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We have developed a numerical diffraction tool for cases in which the incident field is a focused spot and the
diffracting structure is a single structure or an aperiodic surface. Our approach uses the integral formulation
to solve Maxwell’s equations and is different from previously published methods in its choice of basis function.
We compared numerical results with experimental measurements of the far-field intensity for a focused spot
incident on an aluminum grating, and the comparison was favorable. Finally, we predict the diffraction be-
havior of the proposed digital video disk format for the next generation of optical disk. Our analysis shows
that the reflected signal for this format has a strong dependence on the polarization of the incident light.
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1. INTRODUCTION

The numerical calculation of rigorous electromagnetic dif-
fraction is a broad field with many different approaches
and applications. In general, a particular approach must
be carefully selected and tailored to the specific problem
at hand. Our desire in the present effort is to study the
diffracted far field that results when a high-numerical-
aperture, diffraction-limited, and focused spot is incident
on a single or aperiodic structure. Examples of diffrac-
tion problems that meet this description are optical
memories and critical dimension metrology in microelec-
tronics fabrication. Previous analysis of optical disk
memories and other random or rough surfaces has typi-
cally described the incident field as a plane wave.l® As
the numerical aperture of the incident light increases, as
is the case for the new digital video disk (DVD) format,
this approximation becomes less satisfactory.

Feature sizes in microelectronics fabrication are now
approaching 0.25 um, and they are expected to be as
small as 0.18 um by 2000.” While current efforts exist in
the development of scanning electron microscopes and
atomic force microscopes for critical dimension measure-
ment in a mass production environment, optics will al-
ways have the advantage in speed and cost. However,
the image resolution limit for optical instruments is very
severe. Efforts to measure optically characteristics of
unresolvable features include scatterometry.®® The the-
oretical approach in this method considers the problem of
a plane wave incident on a grating. Our contribution is
an attempt to model the measurement of a single or ape-
riodic structure with a focused spot. The advantage of
this approach over scatterometry is that single features or
lines can be measured, rather than parameters of a grat-
ing.

The basic principle behind the use of optical systems to
measure features that are normally unresolvable is the
use of a priori information. For example, an optical
memory format is known when the read head is designed,
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and, in fact, the optical memory format is purposely de-
signed to maximize the read signal. However, when an
astronomical observation of a star is made, for example,
nothing is known about the star except what can be ob-
served. Therefore the astronomer is limited to the clas-
sical resolution, while an optical disk player can make
measurements of pits that are half the wavelength in di-
ameter. In the middle of these two extreme examples, in
terms of a priori information, is the problem of critical di-
mension measurements of microelectronics circuits. In
this case the intended pattern is known beforehand, but it
is designed for its electrical operation, not for its optical
properties.

Our diffraction model (Fig. 1) consists of a substrate
surface with a known contour and an incident field result-
ing from a beam focused through an objective with a
known numerical aperture. All the results presented
here are for two-dimensional structures. When the ge-
ometry of the structure is two dimensional, the problem
decomposes into two independent polarizations. We de-
fine the TE polarization as the case in which the electric
field is perpendicular to the plane of incidence and paral-
lel to the groove or the line, and the TM polarization is for
the electric field lying in the plane of incidence.

There are several numerical vector diffraction methods
described in various publications. We want to select the
method that best suits our particular problem. Most nu-
merical methods are designed for periodic structures and
plane-wave incidence. For example, the integral method
invented by Petit and improved on by Wirgin,®™!% the
coupled-mode methods,'*'® and the coupled-wave
methods'®~® make these assumptions. To use a method
that requires periodicity, we could approximate a single
structure with a periodic structure with a very long pe-
riod. The diffraction for a focused spot would then be cal-
culated by considering separately each plane wave that
composes the focused incident field. However, the num-
ber of orders required in the diffraction calculation, be-
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Fig. 1. Basic diffraction model addressed in this paper. NA
stands for numerical aperture.

cause of the large period, will cause a burden on time and
memory of the computation, and this computation time
must be multiplied by the number of plane waves that are
to be considered in composing the focused spot. There-
fore we decided to pursue a more direct integration tech-
nique that will allow us to calculate the diffraction di-
rectly from the focused incident field and a single groove.

