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The capabilities of photorefractive crystals as media for holographic interconnections in neural networks are

examined. Limitations on the density of interconnections and the number of holographic associations which

can be stored in photorefractive crystals are derived. Optical architectures for implementing various neural
schemes are described. Experimental results are presented for one of these architectures.

1. Introduction

Learning is the most distinctive feature of a neural
computer and in many respects it is this aspect that
gives neural computation an advantage over alterna-
tive computational strategies. A neural computer is
trained to produce the appropriate response to a class
of inputs by being presented with a sufficient number
of examples during the learning phase. The presenta-
tion of these examples causes the strength of the con-
nections between neurons that comprise the network
to be modified according to the specifics of the learning
algorithm. A successful learning procedure will result
in a trained network that responds correctly when it is
presented with the examples it has seen previously and
also other inputs that are in some sense similar to the
known patterns. When we consider a physical realiza-
tion of a neural network model, we have two options in
incorporating learning capability. The first is to build
a network with fixed but initially programmable con-
nections. An auxiliary, conventional computer can
then be used to learn the correct values of the connec-
tion strengths and once learning has been completed
the network can be programmed by the computer.
While this approach may be reasonable for some appli-
cations, a system with continuously modifiable con-
nections presents a much more powerful alternative.

In this paper we consider the optical implementa-
tion of learning networks using volume holographic
interconnections in photorefractive crystals. The use
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of volume holograms permits the storage of a very large
number of interconnections per unit volume,1 -4 where-
as the use of photorefractive crystals permits the dy-
namic modification of these connections, thus allowing
the implementation of learning algorithms.5-9 We
first briefly review the major types of learning algo-
rithms that are being used in neural network models.
We then estimate the maximum number of holograph-
ic gratings that can simultaneously exist in a photore-
fractive crystal. Since in an optical implementation
each grating corresponds to a separate interconnection
between two neurons, this estimate gives us the density
of connections that are achievable with volume holo-
grams. The next topic that we address is how the
modulation depth of each grating (or equivalently the
strength of each connection) can be controlled through
the implementation of learning algorithms. Two re-
lated issues are investigated: the optical architectures
which implement different learning algorithms and
the reconciliation of physical mechanisms that are in-
volved in the recording of holograms in photorefractive
crystals with the dynamics of the learning procedures
in neural networks.

II. Learning Algorithms

For the purposes of this discussion it is convenient to
separate the wide range of learning algorithms that
have been discussed in the literature into three catego-
ries: prescribed learning, error driven learning, and
self-organization. We will draw the distinction among
these with the aid of Fig. 1, where a general network is
drawn with the vector x(k) as its input and y(k) the
output at the kth iteration (or time interval). The
vector z(k) is used to represent the activity of the
internal units and wij(k) is the connection strength
between the ith and the jth units. Let x(m), m =
1 . . .M, be a set of specified input vectors and let y(m)
be the responses which the network must produce for
each of these input vectors.

1752 APPLIED OPTICS / Vol. 27, No. 9 / 1 May 1988



x(k) ( < > y(k)
z(k)

Fig. 1. General neural network architecture.

A prescribed learning algorithm calculates the
strength of each weight simply as a function of the
vectors x(m) and y(m):

wij = fj[X(m),y(m)] m = 1 . . . M. (1)

This type of procedure is relatively simple (easy learn-
ing). It is perhaps the most sensible approach in a
single layer network. The widely used outer product
algorithm 1 0"11 is an example of this type of learning
algorithm, as are some schemes which utilize the pseu-
doinverse.'0 -1 3 Despite its simplicity, prescribed
learning is limited in several important respects.
First, while prescribed learning is well understood for
single layer systems, the existing algorithms for two
layers are largely localized representations; each input
x(m) activates a single internal neuron.1 4 -16 Moreover,
the entire learning procedure usually has to be com-
pleted a priori. This last limitation is not encountered
in the simplest form of prescribed learning, the outer
product rule:

M
Wi=E XM)Y(M). (2)

m=1

In this case new memories may be programmed by
simply adding the outer products of new samples to the
weight matrix. Note that once the interconnection
matrix has been determined by a prescribed learning
algorithm, it may be expressed in the form of a sum of
at most N outer products, where N is the total number
of neurons in each layer. Since volume holograms
record interconnection matrices represented by sums
of outer products in a very natural way, matrices which
can be expressed in this form are particularly simple to
implement in optics.1 7 -2 0

