Infoscience

Journal article

Indecomposable Coverings with Concave Polygons

We show that for any concave polygon that has no parallel sides and for any k, there is a k-fold covering of some point set by the translates of this polygon that cannot be decomposed into two coverings. Moreover, we give a complete classification of open polygons with this property. We also construct for any polytope (having dimension at least three) and for any k, a k-fold covering of the space by its translates that cannot be decomposed into two coverings.

Fulltext

Related material