The two most general approaches to numerical solu-
tions of Maxwell’s equations are the integral approach
and the differential approach. Examples of some differ-
ential approaches are finite differences, finite-element
analysis, and the more recent finite-difference time do-
main method. In general, these methods are best when
the problem is contained within finite boundaries or the
medium is inhomogeneous. For the particular problem
addressed here, the diffracting structure is typically an
aluminum contour covered with polycarbonate (an optical
disk) or a structure etched into silicon or its dielectric
film. The most natural approach to calculate diffraction
for a structure that can be described as a contour seems to
be the integral method as described by de Hoop.2°

Since the integral method for numerical diffraction cal-
culations is well described in the literature, 2191320 we
will limit our discussion of the formulation of the numeri-
cal method to those details in which our method differs
from that of the references. Our adaptations all relate to
our specific diffraction problem of a focused spot and a
single, nonperiodic structure. In the next section, we will

—-n XV X [G(r; ry)*
n X jwe(l + VHED[G(r; r)* A X V X [G(r; ry)*

establish the conventions used in this paper and discuss
our formulation of the coupled integral equations for two-
dimensional diffraction. We will describe in detail three
adaptations that we made to the standard integral
method. They are the following: our choice of the basis
function expansion of the surface currents, the calculation
of the incident fields, and the calculation of the diffracted
far field by using the calculated surface currents. An im-
portant part of any complicated numerical calculation is
testing the numerical results. Therefore we also include
a detailed discussion of the various tests that we used, in-
cluding a new test that takes advantage of our choice of
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the basis function and checks for aliasing resulting from
inadequate grid spacing. Section 3 is devoted to the com-
parison of numerical result with experimental measure-
ments. For our comparison we use a focused spot formed
by a high-numerical-aperture objective incident on an
aluminum grating. The incident light is polarized so
that the electric field is parallel to the grating vector (per-
pendicular to the groove wall), so that the Wood’s
anomaly is excited. In Section 4 we make a prediction
about the polarization properties of the new DVD format.
The numerical results for the format lead to a proposal for
the doubling of storage density on the disk.

2. NUMERICAL SOLUTION

A. Coupled Integral Equations

The formulation for the integral method of numerical dif-
fraction is described in detail by de Hoop?® and Bouwhuis
et al.,? and specific operator matrices for the two polariza-
tions in two-dimensional diffraction problems are given in
the appendix of Dil and Jacobs.! For the purpose of de-
scribing the differences between our numerical method
and these references, we will start with the coupled inte-
gral equations derived from Maxwell’s equations in the
references. The unknown quantities in the integral
equations are the tangential electric and magnetic fields
at the boundary between two media. The boundary is de-
scribed by a surface in three dimensions and a contour in
two dimensions. The tangential electric and magnetic
fields can be defined as the magnetic and electric surface
currents

_ (Js, m(¥s) n X E(ry)
J(rS) B Js,e(rs) —n X H(I‘S)

where r, is a point on the surface and 7 is a unit vector
normal to the surface and pointing into the incident me-
dium. The fields in either medium and on the surface
are expressed as superposition integrals of the surface
currents on the surface and the Green’s function. In op-
erator notation the tangential fields at a field point r are

J(r) = T'd(ry), 2)

b (1)

where T’ is the operator matrix

X jou(l + VHEY[G(r; ry)*

S

3

In the above operator, G(r; r') is the free-space Green’s
function

exp(jk|r — r'|)

G(r;r') = dalr — 1|

, (4)

where £ = w+ue and the symbol * in the operator repre-
sents the convolution

G(r; ry) * J(ry) = % é G(r; r)d(ry)dr,. (5
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By writing Eq. (2) for each medium and the incident field
and applying boundary conditions at the surface, one can
form two coupled integral equations for the tangential
fields at the surface. In the operator notation, the result
is

[rd —r® —11g = -Jv. (6)

The superscript 1 or 0 for the operator I' indicates that
the Green’s function for medium 1 or 0, respectively, is
used. J% are the surface currents resulting from the
known incident fields. To solve these coupled integral
equations numerically, a set of basis functions is chosen
to express the surface currents, and the known and un-
known quantities of the integral equations become vec-
tors of coefficients. In addition, the operators in Eq. (6)
become a matrix of coefficients, where each matrix ele-
ment includes a numerical integration of a Green’s func-
tion and a basis function. Inverting this matrix gives the
solution vector of unknown surface current coefficients.
To obtain the far-field solution, a final numerical integra-
tion is calculated by using the solution surface currents
and a Green’s function simplified for the far-field calcula-
tion.

For our analysis we simplify the integral equations to
two dimensions. In this case the diffracting structures
are independent of the third dimension (y axis), and they
represent infinitely long grooves. Also, the incident
fields are independent of the third dimension, and this re-
striction implies that the direction of propagation of the
incident field has noy component. Thus our focused spot
will be formed by a cylindrical lens, and the diffracted far
field is calculated only for a one-dimensional angular
spectrum, corresponding to a line in the Fourier plane of
the objective lens. We justify the use of a two-
dimensional model with the observation that the pits em-
bossed on optical disks are subwavelength only in the ra-
dial (cross-track) direction and that they are generally
longer than a spot size in the azimuthal direction. Simi-
larly, interconnect lines in semiconductor circuits are gen-
erally much longer than a spot size.

