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A time integrating acousto-optic correlator for residue arithmetic processing is described with experimental confirma- 
tion included. This system offers superior input and output space bandwidth product to space integrating systems described 
previously. 

Optical residue arithmetic processors have received 
considerable attention [1--4]. These systems are at- 
tractive because they enable arithmetic operations to 
be performed without carries (and hence in parallel at 
high rates) and at high accuracy (without the need for 
components with large dynamic range). Optical sys- 
tems are attractive for these processors because of  
their large time or space-bandwidth product and paral- 
lel processing features. In this paper, we utilize a corre- 
lation formulation [2] of  residue arithmetic opera- 
tions. Rather than using spatial pulse-position coding 
[1 ] to represent decimal and residue numbers, we em- 
ploy a variant we refer to as temporal pulse-position 
coding. We describe a time integrating correlator and 
demonstrate its use in decimal-to-residue conversion. 
This system differs considerably from prior space-inte- 
grating correlators for optical residue processing [2] 
and offers superior input and output space-bandwidth 
product performance plus allows realization with avail- 
able acousto-optic transducers with high bandwidth. 

In residue arithmetic, an integer J is represented by 
the N-tuple set of  remainders or residues ( R m l ,  Rm2 ,  
..., R m N  ) with respect to the N integer moduli (M 1 , 
M 2 .... , MN).  The maximum integer value that can be 
represented by the N moduli is M - 1 where M 
= HN1 m i. It is useful background to review the corre- 
lation processing used to convert J into R m when spa- 
tial pulse position coding is used [2]. Consider a multi- 
channel frequency plane correlator with input g (x o )  
= 8(x 0 - J A x ) ,  i.e. a delta function whose spatial loca- 
tion encodes J. Its Fourier transform G(u) i s  incident 

on the frequency plane where a square-wave grating 
with fundamental frequency Ug is placed. The separa- 
tion between orders in the transform of the grating is 
chosen to satisfy m a x  = Ug~,J'L, where fL is the focal 
length of  the transform lens. In the output correlation 
plane, we obtain 

f (x2)  = ~ )  3 [X 2 -- (J - - n m l A x ] .  (1) 
//  

Since RmdXX = U ~ nm)Zxx,  we can aperture the re- 
gion 0 ~<x 2 ~< (rn - 1 )kx  in the output plane and the 
spatial location of  the output correlation peak in this 
region will be the desired R m . When multiple gratings 
are present in the transform plane, multiple Rmi  out- 
puts are obtained. In the general correlation descrip- 
tion of  this processor [2] , f = g  ® h, where h(xo)  
= Y~,~8(x 0 - n rn iAx  ) is the system's impulse response. 

Since an input plane resolution M is necessary and 
since M can become very large, we propose to use a 
time-integrating acousto-optic correlator and hence 
temporal pulse position coding to reduce input time 
bandwidth requirements. The proposed system is 
shown in fig. 1. It is a modified version of  the well- 
known time-integrating acousto-optic correlator [5].  
Consider only the x dimension of the system first. We 
describe the temporal light source modulation by So(t ) 
= 6(t - J A r ) ,  where the time of occurrence of  the pulse 
describes the input decimal number J in temporal pulse 
position coding. The acousto-optic cell at P1 is uni- 
formly illuminated with light modulated as So(t ). The 

acousto-optic cell with transit time m a t  is fed with a 
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Fig. 1. Time integrating correlator for decimal-to-residue conversion using time pulse-position coding. 

signal that consists of  pulses of  width At  and period 
m a t ,  where m is the residue modulus. The transmit- 
tance of  P1 is S l (X ,  t) = Yn6(X - n m A t  + t) .  The SoS 1 

pattern leaving P1 is imaged onto P3 and time inte- 
grated on the P3 detector for m A t .  T h e  horizontal 
output pattern at P3 is then the correlation s o ® s 1 
and is again given by (1) with Ax replaced by At. The 
spatial location (horizontally) o f  the output  peak at 
P3 thus denotes the desired R m of J modulo m. 

To enable parallel conversion of  J into R m i for N 
different bases m i ,  we modify s 1 (t) and consider the 
P2 filter shown in fig. 1 and the vertical dimension of  

the P3 output  plane. For s 1 (t) we use a sum of N sig- 
nals each consisting of pulses o f  width At  but with dif- 
ferent periods T i = m i A t  and different carrier frequen- 
cies fi within each At  for each moduli m i. Each fi  and 
hence each modulus signal appears spatially separated 
horizontally in the Fourier transform plane P2" At P2, 
we block the dc and minus first orders and pass only 
the plus first order by a single sideband aperture. With- 
in this P2 aperture, we place N vertical gratings. These 
cause the correlations s o ® S l i  of s o with the different 
moduli M i signals at different f / t o  be spatially sepa- 
rated vertically at P3" Thus the total P3 pattern after 
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Fig. 2. Output P3 pattern in fig. 1 for a decimal input J = 437 and moduli m i = 7, 9 and 10. 
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time integration contains N correlations s o ® Sli on N 
different horizontal  lines. The horizontal  position of 
each correlation peak corresponds to an R m i  and the 
m i are encoded in the vertical output  channels. Thus 
parallel multiple-moduli  decimal-to-residue conversion 
is possible on the system of  fig. 1. 

The system of fig. 1 was assembled. The acousto- 
optic cell used had a center frequency of  38 MHz, a 
bandwidth of-+5 MHz and a transit time of  32.25/as. 
For the experimental  demonstrat ion,  we chose three 
moduli:  m 1 = 7, m 2 = 9 and m 3 = 10 giving a maxi- 
m u m M ~  630. For  the s 1 signal we chose At  = 2/3.3 
MHz = 606 ns and periods T i = m i A t  = 4.242, 5.454 
and 6.060/as with frequencies in individual pulses of  
f i  = 34.7, 38 and 41.3 MHz. For the sound velocity v 
= 6.2 X 105 mm/s of our acousto-optic cell, these 
three f i  corresponded to spatial frequencies fgi  = f i / v  
= 55.9, 61.29 and 66.61 cy/mm. For the X = 633 nm 
a n d f  L = 762 mm system parameters used, a reasonable 
horizontal  spatial separation of  2.62 mm was used be- 
tween the gratings at P2" The spatial frequencies 
chosen for the gratings at P2 were Ug = 15, 35 and 55 
cy /mm and the corresponding separation between the 
three linear detector  arrays at P3 was 9.65 ram. In fig. 
2, we show the outputs  from the three detector arrays 
at P3 for the case of  a J = 437 input. The locations of  
the output  correlations are seen to lie at R m i A X  
= (J - n m i ) A x  = 3Ax,  5Ax,  and 7Ax.  A direct analy- 
sis confirms that the residues o f R m i  o f J  = 437 mod- 
ulo rn i = 7, 9 and 10 are 3, 5 and 7, thus confirming 
that the P3 output  is as expected.  

The s I signal and P2 mask can be fixed in this sys- 

tern as can the integration times m i A t  of the different 
linear detector arrays. In addition, only m i detectors 
are needed in each row and only N columns of detec- 
tors are required to represent quite large numbers. 
When acousto-optic cells of  larger bandwidths (1 5 
GHz is possible [6] ) are used, the required computa- 
tion t ime becomes very fast. Extension of  this time 
integrating correlator concept to residue-to-decimal 
converters, adders and multipliers is straightforward 
and follows the correlation formulation of  residue 
arithmetic presented earlier [2].  
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