to the application of any rules. For this to be pos-
sible, a distinction needs to be made between variables and con-
stants, so that one can simplify e.g. (3 * x *x * 4 *y) / (x *
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def refine(node: Expr): Expr
if node is of form Iterative
return iterate(node)

else if node is of form Op(el, e2)
errl = el.relativeError
err2 = e2.relativeError
if refine(el).relativeError < errl
return Op(refine(el), e2)
else
return Op(el, refine(e2))

else if node is of form Op(el)
return Op(refine(el))

Figure 12. Demand-driven iteration: only those branches with the
largest relative error are followed and iterated. The variables sl
and s2 depict the springl and spring2 variables from the example

in[Figure 7|respectively.

2 * y x y)into (6 * x ) / y. The following convention im-
plements this difference

val x = SmartFloat(3.5, "x") // variable
val ¢: SmartFloat = 3.14 // constant

The first line utilizes the apply method and the second an implicit
conversion so that the definitions of variables and constants can
be distinguished. In addition, variables can be named for a more
readable output. In many cases it is possible to simply copy-paste
the suggested new expression into the source code and use in future
executions.

We have implemented this functionality for the operations
+, =%, /, v with a selected set of rules. Thanks to Scala’s pat-
tern matching capability it is easy to add new ones, since rules are
of the forms such as

case Sqrt(Mult(x, y)) => Mult(Sqrt(x), Sart(y))
case Sqrt(Div(x, y)) => Div(Sqrt(x), Sqrt(y))

and thus closely resemble their mathematical formulation.

If the system finds a more accurate formulation of an expres-
sion, it only prints the suggestion, i.e., it does not reuse it di-
rectly. The reason for this is that this rewriting functionality is still
too slow at this point in time. However, it can be used as a pre-
processing step to improve selected expressions in a code in per-
haps non-obvious ways and by doing so increase the understanding
of the floating-point behavior.

7. Demand-Driven Computation with Method
Error Guarantees

Method errors can perhaps be an even bigger concern in for ex-
ample physics simulations in that they may outweigh the round-
off errors accumulated during a calculation. Method errors can be
added manually by the user at specific steps and will be propa-
gated together with all other errors to yield a total error estimate. It
would be however even more useful, if certain computations could
be made more accurate on demand also with respect to the method
error. Consider the example in The method error in this
simulation is determined by the length of the time step dt; the
smaller this is, the more accurate will the resulting position of the
end of the spring be. This suggests an iterative refinement of the
accuracy, where at each iteration the library chooses a smaller time
step dt, but at a higher cost, since each iteration takes considerably
longer.

With our library, the user defines such a function, which takes
as parameter an integer which determines the current accuracy and
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Figure 13. Iteration algorithm.

returns the desired result as a SmartFloat. This function is passed to
a special SmartFloat and can be part of any expressions as any other.
Once a comparison is reached however, the value of this SmartFloat
is iteratively refined until either a precision which makes it possible
to decide the condition is reached, or until a maximum refinement
can be detected.

The demand-driven refinement goes even further. One expres-
sion can potentially contain several iteratively defined variables, of
which only some need refinement. This is the case in [Figure 7]and
is illustrated in the pictured tree is the expression tree
from the variable volume. The library can again reuse the expres-
sion abstract tree that was collected and preferentially traverse the
tree down branches with larger relative errors and refine those first.
The algorithm is given in In this way, expressions in-
volving iterative computations can be written in a very natural way,
and computed only as accurately as needed. This potentially saves
much time, in our spring example the second computation takes
only half the time to compute.

