Space-variant ambiguity function processor

Demetri Psaltis and David Casasent

The ambiguity function that results from the space-variant optical processing of nonlinear coded waveforms
is analyzed. The space-variant signal processor considered is realized by coordinate transformations. Spe-
cifically we consider x = Int, which results in a Mellin transform-based Doppler-invariant signal processor.
Ambiguity function data are provided for a nonlinearly coded 13-bit Barker code.

l. Introduction

Space-variant optical signal processing!-7 has re-
ceived considerable attention in recent years. The
Mellin transform® is a space-variant operation of par-
ticular interest in signal processing. It is realized by
performing an optical Fourier transform on a coordinate
transformed version of the input data using techniques
originally suggested for use in image restoration and
deblurring.210 As we showed earlier,1:2 these tech-
niques can be used to produce a Doppler-invariant op-
tical signal processor that avoids the need for a Doppler
search or a Doppler filter bank. Since, this signal pro-
cessor is a space-variant system, a time search rather
than a scale search is needed unless a parallel and
real-time coordinate transformation system is used.
The use of computer generated holograms!!-13 and as-
tigmatic optical systems!415 provides two methods by
which the required coordinate transformation can be
performed. The former system has space—-bandwidth
limitations, whereas the latter is of use only for intro-
ducing 1-D distortions onto 1-D functions and has a
large light loss. However, refinements in such tech-
nologies and use of alternate approaches such as mul-
tiple holograms!é and phase-coded reference beams!?
appear to make our initial Mellin transform Doppler-
invariant signal processor concept!2 more realizable in
the near future. For this reason we now expand upon
our earlier work in space-variant signal processing by
considering the use of such systems with coded wave-
forms with emphasis on the resultant ambiguity func-
tion.
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As we noted earlier,!819 the transmitted waveform
for such space-variant signal processors must be a
nonlinear waveform (produced by coordinate trans-
forming presently used coded signals). We discuss this

“issue in Sec. I1I following a brief review (Sec. II) of our

prior work on space-variant signal processing. Since
the resultant systems are space-variant, conventional
analytical tools are not useful, and a numerical analysis
isrequired. To obtain more explicit results, we restrict
specific discussion to the Mellin transform with its x =
Int coordinate transformation and the 13-bit binary
phase-coded Barker waveform. No loss of generality
in the over-all concept of nonlinear waveforms and
space-variant processing using coordinate transfor-
mations results by concentrating on this specific scen-
ario.

In Secs. IV and V, we derive the ambiguity function
for such a system and discuss the unique waveform and
system design features afforded by this novel approach
to signal processing. The resultant transmitted signals
are a new class of nonlinear spread spectrum code that
promises to open new research areas for waveform and
system design and communications.

"Il. Space-Variant Signal Processing

We restrict attention to space-variant signal pro-
cessing and specifically to the realization of such sys-
tems by the use of coordinate transformations (as
originally suggested for image enhancement®10). We
also consider only the optical Mellin transform because
of its unique features, and we consider the Doppler-
shifted version f/(¢) = f(at) of f(¢). If we apply the
coordinate tranformation ¢ = expx to these signals we
obtain f1(x) = f(expx) and f;(x) = f(a expx). If we now
form their correlation we find!-2

R(#) = f1(x) ® fi(x) = flexpx) ® flexpx) * 6(2 — lna), (1)

where x and £ are used to denote the input and output
plane variables, respectively.
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Thus, as we demonstrated earlier, the correlation of
two properly coordinate-transformed signals is Dop-
pler-invariant, and the Doppler parameter a can be
found from the location of the resultant correlation
peak. Furthermore, only a single-channel 1-D optical
correlation is required. Equation (1) can be realized by
forming the Fourier transform (symbolized by the op-
erator &) of the product of the Fourier transforms Fi(u)
and F(u) of f1(x) and fi(x). Since the Fourier trans-
form of f(expx) is the Mellin transform M (u) of f(¢t), we
can rewrite Eq. (1) as

R®) = [i(x) ® f1(x) = F [Fi)Fi@)] = F [M’'@)M*@)], (2)

and thus we refer to such a processor as a Mellin
transform correlator. The system by which M(u) is
produced from f(t) is a space-variant processor because
of the coordinate-transformation preprocessing step
required.

ll. Nonlinear Waveforms

If f(x) is a phase coded waveform, we can write it
as

f(x) = cos[wox + ¢(x)] = alx) cos(wex), (3a)
where for a 13-bit biphase Barker code20

an(x) = explj¢n (x)]
= +1,+1,+1,+1,+1,-1,-1,+1,+1,-1,+1,—1,+1. (3b)

Letting x = exp(t) in Egs. (3), we obtain
f1(t) = cos[woet + H(ef)] = fle?). (4)

We would normally form the correlation of f1(¢) and a
coordinate-transformed distorted (Doppler-shifted
and/or range delayed) version f(¢) of f1(¢).