When the surface and all the fields are independent of
a particular direction, say the y direction, then the inte-
grals can be immediately performed along the y axis be-
cause only the Green’s function has any dependence on y.
The Green’s function becomes the two-dimensional
Green’s function

(7 expUklr —x) G
G(r; ry) = f mdy = 4—Ho (klr — ry),
(7

which is the Hankel function of the first kind and order
zero. The remaining integration required to calculate
each matrix element is a contour integral in the x—z
plane. Since all the integrations are now contour inte-
grations, the independent variable is better described as a
scalar s, which is the length along the contour starting
from the point on the contour where x = 0 (see Fig. 2).
The value of s at any point along the contour is calculated
in the standard manner: s(x) = [{(ds/dx)(x’)dx’. The
unit vectors 7 and n, which point tangentially and nor-
mally, respectively, to the contour, will ease the notation
for the formulation in two dimensions. We have chosen
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the direction of 7 so that 7 X n = y. Another conse-
quence of the independence in the y direction is that the
problem splits into two independent polarizations: E
= Ey(TE) and H = Hy (TM). These polarizations are
independent because an incident field with one of these
polarizations will scatter only to fields of the same polar-
ization.

The operators (3) can be simplified for the two-
dimensional case. For the reduction of the integral equa-
tions, we will assume the TE polarization. The results
for the TM polarization are in Appendix A. Knowing the
specific directions of the surface currents, we can simplify
the matrix of operators. Substituting these surface cur-
rents into the matrix elements, we obtain

Iydg m(r) = —ni(s) X V X ﬁ [G1(R) — Go(R)]
X ds m(s")7(s")ds’, (8a)

Lol o(x5) = joun(s) X Jl [G1(R) — Go(R)]

X Jy. (s ds’, (8b)
Lod. (e = 28 J'w[kZG(R)—k2G(R)]
21¥%s, m\*s jw/-lv . 1 1 0 0

X Iy m(s)7(s)ds’ + V2

- f [G1(R) ~ Go(R)]
x Ji, m<s'>%<s’>ds'], (80

Pogd, o(xs) = —A(s) X V X Jl [G1(R) — Go(R)]

X dJ (s")y ds’, 8d)

where we have assumed that 4 = u; = uy and used R
= |rs - rs’|'

In order to form a matrix of coefficients, we expand the
surface current on a set of basis functions. In Refs. 1 and
2, the surface currents are assumed to be constant over
small segments, making the basis functions rect functions
[rect(x) = 1 when |x| < 1/2, and 0 otherwise]. This ap-
proach works well when the incident field has a small an-
gular spectrum, such as a plane wave. However, when
the incident field is a tightly focused spot, then the num-
ber of grid points required to describe the incident field
satisfactorily becomes very large, even when the diffract-
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Fig. 2. Diffracting structure and coordinate systems for a two-
dimensional problem.
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ing surface is a flat plane. In the present case, the inci-
dent field is a focused spot resulting from a lens of finite
aperture, and so the angular spectrum (spatial band-
width) of the incident field is limited to the numerical ap-
erture of the focusing lens. A good choice of basis func-
tions might then be sinc functions [sinc(x) = (sin x)/x].
The Nyquist sampling theorem states that a function of
finite bandwidth (angular spectrum) is identically equal
to a sum of evenly spaced samples weighted by sinc func-
tions if the sample rate is at least twice the highest fre-
quency (plane-wave angle) of the function. That is, f(x)
= 3, fla/W)sine(mwWx — «l) if W is greater than or
equal to the bandwidth of f(x). As a result, the incident
field and the surface currents can be perfectly repre-
sented by a set of sinc basis functions if the diffracting
surface is a flat plane. For diffracting surfaces that are
not a flat plane, however, the incident field is no longer a
simple Fourier transform of its angular spectrum, and a
sampling rate greater than the Nyquist frequency is nor-
mally required. This higher sampling rate corresponds
to allowing for evanescent waves in other numerical ap-
proaches, such as coupled-wave analysis. In general, the
sample rate required for good results increases as the sur-
face becomes less like a flat surface. The disadvantage of
sinc basis functions is that the integral in each of the ma-
trix elements now has infinite limits, whereas with rect
basis functions, the integral is only over the region where
the rect functions are nonzero. Compared with rect basis
functions as used in Refs. 1 and 2, sinc basis functions are
superior for flat and nearly flat surfaces. However, for
deep and narrow grooves in the diffracting surface, the
better basis function is not clear.
The expansion of the surface currents is of the form

N
Js m(s) = 2 a; sinc(kgWs — i), (9a)
N
Jy o(s) = > b, sinc(koWs — ml). (9b)
I==N

The unaliased bandwidth of the surface currents is deter-
mined by W. The coefficients a; and b; are samples of
the surface currents at the grid points s = #wl/k,W. We
have truncated the expansion to 2N + 1 terms. Substi-
tuting the basis functions into the matrix elements and
placing the coefficients in the vector of unknowns, we ob-
tain

