Files

Action Filename Description Size Access License Resource Version
Show more files...

Abstract

We show that for any concave polygon that has no parallel sides and for any k, there is a k-fold covering of some point set by the translates of this polygon that cannot be decomposed into two coverings. Moreover, we give a complete classification of open polygons with this property. We also construct for any polytope (having dimension at least three) and for any k, a k-fold covering of the space by its translates that cannot be decomposed into two coverings.

Details

Actions

Preview