7.1 Fixpoint computations

Our library supports demand-driven iterations also for fixed-point
computations, where the next (more accurate) step is computed as

Tnt+1 = (]5(1311)

In this case the user has to provide some more information, namely
the iteration function ¢, a function err(en, z») which computes
the method error e, 41 at each step, as well as the starting point and
initial error. For an illustration of how this looks like, consider the
function
f(z) = e —4a”

for which we want to compute the root between 4.1 and 5 (this ini-
tial interval can be determined by checking the sign of the function
at both endpoints). A possible iteration function (illustrated in|Fig]
is ¢(x) = 2In(2x) and a rigorous estimate of the method
error is given by the maximum value of the derivative ¢’ inside of
our search interval. Hence the code looks like

val fnc = (x: SmartFloat) => 2.0 * log(2.0 * x)

val err = (prevErr: SmartFloat, xn: SmartFloat)
=> 0.488xprevErr

val x = new SmartFloat(fnc, err, 4.1, 0.4, 1)

This iteration converges slowly, yielding only 7 significant digits
after 20 iterations. Hence an iteration on demand can prove useful,
especially if a high accuracy is not needed, or the needed accuracy
is not known in advance.

To avoid infinite iterations, our library defines the following
termination criteria: either a user-specified maximum number of
iterations is reached, or the iteration is stopped when the relative
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Figure 14. Fixed-points z = 21n(2z).

pure double  double interval  affine
triangle 0 2 15 270
trigonometry 1 3 18 103
basic arithmetic 0 2 12 112
> n%z 2 72 723 2850
physics simulation 1-10* - - 7-10*

Figure 15. Comparison of evaluation times in ms, for 1000 runs of
each example. (This corresponds to 100s of simulated time in the
physics simulation.)

error does not change or becomes larger from one iteration to the
next.

8. Experience

All examples, as well as some 100 microbenchmarks were tried
with our library to test its correctness and the accuracy of the ap-
proximations. We ran some of our results against results calculated
by Mathematica [38]] to a high precision and were satisfied with the
rigorousness, but also the reasonably tight bounds. E]We have not
used the common floating-point benchmarks, because they are de-
signed for performance and not accuracy in mind, so they do not fit
our purpose.

8.1 Performance when Using the Library

Although the primary goal of our library is to increase the under-
standing of numerical calculations, the question of how fast it is
compared to the original code is a valid one. gives an
idea of the cost of accuracy. For the analysis, we chose the trian-
gle example from some simple calculations involving
trigonometric functions and basic arithmetic, the summing exam-
ple we have used previously and one of our physics simulations
(described in the next subsection). The first columns indicates the
times for the original code, using only the standard Scala Double,
columns one to three show the times when the expression trace was
evaluated with Doubles, intervals or affine forms only.

It is apparent that affine arithmetic is expensive, so that our lazy
approach saves considerable amounts of time, when applicable, but
it is also clear, that meaningful answers about the accuracy of the
developer’s code are provided in reasonable time.

8.2 Usability and usage scenarios

In our envisioned usage scenario, the developer executes a numer-
ical computation for a bounded amount of time, to obtain insight
about any potential sources of inaccuracy. Using this information,
along with suggested rewrites of parts of the code, the developer
can improve the original code. It is thus not necessary to use our
library in the final deployment of the program; what remains are
the insights gained from library execution.

2 The examples are available on request from the program chair.
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We tested the usability of our library on a set of simple physics
simulations, notably a real-scale simulation of the Earth circling
the Sun (albeit with simplified physics and methods errors). We
wrote the code first in standard Scala syntax with Double variables.
We found that changing from the Scala’s Double to our SmartFloat
requires little work; only a few pieces of code required short manual
review. When running the simulation we found that it runs around
seven times slower than implementation using the Double floating
points (see the last line in [Figure 13). This was practical enough
for our purpose; we were able to understand, for example, that
the method error dominates over the roundoff errors, providing the
insight of the kind that we hope to obtain when using our library.

9. Related Work

Estimating Roundoff Errors To our knowledge, this is the first
system to keep track of roundoff errors for calculations involv-
ing operations other than {+, —, x, /, \/} The idea of expression
rewriting has been explored by [28] in the context of abstract inter-
pretation. However, the approach only works for {4, —, *}.