Iy, = —ii(s) X V X J, [G1(R) — Go(R)]

X sinc(koWs' — wl)7(s’)ds’, (10a)

F121 :jwﬂ?(s)f_ [G1(R) — Go(R)]

Xsince(koWs' — ml)ds’, (10b)
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n(s)

_ sy T e 2
jon X f_x[lh G1(R) — ko"Go(R)]

21,

Xsinc(koWs' — wl)ds’

+ V2. f, [G1(R) — Go(R)]

X sinc(koWs' — wl)ds’]%(s’), (10c¢)

Ty, = yln(s) - V]f_ [G1(R) — Go(R)]
X sinc(koWs' — wl)ds’, (104d)

and the vector of unknowns is J = [@; b;]’. The inte-
gral equations can now be discretized to form the matrix
equation. Since the choice of sinc functions as the basis
for the surface currents guarantees that the resulting
surface currents will be band limited, the integral equa-
tions can be discretized without any further loss of accu-
racy by simply sampling at the grid points.

The calculation of the matrix elements [Eqgs. (10)] con-
tains both derivative operators and integration. Revers-
ing the order of differentiation and integration would be
convenient, but this technique cannot be used if the inte-
gration is across an integrable singularity. The inte-
grands in Eqgs. (10) have an integrable singularity for the
matrix elements along the diagonal. These matrix ele-
ments are for the cases in which the field grid point
(Green’s function) and the source grid point (sinc func-
tion) are the same. To integrate these integrands nu-
merically, we used the technique of subtracting the singu-
larity from the integrand and integrating it separately in
closed form.2?2  This technique is possible because the
Hankel function has a logarithmic singularity that can be
integrated in closed form.

B. Incident Field

The right-hand side of the general matrix equation (6) is
the tangential component of the incident field calculated
at the grid points s,,. Many different models for the in-
cident fields can be used. However, restrictions must be
placed on the incident field if the numerical problem is to
remain practical. As we mentioned in the formulation in
the previous subsection, one source of error is the trunca-
tion of the region covered by the grid points. The trun-
cation is reasonable only if the power flow across the sur-
face beyond the covered region is negligible. Therefore
the size of the matrix equation can be kept small only if
the power flow of the incident field is concentrated over a
relatively small region. For example, plane waves do not
meet this criterion, but focused spots do.

Figure 1 shows a lens focusing light onto the diffracting
surface. The fields focused by the lens can be expressed
as an integral of plane waves.?>27 If B(u) represents
the amplitude and the phase of the TE electric field at the
entrance pupil of the lens, where u is the transverse co-
ordinate in this plane, then the incident field behind the
lens is
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E¥(x, z) = &f B(u)exp[ jko(ux + V1 — u?z)]du.
(11)

The incident magnetic field follows from Maxwell’s equa-
tions:

Hff)(x, z) = fB(u)\/l — u?
X exp[jko(ux + V1 — u2z)]du, (12a)

H(x, z) = fB(u)u
X exp[jko(ux + V1 — u22)]du. (12b)

Since the focal point is near the origin, x and z are always
small enough so that the integrals for the incident fields
are easily calculated by direct numerical integration. In
most of our simulations, we used

1, |lu| < NA

B(u) = (0’ |u| > NA’ (13)

where NA corresponds to the numerical aperture of the
lens. Another, perhaps more accurate, choice might be

N1 — u?, lu| = NA
0, |u| > NA

23

B(u) = [ 14)
as is discussed by Mansuripur. The incident surface
currents for the right-hand side of the matrix equation
are then

IV (s) = A x BV = 7(s)EV(x,, z,),  (15a)
IO (s) = —a x HY = §[n(s)H(x,, 2,)
— n(s)H(x, 2,)]. (15b)

The incident fields for the TM case are completely analo-
gous: H,(x, z) is calculated from the front focal plane
distribution, and the electric-field components are derived
from the curl of H.

C. Far Field

Once the matrix elements and the incident-field vector
are calculated, the matrix equation is solved by using a
standard numerical method such as lower triangular—
upper triangular decomposition. The solution vector con-
tains the coefficients a; and b;, which can be substituted
into Eq. (9) to find the surface currents anywhere on the
contour. Unfortunately, the tangential fields at the con-
tour cannot be directly measured. Useful results of this
diffraction calculation would be the amplitude and the
phase in the far field, since these quantities can be experi-
mentally measured. To calculate the far field, we make a
far-field approximation of the integral equations to calcu-
late the scattered electric field (magnetic field in the TM
case). For this calculation we use a far-field approxima-
tion for the Hankel function, and we simplify the inte-
grand by ignoring terms that have a dependence on r
stronger than 1/\]r]. The electric far field can then be
calculated by a simple numerical integration.
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Fig. 3. Coordinate system for the far-field calculation.