Error driven learning is distinguished by the fact
that the output of the system, y(k), is monitored and
compared to the desired response y(m). An incremen-
tal change is then made to the interconnection weights
to reduce the error:

Awij(k) = fij[x(m),wrs(k),y(m)I. (3)

The change Awjj is calculated from the vectors x(m) and
y(m) and the current setting of the weight matrix Wrs(k)
(from which the state of the entire network can be
calculated). The perceptron 2 1 and adaline2 2 algo-
rithms are examples of error driven learning for single
layer networks. Interest in such learning algorithms
has been renewed recently by the development of pro-
cedures suitable for multilayered networks.23-25 Error
driven algorithms (hard learning) are more difficult to
implement than prescribed learning since they require
a large number of iterations before errors can be re-
duced to sufficiently low levels. In multilayered sys-

tems, however, this type of learning can provide an
effective mechanism for matching the available re-
sources (connections and neurons) to the requirements
of the problem. In optical realizations error driven
algorithms are more difficult to implement than pre-
scribed approaches due to the need for dynamically
modifiable interconnections and the incorporation of
an optical system that monitors the performance and
causes the necessary changes in the weights.2 6 While
this problem could be avoided by performing learning
off line in computer simulations and recording the
optimized interconnection matrix as in prescribed
learning, this approach has the disadvantage that once
again the matrix is fixed a priori, thus preventing the
network from being adaptive. In subsequent sections
we will consider a relatively simple form of Eq. (3) in
which Awij(k) depends only on locally available infor-
mation, i.e., zi in one layer and zj in an adjacent layer:

Awij(k) = fij[zilwrs(k),y(m),X(m)},zjlwrs(k),y(m),x(m)}]. (4)

The perceptron and the backward error propagation
algorithms both fall in this subcategory if we allow the
neuronal activity zi to include error signals, i.e., if each
neuron has distinct signal and error outputs which are
separated temporally or spatially. An example of such
a neuron implemented in optics is given below in con-
junction with an optical back error propagation sys-
tem.

In the case of self-organizing learning algorithms we
require not that the specified inputs produce a particu-
lar response but rather that they satisfy a general
restriction, often imposed by the structure of the net-
work itself. Since there is no a priori expected re-
sponse, the learning rule for self-organizing systems is
simply

Awi1(k) = f, [x(m),wrsw(k)]. (5)

This type of learning procedure can be useful, for
example, at intermediate levels of a network where the
purpose is not to elicit an external response but rather
to generate appropriate internal representations of the
information that is presented as input to the network.
There is a broad range of self-organizing algorithms,
the simplest of which is probably lateral inhibition to
enforce grandmother cell representations. 1 0 2 7 The
objective of the learning procedure is to have each
distinct pattern in an input set of neurons activate a
single neuron in a second set. In the architecture
shown in Fig. 2 this is accomplished via inhibitory
connections between the neurons in the second set.
Once a particular neuron in the second layer is partial-
ly turned on for a specific pattern it prevents the
connections to the other neurons in the second set from
assuming values that will result in activity at more
than one neuron. The details of the dynamics of such
procedures can be quite complex (e.g., see Ref. 28), as
can corresponding optical implementations. An ad-
vantageous feature of optics in connection with self-
organization is that global training signals, such as
fixed lateral inhibition between all the neurons in a
given layer, can easily be broadcast with optical beams.

1 May 1988 / Vol. 27, No. 9 / APPLIED OPTICS 1753



Input W,
neural plane

training Fourier volume Fourier
neural pane tens hologram tens

Fig. 3. Optical neural computer architecture.

Fig. 2. Two-layer network with lateral inhibition. Connections
ending with an open circle are inhibitory.

Ill. Interconnection Capabilities of Volume Holograms

The basic architecture for optical implementation of
a neural computer is shown in Fig. 3. The figure
presents a single stage of what may be a multilayered
system. The nonlinear processing elements (i.e., the
neurons) are arranged in planes. We have included a
training plane for reasons which will become clear
below. Neurons in one plane are interconnected with
the neurons in the same or other planes via the third
dimension. The strength of the interconnections is
determined by the information which is holographical-
ly stored in light sensitive media placed in the space
separating the neural planes. Volume, rather than
thin, holograms are specified in Fig. 3 due to the much
greater storage capacity of volume holograms and the
availability of excellent real-time volume media. Pho-
torefractive crystals are particularly attractive as holo-
graphic media in this application because it is possible
to record information in these crystals in real time at
very high density without degrading the photorefrac-
tive sensitivity. In this section we discuss the factors
that determine the maximum number of connections
that can be specified by a photorefractive crystal with a
given set of physical characteristics. There are three
distinct factors that need to be considered: geometric
limitations arising from the basic principles of volume
holography, limitations rising from the physics of pho-
torefractive recording, and limitations due to the
learning algorithms.