The Fluctuat tool [[15] uses abstract interpretation to reason
about numerical programs. The abstract domain developed tracks
the roundoff errors committed at each program with the use of
affine arithmetic, however the static approach limits the accuracy
of the computed bounds. The domain works for the operations
{+,—,%,/, \f}, but the details of the last two operations are not
provided. Other work in the abstract interpretation direction in-
cludes the Astrée analyzer [9] that also provides abstract domains
which work correctly with floating-point numbers. Another ab-
stract interpretation library is APRON [20], also with a floating-
point abstract domain [8].

A recent approach [19] to statically detect loss of precision in
floating-point computations uses bounded model checking based
on SMT solvers. It uses interval arithmetic for scalability reasons.
It is supposed to detect ‘stable’ computations, in the sense of small
relative errors. [11] used affine arithmetic to track roundoff errors
by means of a C library, however their work seems to be specific
for the signal processing domain.

Other possible approaches to quantify roundoff errors in
floating-point computations are summarized in [27)]. This also in-
cludes stochastic estimations of the error, which has been imple-
mented in the CADNA library [21]]. However, this approach does
not provide rigorous bounds. Similarly, specialized algorithms exist
for dealing with floating-point inaccuracies in, for example, sum-
mation [34] or dot products [32].

Affine arithmetic is being used in some specific application do-
mains to deal with uncertainties, as for example in signal process-
ing [16], however our library is developed for general purpose cal-
culations as well as user-defined additional errors.

[39] shows how to limit the over-approximations for non-linear
operations in affine arithmetic even further. The resulting approach
is more precise, so it remains to investigate whether it is beneficial
and feasible to integrate it into a run-time library.

Robustness analysis. Our library can detect the cases when the
program would continue to take the same path in the event of small
changes to the input, thanks to the use of the global sticky bit set
upon the unresolved comparisons. Therefore, we believe that our
library can be useful for understanding program robustness and
continuity properties [[7, [26].

Interactive approaches and decision procedures. Researchers
have used theorem proving to verify floating-point programs [3}
4,117,291 135]). These approaches provide high assurance and guar-
antee deep properties. Their cost is that they rely on user-provided
specifications and often require lengthy user interactions. [24]] ex-
tend the previous work by considering the problem of reducing pre-
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cision for performance reasons, and uses affine arithmetic as well.
[S] presents a decision procedure for checking satisfiability of a
floating-point formula by encoding every operation by a proposi-
tional formula, however, they are forced to use approximations be-
cause of the complexity of the resulting formulas. There is a num-
ber of general-purpose approaches for reasoning about formulas
in non-linear arithmetic, see e.g. [2]. Our work can be used as a
first step in verification and debugging of numerical algorithms, by
providing the correspondence between the approximate and real-
valued semantics.

Lazy computation. We are not aware of other approaches that ap-
ply demand-driven refinement of results in the presence of affine
arithmetic. The general idea is inspired by the well known notion
of lazy evaluation which has been used in non-strict functional lan-
guages [22] as well as non-deterministic languages [12]]. The idea
is also related to the concept of functional self-adjusting compu-
tation [1], but has so far not been applied to the domain of affine
arithmetic with user-defined expression equivalence.

Language virtualization. Language virtualization [6] has been
proposed as a general method to embed domain specific languages
into a flexible host programming language. Our approach uses
some of the similar mechanisms to construct syntactic representa-
tions of the parts of the executing program, but performs the com-
putations at run time (possibly after some delay).

10. Conclusions

We have presented an easy-to-use library solution for helping de-
velopers understand the accuracy of their numerical computation.
Our system uses affine arithmetic to estimate errors and their corre-
lations, it suggests alternative expressions with equivalent seman-
tics with respect to given rewrite rules, and it supports demand-
driven refinement of precision-adjustable computations. We have
used our system in a number of benchmarks, including a simula-
tion of gravitational interactions of physical bodies. We have found
the slowdown of the libraries to be acceptable for understanding
the sources and propagations of errors in numerical computations.
We have also found our system to be useful in suggesting replace-
ments of code fragments to reduce the roundoff errors. Finally, the
system was helpful in identifying the amount of iterations needed
in numerical computations, which allows us to produce faster code
while providing sufficient accuracy for the application at hand.
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