If we ignore a constant factor of exp(jkr)/\r, the elec-
tric far field at angle 6 (see Fig. 3), or at the equivalent
point in the Fourier plane of an objective lens, is equal to

. |2k LT
—E(0) =y\— eXP(J Z)

X jw {[n.(s")sin 0 — n,(s')cos 6]

X g m(s") + J, o(s")}
X exp{—jko[x(s')sin & — z(s')cos #]}ds’.
(16)

The integration in the above formula is easily performed
numerically because all the grid points and the surface
currents have already been tabulated. Values for 6 can
be chosen arbitrarily, although values that lie within the
numerical aperture of the objective lens used to collect the
scattered light are generally used.

D. Testing the Numerical Results

Before we can start using a computer program to predict
diffraction behavior, we must have some confidence that
the program is both numerically stable and an accurate
representation of the mathematical formulation. The lit-
erature suggests several methods for testing the numeri-
cal results.’1%2°  These methods include comparing nu-
merical results with analytic solutions for the small class
of known solutions, checking that the numerical solution
satisfies the appropriate power conservation laws, testing
reciprocity relations with the numerical method, testing
the numerical results with the extinction cross-section
theorem, and checking the convergence of the numerical
results for decreasing grid spacing and increasing matrix
rank.

We found that different checks were useful at different
stages of forming the numerical computer program. For
the problem of a planar interface, a problem for which
analytic solutions are known, only the matrix elements of
I'i5 and I'y; are nonzero. We took advantage of this fact
by using the planar interface problem to scrutinize the
calculation of the matrix elements I'y;, the most compli-
cated calculations and therefore the most likely to contain
errors. Power conservation relations, discussed in more
detail in the Subsection 2.D.1, proved useful when put-
ting together the various components of the overall calcu-
lation. If, for example, a sign error were present in one of
the incident fields, then power conservation would not fol-
low. These two tests ensure that the computer program
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is an error-free representation of the formulated equa-
tions. However, they do not, in general, test the numeri-
cal stability and accuracy of the computer program. The
best method to evaluate the numerical stability of the
computer program is simply to run the program repeat-
edly for the same problem with an increasing number of
grid points. If the numerical solution converges in a rea-
sonable manner, then the numerical program is stable, at
least for the particular problem that was computed. The
numerical accuracy of the solution can be estimated from
the convergence data. The last check that we will dis-
cuss is a new check specifically for the parameter W, the
scale of the sinc functions and thus the inverse of the grid
spacing. This method uses the fast Fourier transform
(FFT) of the surface currents to check the validity of the
assumption that they are band limited to W.

1. Power Flow
Power conservation dictates that the time-averaged
power flow transmitted across the contour boundary plus
the power reflected from the boundary is equal to the
power in the incident field. Unlike formulations that use
a plane wave as the incident field, our treatment can use
only incident fields with finite power. In this subsection
we will first show that the power flow across a boundary
can be calculated with the surface currents. Applying
this formulation and the orthogonality of the sinc func-
tions, we will derive the formulas for calculating the
transmitted, reflected, and incident power from the sur-
face current coefficients.

The time-averaged electromagnetic power flow across a
surface is found by integrating the normal component of
the real part of the Poynting vector?s:

(P) = J Re(E X H*) - n ds. an
Having formulated the problem in two dimensions, we are
ignoring the integration in the y direction. However, the
normal component of the Poynting vector can be repre-
sented by using surface currents. From the definition of
the surface currents, it follows that

Jyom XI5, = (—A)[7 - (E X H)]. (18)

In our two-dimensional treatment, we already know the
directions of the surface current vectors. For the TE
case, we have

JomT X JE 9 = —dg nds 0 (19)

s, e’

and the time-averaged power flow across the surface is

(P) = f Re[dJ;, ,(s)J7 (s)]ds. (20)
Note that we have changed the sign of the integrand so
that the power flow is in the direction opposite to the di-
rection of 7. Substituting the basis function expansions
of the surface currents [Eqgs. 9] into the expression for the
average power [Eq. (20)], we obtain the power flow in
terms of the surface current coefficients:

(P) = %2 Re(ab}). @1)
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This last formula results from the orthogonality relation

f sinc(kyWs' — al)sinc(kyWs' — wl')ds’

—

=T s, 22
- 2k0W (A ( )

where [ and [’ are integers and &y =1 <1 =1".

The power calculated in Eq. (21) gives the total power
flow across the boundary, which is the transmitted power.
To test the power conservation relation

(P) = (PY) = (P"), (23)

we also need to calculate the incident power (P"’) and the
reflected power (P)). The incident power is simply the
power flow across the boundary for the case in which
there is no optical contrast between the two regions. In
that case a; = a\” and b, = b{"’. Substitution of these
coefficients, already calculated as the right-hand side of
the matrix equation, into Eq. (21) gives (P”). To calcu-
late the reflected power, we must first separate the tan-
gential fields into incident and scattered fields:

I m(s) = I () + I, (s),
I, o(s) = I () + I (s). (24)

If the surface currents for the reflected fields are ex-
panded on the same sinc basis set, the orthogonality of
the basis functions gives

o) =a,—af, b =b - (25

The reflected power can now be calculated by using the
coefficients a{” and b{"” in Eq. (21).