As we recently noted,!819 the nonlinear carrier in Eq.
(4) dominates the characteristics of the correlation and
ambiguity function; in addition waveform design flex-
ibility is not present. Of more concern is the fact that
when a coordinate-transformed version of the reference
and input waveforms are correlated, we are in effect
correlating on the coordinate transformation rather
than the coded waveform. For these reasons, a pure
uncoded sinusoidal signal will correlate nearly as well
as the original waveform, since both are subjected to the
same coordinate transformation. Such a signal corre-
sponds to a discrete jammer in a radar application.

In Fig. 1, we show an isometric (pseudo-3-D) display
of the optically produced output autocorrelation of Eq.
(4) for a nonlinear (coordinate transformed) 13-bit
Barker code as described by Eq. (3) with a spatial BW
= 11.4 cycles/mm. The coordinate transformation
tapers and spreads the spectrum of the signal, and the
narrow correlation peak shown in Fig. 1 results.
However, as we showed earlier,1819 better resolution
would result if a linearly coded waveform of the same
bandwidth were used.

For the reasons noted above, the optimum coded
waveform to transmit is one which, when coordinate
transformed, results in a normal coded waveform, with
the good ambiguity function properties and flexible
waveform design features afforded by the use of coded
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Fig. 1.

Isometric (pseudo-3-D) display of the optical correlation in
Eaq. (2).

waveforms. Thus the optimum use of coded waveforms
in the type of space-variant optical processor we con-
sider is achieved by applying the coordinate transfor-
mation to the coded waveform prior to transmission,
applying an inverse coordinate transformation to the
received signal and then correlating this signal with the
original linear coded waveform.

Thus, for a Doppler invariant Mellin transform signal
processor using coded waveforms, we apply the coor-
dinate transformation

x=In(t +tg) for0<t <T (5)

to Eq. (3a) [where T is the duration of f(¢)] and transmit
the nonlinear coded waveform

fi(t) = coslwo In(t + to) + ¢{In(t + to)]}- (6)

In Egs. (5) and (6), £ > 0 is a constant offset in the time
reference that allows us to avoid the difficulty associated
with implementing the log of zero. In practice, we will
receive a Doppler shifted and/or range delayed version
f-(t) of Eq. (6), and we apply to it the inverse transfor-
mation

t = expx — f, (7)

where f is a delay variable. The delay variable { is in-
cluded in Eq. (7) to indicate that the coordinate trans-
formation is performed in real time. This yields a new
function

fiEx) = filex — B), (8)

which is then correlated with the reference waveform
f(x) in EqQ. (3a). The block diagram for a space-variant
optical processor using coordinate transformations is
shown in Fig. 2.

The processing required to generate the ambiguity
function x(£,£) = x(7,v) is described by

x(£2) = filtx) @ felx) = § frlex = Dfe(x — 2)dx
= { cosjwp In(e* + to — £) + ¢[In(e* + to — £)]}
X cos[wol(x + £) + ¢(x + £)]dx, 9)
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Fig. 2. Block diagram of a space-variant processor for coded wave-
forms using coordinate transformations.

where £ is the correlation variable. The above equation
can be shown to be equivalent to the wideband ambi-
guity function.

Doppler shifts between f; (t) and f.(¢) are converted
to shifts in the location x of the received signal by the
coordinate transformation described by Eq. (7). Thus,
the output correlation variable £ now corresponds to
Doppler. Because of the coordinate transformation
applied to the received signal f.(¢), this is a Mellin
transform type correlator. Because the Mellin trans-
form is a space-variant operation, a time search rather
than a Doppler search is necessary. This is included in
the form of the coordinate transformation given in Eq.
(7), which must be performed continuously for all time
t. (t1isinput signal time, and x is distance across Po.)
By properly utilizing the time and space variables of an
optical processor and by use of the real-time and fully
parallel space-variant coordinate transformation optical
systems noted in Sec. I, such space-variant optical signal
processors appear feasible. Our present concern is with
an analysis of the.resultant ambiguity surface and the
waveform and system design aspects of the systems in
Figs. 2 and 3.