The Fourier lenses in Fig. 3 transform the spatial
position of each neuron into a spatial frequency associ-
ated with light emitted by or incident on that neuron.
An interconnection between the ith neuron in the in-
put plane and the jth neuron in the output plane is
formed by interfering light emitted by the input neu-
ron with light emitted by the jth neuron in the training
plane. The image of the jth training neuron lies at the
position of the jth neuron in the output plane. The
interference of the training signal and the input cre-
ates a grating in the recording medium of the form

AXij = AiA; exp(jKij - r), (6)

where Ai and Aj are the amplitudes of the fields emit-
ted by the ith and jth neurons, respectively. K is
equal to ki - kj where ki and kj are the spatial frequen-
cies at which the corresponding amplitudes propagate

in the volume medium. This grating diffracts an input
beam at spatial frequency k,, into an output beam at
spatial frequency k if these two beams satisfy the
Bragg constraint that

ki - k = Kii. (7)

This constraint is obviously satisfied if k, = ki and kg =
kj. In general this solution is not unique. However,
Psaltis et al.2'3 have shown that by placing the neurons
on the input and output planes on appropriate fractal
grids of dimension 3/2 it is possible to insure that only
the ith input neuron and the jth output neuron may be
coupled by a grating with wave vector Kij. In this case,
recording a hologram between light from the ith input
neuron and the jth training neuron increases the con-
nection strength between the ith input and the jth
output without directly affecting the connections be-
tween other neurons. If instead of one neuron, pat-
terns of neurons are active on the fractal grids of the
input and training planes, the hologram recorded in
the volume, i.e., Eq. (6) summed over all active pairs of
neurons, is the outer product of the pattern on the
input plane and the pattern on the training plane.
Exposing the hologram with a series of M pattern
yields the sum of outer products described by Eq. (2).
Note that the architecture shown in Fig. 3 is similar to
a joint Fourier transform correlator. The use of vol-
ume, rather than thin, holograms and fractal grids
destroys the shift invariance of the correlator, making
this architecture a totally shift-variant arbitrarily in-
terconnectable system.

A basic geometrical limitation on the density of in-
terconnections achievable through volume holograms
is due to the finite volume V of any real crystal. The
refractive index n(r) of such a crystal under periodic
boundary conditions may be represented in the form

S

n(r) = n,, exp(jk, r), (8)

k= [vX(27r), + (2r) + (2,r),]

vi=0, d1,2..., (9)

where n, is the amplitude of the Fourier component at
spatial frequency k,'and Li is the length of the crystal
in the direction. Since the maximum spatial fre-
quency which may be Bragg matched to diffract light
at wavelength X is 2ko, where ko = 27r/X, the sum in Eq.
(8) is finite in holographic applications. The number
of spatial frequencies in the sum is S - V/X3. Psaltis et
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al.23 demonstrated that S is sufficient to fully and
independently interconnect neural planes which are
limited to fractal dimension 3/2. Thus in this previous
work the issue of these geometric limitations was fully
resolved in the condition that processing nodes in the
input and output planes must be appropriately ar-
ranged on fractal grids. Other geometric limitations
arise due to finite numerical apertures and the physics
of holographic recording mechanisms. These factors
may be shown to contribute a scaling factor to S which
is independent of V and X. For V = 1 cm3 and X = 1
Am, V/X3 is equal to 1012. In interconnecting neurons
arranged on fractal planes, even though the recording
geometry typically allows access to only 1% of grating
wave vector space, we still may achieve 1010 intercon-
nections per cm3.