2. Convergence

Convergence of the numerical results means that if a cal-
culation is repeated several times with a smaller grid
spacing each time, then the numerical results will become
more accurate with each repetition. In our case we must
test convergence for both decreasing grid spacing (in-
creasing W) and increasing number of grid points with a
fixed grid spacing. The latter test is required because we
do not have a periodic structure, and we truncated the in-
tegral to finite limits. Convergence testing is important
and must always be performed before trustworthy results
can be obtained. In every numerical calculation, there is
a tradeoff between accuracy and computation time. By
considering the convergence properties, one can choose a
grid spacing that gives satisfactory accuracy for a reason-
able computation time. Naturally, the convergence esti-
mation itself will require a long computation time, since
the test must necessarily extend to grid spacing smaller
than required. Also, the test must be carried to grid
spacings small enough to determine if the results are os-
cillating or converging uniformly. Finally, the numerical
results for the surface currents and the far field will con-
verge at different rates for different contour points or far-
field angles, depending on the particular contour.
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3. Checking the Sample Rate with the Fast Fourier
Transform

The choice of sinc functions for the basis functions of the
surface current allows for a new type of convergence
check. As we stated above, expanding a function on a ba-
sis set of sinc functions makes the implicit assumption
that the function is strictly band limited. Also, the coef-
ficients a; and b; are samples of the surface currents at
the points s = wl/kyW. If the surface currents are, in
fact, band limited, then their Fourier transforms, which
can be calculated since we know the functions exactly ev-
erywhere, should show a cutoff frequency. If we calcu-
late the (FFT’s) of the surface current coefficients, the
highest-frequency bin will correspond to the cutoff fre-
quency of the band-limited functions. Therefore, if the
FFT’s of the surface current coefficients have significant
amplitudes in the high-frequency bins, then we can rea-
sonably assume that there is aliasing and that the grid
spacing needs to be shortened (the bandwidth W needs to
be increased).

3. EXPERIMENTAL VERIFICATION

Before we can confidently use our numerical method to
predict the diffraction behavior for various structures and
incident fields, we would like to compare some calcula-
tions with actual diffraction measurements. Figure 4
diagrams the laboratory setup. The iris between 11 and
12 is imaged onto the entrance pupil of the objective lens,
reducing the numerical aperture of the incident field.
The lateral extent of the focused incident spot on the
sample is approximately 1.1 um when the numerical ap-
erture is set to 0.6. The full numerical aperture of the
objective lens is used to capture the reflected field. The
back focal plane, or Fourier plane, of the objective is im-
aged by 14 and 15 onto the CCD camera, where an inten-
sity profile is measured. The reference mirror is used to
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filjer
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laser with i1

polarized output
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focus the illumination spot, and it is blocked when diffrac-
tion measurements are recorded.

We measure the intensity in the Fourier plane for a
three-dimensional spot, but our numerical calculation is
only for two dimensions. If the test pattern is indepen-
dent of the y direction, then we can argue that no plane
wave propagating in a direction with a nonzero y compo-
nent can be diffracted in a direction with a zero y compo-
nent. Therefore our calculations are in reality for the x
axis of the Fourier plane, which represents the spectrum
of plane waves with no y component. For our experimen-
tal results, we use a cross section of the measured Fourier
plane along the x axis.

The test sample consists of sinusoidal gratings in alu-
minum. The gratings were fabricated by the Rochester
Photonics Corporation by using a rastered laser spot to
expose a photoresist. After the photoresist was devel-
oped to form the grating, a coating of approximately 50
nm of aluminum was evaporated onto the grating. Fi-
nally, the actual depth and profile of the grating were
measured with an atomic force microscope at the Jet Pro-
pulsion Laboratory. The surface measurement showed
that the grating was sinusoidal with a peak-to-valley
height of 0.185 um. The grating period was 1.0 um.

For this grating the Wood’s anomaly should be quite
evident. We can estimate the angular location where we
expect to see strong absorption by calculating which
plane-wave angle is coupled into the plane wave traveling
parallel to the surface by the grating. Using the Floquet
condition sin 6, = sin 6§, + iN/d, where 6, is the reflection
angle, 0; is the incidence angle, and i is an integer, and
setting the reflection angle to sin 6. = 1, we expect the
anomalous absorption at the incidence angles

i sin §; = 1 — iN/d
+1 0.37
+2 —-0.27
reference mirror é
/] e
D
o]
2
B e
W g
||
2 13 “
5
CCD

Fig. 4. Setup for measurement of diffracted far field for focused incident fields.
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Fig. 5.

for this aluminum grating with N = 0.6328 um. Mea-
surements of the Wood’s anomalies presented in Ref. 10
show that the actual anomalous angles are slightly differ-
ent from those estimated by the above method.