An optical system that can realize these required
operations is shown in Fig. 3. In practice, L; and Lq
would be a cylindrical/spherical lens pair that performs
the Fourier transform horizontally while imaging ver-

“tically. For simplicity, only the spherical lens portion
of the system is shown in Fig. 3. In this single-channel
1-D system, the vertical £ location of the output in P,
denotes Doppler », whereas the time ¢t at which the
output occurs corresponds to range 7. Thus, an output
ambiguity surface?! is obtainable on a single-channel
1-D optical system by proper use of the time and space
variables at our disposal.

In this system, the Doppler axis is formed by a Mellin
transform correlation in space, and the 7 range search
is achieved by a time search. These are some of the
unique features of this space variant processor. In more
conventional multiplexed space invariant processors,
the correlation is usually performed in time, and the
Doppler shifts are always introduced in space. Because
the resultant ambiguity surface obtained in our pro-
posed space-variant processor differs from the con-
ventional one, we will consider the characteristics of the
resultant output surface in detail in Sec. IV.

v. Ambiguity Function

The purpose of any ambiguity function is threefold.
First, it must provide a discrimination ability; this is
usually obtained by a single dominant peak in the am-
biguity surface. The peak value is used to determine
whether the particular signal is present. The location
of this central peak in the 2-D output ambiguity func-
tion space provides two more vital pieces of information,
Doppler and range. The ambiguity function produced
by the space-variant processor described in the previous
section must provide the same information if it is to be
used in place of the conventional one. We will dem-
onstrate that indeed it does provide discrimination
ability, as well as Doppler and range information, and
will derive the parameters that determine its perfor-
mance.

We first verify that Eq. (9) attains a maximuin and
determine where it occurs. Application of the Schwartz
inequality is not allowable since the energy in the

- coordinate transformed signal changes with time. At

t=to, Eq. (9) reduces to the autocorrelation of Eq. (3)
which peaks at £ = 0 along the £ direction. To show
that x(t,£) also peaks at t = tg along the ¢ direction, we
use the method of stationary phase.22 This involves the
approximation that the major contribution to an inte-
gral rises from the points at which the derivative of its
total phase function is zero. For an integral of the
form

A= ff(x) exp[j¢(x)]dx, (10)
the major contribution occurs at the points xo where
d¢(x) _
——ax o 0. (11)

The contribution from these points is

X MSF % DOPPLER
REF
— INPUT —>
— LASER —»
— LIGHT ———>
— ft=TiMe
=RANGE

b L1 R L2 P
M- Frw* wdd

Fig. 3. Schematic diagram of a space-variant optical signal processor
for coded waveforms using coordinate transformations.
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|£(x0)}?
2=
IAl a2¢/ax2|:=xo '
where x¢ is the point that solves Eq. (11). Applying Eq.
(11) to Eq. (9) we find
e* B 29 (x)] _
er+to—i ox |

which is satisfied for t=toand £ =0. Although other
sets of x, £ and  values satisfy Eq. (13), only £ =t and
£=0 satlsfy Eq. (13) forallx. At the point (£ =0, f=
to), the contribution to Eq. (9) occurs along the entire
x line (rather than at only one point or only over a small
Ax region of Pp), and thus Eq. (9) will have a much
higher value at ¢ = tg and £ = 0 than at any other £ and
¢ values. This same condition can be realized using Eq
(12) and observing that it becomes infinite only at £ =
Oandt = tg.

We next consider the effects of a range delay 7 in time
in the received signal. For this case, Eq. (6) becomes

(12)

+ p(x +2) , (13)

fr(t = 7) = cosjwo In(t — 7 + o) + o[In(t = 7 + to)]}.  (14)

When the coordinate transformation in Eq. (8) is ap-
plied to Eq. (14), we replace ¢ by ¢ — 7 in Eq. (9).
Clearly the resultant ambiguity function now peaks at
{ = to+ 7 rather than at £ = t (as occurred for the case
of no range delay). Of more concern is that this is
simply a shift of x(£,£) in the ¢ output axis with no
change in the shape of the function and with the £ axes
unaffected.