We now address the question of whether this large
number of gratings can be supported in a photorefrac-
tive crystal, i.e., do photorefractive crystals have the
capability of simultaneously storing 1010 gratings each
with sufficient diffraction efficiency? In this paper we
answer this question based on simple arguments in the
context of a neural architecture. The conclusions we
reach are the same as those we arrive at through a more
thorough examination of the problem. Photorefrac-
tive holograms are produced in electrooptic crystal via
the modulation of the index of refraction by the space
charge field created by an optically driven inhomogen-
eous charge distribution. A neural network architec-
ture implemented in volume holograms performs a
transformation of the form

Ei in exp(jki * r) exp(joi) + c.c. = Eij exp(jyiP)

X exp(jKij * r)

x Ej out exp(jkj - r)

X ep(hkj) + c.c.

standard deviation, VN7ni, where aql is the rms value of
qij. This fact allows us to find a simple limit for l
given by

No

2

(12)

Note that, although we have assumed that the sums in
Eq. (11) are over a set of incoherent sinusoids, this does
not imply that the sum in Eq. (10) is incoherent. To
illustrate this point imagine that /ij = i - j. In this
case the terms in Eq. (10) add coherently. However if
0s and 0j are independent random variables the sums'
in Eq. (11) still add incoherently. Thus a random
phase term in the transmittance at each neuron causes.
the charge densities stored in the crystal to add inco-
herently but does not necessarily destroy the coher-
ence of the optical system.

The holographic transformation described above
can be used to implement neural architectures which
map an activity pattern described by the outputs {xj} of
the neurons on one neural plane to the outputs {yiJ of
the next neural plane. In a coherent optical system xj
is represented by Ej out exp(k1 j) and wij is represented
by mij exp(j'ij). Since most simple optical nonlineari-
ties are based on absorption the transformation be-
tween {xj} and {y} typically takes the form

(13)2)

where f is a thresholding function implemented in the
neural plane. This functional form might be avoided
using interferometric detection. In an incoherent op-
tical system xj is represented by 1Ej outI2 and wij is
represented by qi?. The transformation between 1xj)
and {In} takes the form

Yi = f(Z wijuj)

(10)

between the field amplitude, Ej out exp(jkj * r), of the
jth neuron and the field amplitude, Ei in exp(jkj - r),
incident on the input of the ith neuron. c.c. denotes
the complex conjugate of the preceding term. j and
ks are the phases of the field amplitudes corresponding
to the ith and jth neurons. 4ij is the phase of the
grating which connects the ith and jth neurons. The
field amplitude diffraction efficiencies qij are propor-
tional to the component of the space charge density in
the crystal at spatial frequency K1j = ki - kj.29 The
total space charge density due to N stored gratings is
constrained at every point in the crystal to be less than
the acceptor trap density. This implies that

{aE 7 ii exPiiii) exp(jKj,* r)} < no, (11)

where 2o is the maximum diffraction efficiency for the
field amplitude when only one grating is recorded. If
iij is an independent uniformly distributed random
variable on (-7r,7r), with high probability the right-
hand side of Eq. (11) will not exceed a few times its

(14)

In either case the function f must provide sufficient
gain G to regenerate the signal power of the system
after each layer. If we assume that each layer contains
/N neurons, the relationship between the power inci-
dent on a single neuron, Iin, and the power output by a
single neuron, 'out, for a coherent system with fij = 0i -
qj is

FN 2

'in = K E ij expCij)Ej out exp0oj)

= N' Iout Gout
Gcoherent

From Eq. (12) we find

Gcoherent = 1

(15)

(16)

For an incoherent system the corresponding relation-
ship is

IN 'out

Iin = K E' ?71ij~ ~l N1lI~ out
'in = K ~ ~~IE1 out'2 = - Gincoherent

In this case Eq. (12) yields

(17)
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Gincoherent (18)2 no

Note that 1/G is the total diffraction efficiency of the
volume hologram. Since this must be less than 1 we
know that G > 1. no is determined by the physical
properties of the crystal, including the maximum
charge density available for grating storage, the thick-
ness of the crystal, and its electrooptic coefficients.
For small nl we may estimate no as

n7o ACL27

where L is the length of the crystal along the optical
axis. For Ae 10-5, X 10-6 m, and L 10-2 m, 10 =
0(1). This means that in coherent systems relatively
little gain [i.e., G = 0(1)] is needed to recall a large
number of sinusoidal gratings stored in a photorefrac-
tive crystal. Of course as we attempt to store arbitrari-
ly many gratings other limits arise, but at least over a
finite bandwidth of the electrooptic response of the
crystal coherent systems should have no difficulty in
achieving interconnection densities of the order of
those implied by the geometrical constraints. Inco-
herent systems, on the other hand, are unable to take
advantage of holographic phase matching and are thus
less efficient.30 To achieve N = 1010, for example, we
must supply a gain of G = 105 in each neural plane.
Examples of how G may be obtained optically include
various combinations of image intensifiers and spatial
light modulators and multiwave mixing in nonlinear
materials. For example, an optically addressed spa-
tial light modulator such as the Hughes liquid crystal
light valve is sensitive to 10 MW/cm2. If the read-out
beam has an intensity of 1 W/cm2 we achieve a gain of
105.