In our measurements we use an objective lens to form a
focused spot on the grating. The focused spot is com-
posed of a superposition of all the plane waves with
angles that are less than the numerical aperture of the fo-
cusing objective lens.?527 Also, the Fourier plane (back
focal plane) of the objective is a map of the far field of the
focal plane, so that the field at coordinate x; in the Fou-
rier plane equals the far field at angle # with the mapping
sin 6 ~ x./f, where f is the focal length of the objective
lens. Consequently, we expect to measure notches in the
reflected intensity in the Fourier plane corresponding to
the anomalous far-field angles, even while the grating is
being illuminated with all the superimposed plane waves
simultaneously.

Figure 5 shows the CCD image of the Fourier plane for
a focused TM spot on the aluminum grating. The image
is oriented with the x, axis in the vertical direction, and it
contains several interesting features. The numerical ap-
erture for the incident spot was approximately 0.6, which
is equal to the maximum sin @ of the incident plane
waves. The +1 and —1 diffracted orders are shifted
sin § = NMd = 0.6328/1.0 = 0.6328, thus forming the two
partial circles that do not quite meet in the center. The
faint complete circle that fills in the background is the
zero-order reflected spot. Small bands at the top and the
bottom of the zero-order spot are diffracted light captured
because the numerical aperture for the collection of the
reflected light was approximately 0.7, which is larger
than the numerical aperture for the incident light. Fi-
nally, the two dark arcs within each diffracted order re-
sult from the absorption of the Wood’s anomalies. The
darker band is for the +1 angle in the above table, and
the other is for the +2 angle.

Reflected Fourier plane for aluminum grating with TM incidence, clearly showing the Wood’s anomalies.
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Fig. 6. Measurement versus calculation for the sinusoidal alu-
minum grating with the Wood’s anomalies evident as minima in
the angular spectrum of the reflected field. The aperture limi-
tations to the incident and reflected fields are indicated by
dashed vertical lines.

The numerical simulation for this problem was calcu-
lated for a sinusoidal surface in a medium with index of
refraction 1.5 + j7.3.2° With the imaginary part of the
index of refraction so large, the optical field is only ap-
proximately 2.7% of the incident amplitude at a depth of
50 nm. Therefore approximating the thin film of alumi-
num by filling the whole volume with aluminum is rea-
sonable. Figure 6 compares the numerical result with a
vertical cross section taken from the image. Agreement
is quite good at the smaller angles, and the nulls in the
reflected power that are due to the Wood’s anomalies are
quite evident and occur very close to the predicted angles.
The small differences in the location of the minima be-
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tween the numerical result and the measured cross sec-
tion probably result from inaccuracy in scaling the ab-
scissa of the measured values taken from the CCD image.
The abscissa of the measured data was scaled so that the
edge of the measured data corresponds to the specified
numerical aperture of the objective lens. Inaccurate
knowledge of the focal length and the numerical aperture
of the objective lens contributes to the scaling error. In
addition, the aperture of the incident field was set with a
precision not better than 10%. The vertical scale for each
plot was derived by matching the measured and calcu-
lated reflections for a planar aluminum interface. We
are pleased with the correspondence between the calcu-
lated and measured data.