We finally consider the effects of a Doppler shift in
the received signal. We describe this as a time scaling
t — at in the received signal. (Such a formulation is
applicable for both the narrowband and wideband
functions.) For this case, Eq. (6) becomes

fr(at) = cosjwo In(at + to) + ¢[In(at + to)]}. (15)
When Eq. (8) is applied to Eq. (15), we obtain

flae* — af) = cos(wo In[exp(x + Ina) — af + ¢g]
+ ¢{ln[exp(x + Ina) — af + to]}). (16)

From Eq. (16) we see that the Doppler scale change has
been transformed into a shift in x by Ina. The resultant
ambiguity function is thus shifted in £ by Ina with the
location of the peak in ¢ changed from ¢ = tg to £ =
to/a.

When a Doppler shift occurs, the cross-coupling of
the estimates of range and Doppler results because time
and space are coupled by the coordinate transformation
of Eq. (7). When range 7 and Doppler shifts v are si-
multaneously present, we can find v from the location
% = Ina of the x(£,%) peak in £ and thus unambiguously
determine 7 and v. The use of the Mellin transform
correlation and the space-integrating moving window
correlator of Fig. 3 allows us to realize the 2-D ambiguity
surface on a single channel optlcal processor. Because
7 and v are coupled when v is present, less Af resolution
results when noise is present because an estimate of v
is used to provide an estimate of 7. The superior reso-
lution Af of the system of Fig. 3 (see Sec. V) and the
system’s ability to reject noise and interference (the
subject of a future paper) offset this loss, however.
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V. Waveform Design

We now consider how the waveform parameters, the
coordinate transformation chosen, and the parameters
of the components in the processor of Fig. 3 affect the
system’s performance and the characteristics of the
resultant ambiguity function. We denote the carrier,
bandwidth, and pulse length of the original linear
Barker code of Eq. (3) by wg, BW, and T. The same
parameters for the nonlinear Barker-coded transmitted
signal of Eq. (6) are wg, BW,, and T;. For the coordi-
nate transformed version of f; in Eq. (8) we obtain w,
BWer=BW,and Ter=T.

Since different scenarios impose different conditions
and requirements, there is no one set of system pa-
rameters to optimize. Thus, we first establish a general
set of parameter relationships for various performance
goals. The two major design factors at our disposal are
the choice of the waveform used and the coordinate
transformation. In our case, the form of the coordinate
transformation is fixed, but the portion of coordinate
transformation space used can be varied as well as wq,
BW, T, and ¢ for the waveform.

The phase function ¢(x) determines BW and hence
the system’s Doppler resolution Af. We now show that
the phase code ¢(x) chosen does not in general affect the
bandwidth BW, of the transmitted waveform f,(t).

To estimate the spectrum of Eq. (6), we differentiate
the argument in Eq. (6) and find the instantaneous
frequency to be

fi(t) = (wo + 09p/dy)/(t + to) 1

for0 <t < T, wherey = In(t + t5). From Eq. (17), we
find

BW, = (woT:)/[(to + Te)tol, (18)

where the approximation in (18) is valid if 3¢/dy < wq
fort =0and ¢ =T, Thisis easily satisfied for large wq
or when ¢[In(tq + )] is slowly varying around ¢ = 0 and
t = T;. When ¢(x) is chosen as indicated above, BW,
is essentially independent of ¢(x). Since ¢(x) deter-
mines BW, which in turn determines the system’s
Doppler resolution A%, BW and Az are independent of
BW,.

Let us now consider the range accuracy At of this
system and what dominates it. Since the carrier at P

" is nonconstant for ¢ > tq, the ‘nonlinear carrier domi-

nates Eq. (9) and the shape in ¢ of the x surface around
the peak. This occurs because the carrier of the signal
at Po matches that of Eq. (3) at only one x” point or only
over some Ax’ portion of Py. The larger BW, is, the
faster (in time £) the signal at Py departs from the signal
at P1. Thus the higher the frequency change within a
given time interval of f;, the better Af becomes. The
signal in Fig. 3 decorrelates in £ because of the non-
constant carrier for much the same reasons that de-
correlation occurs in Doppler as the carrier changes in
the conventional system. As wg increases, BW; in-
creases, and hence A£ improves.

From these remarks, we see that ¢(x) determines BW
but does not appreciably affect BW;, which is domi-
nated by the nonlinear carrier. Since BW, determines



LINEAR BARKER CODE

——

AL /\[\

26 #SEC >

|- —-

AALAAL AARRANARAAA AAMAR AAMAR
VTV T

UANACLLRLLS

I

NONLINEAR BARKER CODE

Fig. 4. Barker-coded biphase waveforms: (a) linear (normal) Barker; (b) nonlinear (coordinate transformed) Barker.

Af and BW determines A%, the waveform and system
designers have separate and independent control of
range and Doppler accuracy (a feature not available in
most systems).