The choice between coherent and incoherent imple-
mentations of optical neural networks offers advan-
tages and disadvantages on both sides. The incoher-
ent system is easier to implement but requires the large
gain described above and offers only unipolar activities
and interconnection strengths. The coherent imple-
mentation offers bipolar activities and interconnec-
tions but requires rigid phase stability in the optical
system over potentially very long learning cycles.
This stability is not difficult to achieve in prescribed
learning architectures, but may be more difficult to
achieve in adaptive systems. In addition, coherent
systems generally square the signal incident on the
nonlinearity, unless interferometric detection is used.
Interferometric detection is difficult to implement in a
complex optical system. Although the incoherent sys-
tem is straightforward to implement, this simplicity
comes at a cost of requiring biasing to compensate for
unipolar values and external gain. The coherent sys-
tem is more elegant in that these additional mecha-
nisms are not necessary, but it is more sensitive to
specific design issues. One way of making coherent
implementations more robust might be to include
adaptive optics, such as phase conjugate devices, to
compensate for phase instabilities. Although these

devices might also be needed in adaptive incoherent
systems to detect the phase of a grating to correctly
update the associated interconnection, in the incoher-
ent case it is only necessary to detect the current state
of the phase. In the coherent case it is generally neces-
sary to continuously track the phase.

IV. Learning Architectures

We now turn to the question of how we can specify
the strength of each interconnection. There is a nice
compatibility between simple (multiplicative) Heb-
bian learning and holography; the strength of the con-
nection between two neurons can be modified by re-
cording a hologram with light from the two neurons.
It is not possible, however, to record multiple holo-
grams in a single crystal independently. Thus far we
have shown that the space charge in a photorefractive
crystal may be arranged to achieve a very large number
of independent interconnections. The task that re-
mains is to find a means of using optical beams from
outside the crystal to correctly arrange the 3-D charge
distribution. In particular, we must find means to
address the full 3-D bandwidth of the crystal from 2-D
neural planes. To successfully implement learning
with photorefractive crystals the nonlinear dynamics
that govern the multiple exposure of holograms in a
photorefractive medium must be reconciled with the
nonlinear equations that describe the iterative proce-
dures of learning algorithms. It is extremely difficult
to fully characterize analytically the ability of an opti-
cal system to simulate a particular learning algorithm.
We will have to rely heavily on experiment in the
search for the optimum match between nonlinear op-
tics and learning procedures for neural networks. In
this section we describe learning architectures which
are relatively simple to implement experimentally and
which can be used to evaluate the capability of photo-
refractive crystals to store information in the form of
connectivity patterns in a neural computer.

The first learning algorithm we consider is the pre-
scribed sum of outer products of Eq. (2). As we saw in
the previous section, a sum of this sort may be imple-
mented as a series of exposures of a volume hologram.
In a photorefractive crystal, the exposure of a new
hologram partially erases previously recorded holo-
grams. This places an upper limit on the maximum
number of hofograms that can be recorded and thus
the number of associations M that can be stored in the
crystal. The limit is found by determining the mini-
mum tolerable diffraction efficiency for each associa-
tion and solving for the number of exposures that will
yield this efficiency. Let Am be the amplitude of the
mth hologram recorded. After a total of M exposures,

Am = A[1 - expf ltm)] exp( -e ) (19)
L \Tr/J \ ~~m'+1

where A is the saturation amplitude of a hologram
recorded in the photorefractive crystal, t is the expo-
sure time for the mth hologram, r and Te are, respec-
tively, the characteristic time constants for recording
and erasing a hologram in the crystal. We allow for the
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case that Te d Tr in light of limited evidence that this
may be the case in some crystals. 31 Ionic conductivity
is one mechanism leading to multiple time constants.
We can use several different criteria for selecting the
exposure schedule tin. For example, if we require Am =
Am+i for all m we obtain

