Journal article

Polychromatic colorings of arbitrary rectangular partitions

A general (rectangular) partition is a partition of a rectangle into an arbitrary number of non-overlapping subrectangles. This paper examines vertex 4-colorings of general partitions where every subrectangle is required to have all four colors appear on its boundary. It is shown that there exist general partitions that do not admit such a coloring. This answers a question of Dimitrov et at. [D. Dimitrov, E. Horev, R. Krakovski, Polychromatic colorings of rectangular partitions, Discrete Mathematics 309 (2009) 2957-2960]. It is also shown that the problem to determine if a given general partition has such a 4-coloring is NP-Complete. Some generalizations and related questions are also treated. (C) 2009 Elsevier B.V. All rights reserved.


Related material