The relationships between T and T, the durations
of the reference and transmitted waveforms, respec-
tively, are found from Eq. (5) to be

= In(T + to) — In(to) = In(1 + T/to). (19)

Thus, although BW and BW, can be chosen indepen-
dently, they are coupled by the corresponding time
duration relationships. For example, if we attempt to
increase BW while keeping T' and BW,; constant, the
limit is set by the maximum T’ that the system can ac-
commodate. Thus BW and BW, are not completely
independent in practice, but are so within reasonable
limits.

Vl. Experimental Confirmation

The full ambiguity surface for the space-variant
processor of Fig. 2 using the nonlinear transmitted
Barker-coded waveform of Eq. (6) was obtained using
numerical analysis and computer simulation. (Opti-
cally produced output ambiguity surfaces and a com-
parison to the theoretical outputs will be published
later.)

The 13-bit Barker-coded waveform of Eq. (3) [Fig.
4(a)] was nonlinearly coordinate transformed as in Eq.
(6) withtg = T} = 2, wg = 200, and BW; = 50 [Fig. 4(b)].
The ambiguity surface for the coordinate transformed
version of this signal using Eq. (7) is shown in Fig. 5(a).
A transmitted signal of larger BW, = 130 was then
produced by changing the region of the coordinate
transformation space used (tg = 1). The resultant
ambiguity surface is shown in Fig. 5(b).

From Fig. 5(b), we see that the ambiguity surface
clearly exhibits a dominant peak as noted in Sec. IV
with excellent sidelobe structure. The familiar Barker
correlation pattern (six sidelobes of unit height on each
side of a central peak 13 units high) appears along the
£ or Doppler axis now rather than along the 7(Range)
as is convention. This occurs because the correlation
is performed in Doppler, and time is incremented in the
processors of Figs. 2and 3. At the time ¢ at which the
target’s range occurs, Py contains the normal Barker
code of Eq. (3) displayed in x, whereas P; contains a
matched filter of this normal Barker code. Hence, in
P5 we find the correlation of the Barker in £ (or Dop-
pler) as noted and shown in Fig. 5. As Doppler changes,
the Py pattern (at the correct range or t) simply shifts
inx. (The Pj pattern similarly shifts in £.)

Comparing the ambiguity surfaces in Figs. 5(a) and
5(b), we see that the larger BW; (130 vs 50) in Fig. 5(b)
results in a sharper ambiguity peak in range ¢ as pre-
dicted by theory. The hlgher sidelobe levels present in
Fig. 5(a) correspond to the various £ and ¢ combinations
that satisfy Eq. (13) for other distances x in P,. Com-
puted ambiguity surfaces for other BW,, BW, and wg
values have been obtained; in all instances, the theo-
retical trends advanced earlier were verified.

The wo, BW, T, t¢, etc. values used in the experiments
are in relative units. To understand this, we recall that
in the coordinate transformations ¢ = expx and x = In¢,
t is time, and x is space, but expx and In¢ should be di-
mensionless. Thus unit conversion parameters should
be included in all expressions. Such rigorous formu-
lations complicate understanding of the process and
were thus not employed.

A final demonstration of the output ambiguity sur-
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Fig. 5. Ambiguity surfaces for a nonlinear transmitted waveform
with wp = 200 and T, = 2: (a) BW, = 50 with to = 2; (b) BW, = 130
with to = 1.

face for a nonlinear waveform processed on a space-
variant system is shown in Fig. 6. For this case, the
parameters used in the Fig. 5(a) data were again used
with two targets (at 0.1257; and 0.1T}) introduced.
The resultant plot shows the system’s resolution in
range as well as its ability to process multiple targets.

VIl. Summary

The use of nonlinear coded waveforms with space-
variant optical systems using coordinate transformation
processing has been described. These waveforms were
shown to result in nonlinear spread spectrum trans-
mission with many novel properties. By proper use of
the space and time variables, a single channel optical
processor capable of producing the ambiguity surfaces
for such waveforms is possible. Analysis of the resul-
tant ambiguity surface has been shown to result in a
valid ambiguity function. The waveform and system
design flexibility afforded by such systems has been
shown to be superior to those conventional waveforms
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Fig. 6. Ambiguity surface for a nonlinear transmitted waveform
showing the target resolution and multitarget capability of the
system.

offer. Representative examples of the resultant am-
biguity surfaces and the effects of varying waveform and
coordinate transformation parameters have verified the
theoretical remarks advanced.
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