[1exp( )exp( r ) = 1 x( a,2)]

If Tr = re, the solution to Eq. (20) in the boundary
condition tj >> Tr is

tm i = Te n(M I) m > 1, (21)

which yields
A0

Am = AM= M (22)

For the case Tr z Te we define Pm such that tm = PmTe

Since, from Eq. (19), limM j.fAj = 0, Eq. (20) may be
satisfied only if limm- inftm = 0. Thus for some m > 1,
Pmo << 1 and tmo << Tr. Then, from Eq. (20),

tin0

tm0+1 t.
1 + T

( Pm0 \
t1 + Pm0 /

or
Pm0

Bim0+uco 1 + Pm,,,

By induction, for in> in0

Pm
1

(m -MO) + -

PmO

As mn grows large with in 0 fixed, Eq. (25) can be shown
to yield

Pm Pt~ m ' (26)
m

NI

Fig. 4. Optical architecture for backward error propagation learn-
ing.

The second architecture we will discuss is capable of
implementing the backward error propagation algo-
rithm23 24 in a multilayered network. The architec-
ture, shown in Fig. 4, is a variation on a system we
described previously.6' 8 The system as shown has two
layers but an arbitrary number of layers can be imple-
mented as a straightforward extension. An input
training pattern is placed at plane N. The pattern is
then interconnected to the intermediate (hidden) lay-
er N 2 via the volume hologram H1. A 2-D spatial light
modulator placed at N2 performs a soft thresholding
operation on the light incident on it, simulating the
action of a 2-D array of neurons, and relays the light to
the next stage. Hologram H2 interconnects N2 to the
output plane N4 where a spatial light modulator per-
forms the final thresholding and produces a 2-D pat-
tern representing the response of the network to the
particular input pattern. This output pattern is com-
pared to the desired output and the appropriate error
image is generated (either optically or with the aid of
an image detector and rerecording) on the spatial light
modulator N4. The undiffracted beams from N and
N2 are recorded on spatial light modulators at N 3 and
N 5 , respectively. The signals stored at N3, N4, and N 5

are then illuminated from the right so that light propa-
gates back toward the left. The backpropagation al-
gorithm demands a change in the interconnection ma-
trix stored in H2 given by

Aw) = -acif'(xn)xjU t, (30)

tm ~~~~~~~ ~(27)

The value of m for which the approximation holds
increases with the ratio re/rr. In the case Tr = 'Te, for
example, Te/3t3 = 0.82 and r,/10tlo = 0.95. In any case,
for M >> mo for some mo satisfying the constraints
preceding Eq. (23),

Am = AM = Ao[ exP( Te) (28)

for all m. Solving for M with Am << AO we find a limit
for M given by

'r AO
Mm - O (29)

T,. Am

This result agrees well with what we might expect
intuitively. The number of exposures allowed in-
creases in proportion with the ratio -r0/rr (if we erase
slowly we can store more holograms) and the ratio of
the maximum possible and minimum detectable grat-
ing amplitudes.

where a is a constant, ej is the error signal at the ith
neuron in N4, xm is the input diffracted onto the ith
neuron in N 4 from N2,f'(x) is the derivative of the
thresholding function f(x) which operates on the input
to each neuron in the forward pass, and x9"t is the
output of the jth neuron in N2. Each neuron in N 4 is
illuminated from the right by the error signal Ei and the
backward transmittance of each neuron is proportion-
al to the derivative of the forward output evaluated at
the level of the forward propagating signal. As we
have described above, the hologram recorded in H2 is
the outer product of the activity patterns incident
from N 4 and N5. Thus the change made in the holo-
graphic interconnections stored in H2 is proportional
to the change described by Eq. (30).

The change in the interconnection matrix stored in
H required under the backpropagation algorithm is

Aw,() - E(Xin)W(2 )f,(Xn)x, (31)

where x% is the activity on mth input on N1. The error
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signal applied to N4 produces a diffracted signal at the
lth neuron in N2 which is proportional to

E > ef'x">n)W(2) (32)

We assume that, during the correction cycle for H1, N 5
is inactive. Once again, if the backward transmittance
of the th neuron is proportional to (xi ), the change
made to the hologram by the signals propagating back
from N2 and N3 is proportional to the change pre-
scribed in Eq. (31).

A key element in this architecture is the assumption
that the spatial light modulators at N2 and N4 may
have transmittances which may be switched between a
function f(x)/x for the forward propagating signal and
f'(x) for the backpropagating signal. In both cases x
represents the forward propagating signal. We have
previously described how nonlinear etalon switches
might be used in this application.7 8 Electrooptic spa-
tial light modulators might also be used.8

We have performed an experiment to show how a
single layer of error driven learning might be imple-
mented. This experiment is shown schematically in
Fig. 5. In this case, the stored vectors x(m) correspond
to 2-D patterns recorded on a liquid crystal light valve
from a video monitor. The output vectors y(m) corre-
spond to the single bit output of the detector D. An
input vector is imaged onto a photorefractive crystal
via two separate paths. The strength of the grating
between the image of the input along one path and the
image along the other path is read out by light propa-
gating along the path of one of the write beams in the
orthogonal polarization, i.e., while the write beam inci-
dent on the detector is linearly polarized, the other
write beam is circularly polarized. The polarizer P
blocks the linearly polarized beam and one component
of the diffracted circularly polarized beam, passing
only the orthogonally polarized diffracted beam. This
allows readout of the grating as it is being recorded.
The diffracted light is imaged onto the detector D.
This system classifies input patterns presented to it
into two classes according to whether the output of the
detector when the pattern is presented is high or low.
If during training a pattern we would like to classify as
high yields a low response, the hologram is reinforced
by exposing the crystal to the interference of the two
beams, each carrying the image of that pattern. This
exposure continues until the diffracted output in-
creases by a fixed amount. If a pattern which should
be classified as low is found during training to yield a
diffracted output that is too high, the hologram dif-
fracting that pattern is erased by a fixed amount by
exposing the crystal with only one of the imaging
beams. (One beam is blocked by the shutter SH). An
experimental learning curve showing the diffracted
intensities for each learning cycle for four training
patterns in a system implemented using an Fe-doped
LiNbO 3 crystal is shown in Fig. 6. The system classi-
fies the patterns 0 and 2 as high and 1 and 3 as low. At
first all patterns are low. The first two learning cycles
are intended to drive the outputs of 0 and 2 above

laser PB LCLV TV

_ -J0 01 computer

1 SH XtOI P L2D

BS- ES, A-0-
WP 

M 

Fig. 5. Simple photorefractive learning system: PB is a polarizing
beam splitter; Ll and L2 are imaging lenses; WP is a quarterwave
plate; SH is a shutter; P is a polarizer; D is a detector; M is a mirror.
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2LI

3

0 2

1 3

Fig. 6. Experimental learning curves.

threshold. However, they have the undesired effect of
also driving pattern 3 above threshold. Thus in the
third learning cycle 3 is erased. In this particular erase
cycle the erasure was too severe. Note that pattern 2 is
erased in this cycle, even though there is no overlap
between this pattern and pattern 3. The reason for
this is that the two images of pattern 3 are in focus only
over a limited region of the crystal volume. Outside of
this region the unfocused image may erase the holo-
gram formed by pattern 2. In the subsequent two
cycles patterns 0 and 2 are again reinforced. This has
the unwanted effect of driving both patterns 1 and 3
just above threshold. In the final two cycles patterns 1
and 3 are erased until both are below threshold. At
this point all patterns are correctly classified and
learning stops.

In this experiment the photorefractive crystal acts
as a 2-D modulator. The diffraction efficiency be-
tween the two imaging paths is high where the patterns
0 and 2 overlap and low where patterns 3 and 1 overlap.
As mentioned above, a problem arises in the fact that
the overlap is well defined only in the image plane,
meaning the crystal must be thinner than the depth of
focus of the images. To utilize the full capacity of
photorefractive volume holograms it will be necessary
to move beyond this implementation to architectures
utilizing the full 3-D capacity of the crystal as dis-
cussed above. Nevertheless, this experiment demon-
strates in a rudimentary way how learning in photore-
fractive crystals may proceed.
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V. Conclusion

Photorefractive crystals represent a promising in-
terconnection technology for optical neural comput-
ers. The ease of dynamic holographic modification of
interconnections in these crystals allows the imple-
mentation of a large class of outer product learning
networks. The density of interconnections which may
be implemented in these crystals is limited by physical
and geometrical constraints to the range of from 108 to
1010 per cm3. To achieve these limits consideration
must be given to the exposure schedule of the crystal.
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