4. ANALYSIS OF THE DIGITAL VIDEO
DISK FORMAT

The improvement in track density from CD-audio to
DVD is quite significant. Not only is the objective nu-
merical aperture increased and the wavelength decreased
to produce a smaller spot width, but the track pitch is sig-
nificantly less than the spot width, and the pit width be-
comes less than half the wavelength. For the CD—audio
format, the reflected signal caused by diffraction of the in-
cident light with the track is adequately described by sca-
lar explanations, and the difference between the TE and
TM reflected fields is small.»?> However, for the DVD for-
mat, the two polarizations show significant differences in
the diffracted far field because of the reductions of the
track pitch and the pit width with respect to the wave-
length. This difference is best shown by the apparent pit
depth, or phase depth. The phase depth is defined as
2z, = N¢p/2m, where ¢ is the phase retardation of the elec-
tric field at the bottom of the pit. In typical scalar dif-
fraction approximations, the phase depth is equal to the
pit depth. However, when the pit width is small, the
phase depth can be significantly different from the actual
depth. Asis shown in Fig. 7, the phase of the TM field in
a DVD pit is still an accurate representation of the actual
pit depth, but the TE field does not seem to be as strongly
affected. The central far-field intensity has the appropri-
ate variation corresponding to the pit phase depth. This
difference in the far-field intensity variation for the differ-
ent polarizations stimulates an interesting idea for the
doubling of the information density. Rather than each
pit having two possible depths, zero or one-quarter wave
as in the current DVD format, each pit can have four pos-
sible depths, and the depth can be distinguished by the
relative far-field response of the TE and TM polarizations.
The dashed vertical lines in the far-field plot of Fig. 7 in-
dicate pit depths where four states are distinguishable.
By placing a polarizing beam splitter in the return path
and duplicating the standard detector array in each leg,
we can measure the reflection of each polarization inde-
pendently, doubling the information density of each pit.
Why should the TE polarization behave so differently
for the CD—audio and DVD formats? The biggest change
between the two formats, from the point of view of calcu-
lating diffraction, seems to be the pit width in relation to
the wavelength. For both formats the pit width is ap-
proximately one third (A/NA), where \ is the wavelength
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Fig. 7. Calculated pit phase depth and far-field intensity for the
DVD format. The dashed vertical lines indicate which pit
depths can be used to represent four logical states.
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Fig. 8. Pit phase depth for different pit widths with the pit
depth equal to a quarter wave. In the region where the pit
width is between A/2 (\ is adjusted for the index of refraction of
the incident medium) and X\, the phase depth for TE illumination
varies almost a quarter wave, but it remains fairly constant for
TM illumination.

and NA is the numerical aperture of the focusing objec-
tive. However, the numerical aperture increases by 1/3
for the DVD format, thereby reducing the pit width in re-
lation to the wavelength. To study the effect of changing
the pit width, we calculated the pit phase depth for the
DVD format as a function of pit width (Fig. 8). In the re-
gion where the pit width varies between \/2 and \ (here A
is the wavelength in the polycarbonate medium), the
phase depth of the TM wave remains fairly constant,
while the phase depth of the TE wave increases close to
the quarter-wave depth of the pit. Therefore the pit
width appears to be crucial to the penetration of the TE
wave into the pit.

We can explain the difference between the TE and TM
dependences on the pit width by considering the case of a
plane, parallel waveguide with perfectly conducting
walls. The fields in this waveguide consist of discrete
modes, as restricted by the boundary conditions of the
tangential electric field at the walls. The TE polarization
for the pit corresponds to the electric field parallel to the
walls of the waveguide, and the solutions for the electric
field inside the waveguide are

E, = sin(pmx/d)exp(jk,z),

y k, = [k? = (pm/d)?]"?,
@

6)
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where d is the width of the waveguide and p is an integer.
When the magnetic field is parallel to the walls, the solu-
tions are

k. = [k* = (pmld)*]"%
27)

Each mode, corresponding to an integer value of p, has a
cutoff width d? = pw/k. For widths smaller than d?, &,
is imaginary, and the field amplitude weakens exponen-
tially in z. For the mode p = 0, the TE solution is E,
= 0; there can be no TE fields. However, there is a TM
solution for p = 0: H, = exp(jkz). The cutoff width for
the p = 1 mode is d! = \/2, and there are both TE and
TM propagating solutions for this mode when d > di.
Therefore, when d < A/2, only evanescent TE waves can
exist, while the TM zero mode can still propagate. Here
lies the essential difference between the TE fields and the
TM fields in our pit width calculations described above.
When the pit width falls below half a wavelength, the TE
fields can no longer penetrate the pit, while the TM fields
can still propagate down the pit and back. Our basic
principle is that by making the pit width small, we can
have pits that the TM field sees, and that the TE field
does not. Thus, as diffracting structures become small, a
new measurement technique, completely independent of
the classical imaging resolution limits, can be used that is
very sensitive to very small changes in the structure’s di-
mensions.

H, = cos(pmx/d)exp(jk.z),

5. CONCLUSION

We have developed a numerical tool for the calculation of
optical diffraction for cases in which the incident field is a
focused spot and the diffracting structure is a single
structure or an aperiodic surface. Our approach uses the
integral formulation to solve Maxwell’s equations, and
one important difference between our results and previ-
ously published results using the integral technique is
our choice of basis function. Since the particular diffrac-
tion problems that we are addressing are for tightly fo-
cused incident spots, the surface currents are better de-
scribed by a set of sinc functions, rather than rect
functions, which are more typical in previous work.
Ramifications of using sinc functions as the basis function
include a band-limited description of the surface currents,
ease of calculating power flow, and increased complexity
for the numerical integrals when calculating the matrix
coefficients.

To verify the utility of the numerical diffraction pro-
gram, we compared numerical results with experimental
measurements of the far-field intensity for a focused spot
incident on an aluminum grating. This specific example
was chosen because of the presence of the Wood’s
anomaly and because other numerical diffraction meth-
ods, such as rigorous coupled-wave analysis, have diffi-
culty converging for this problem, as has been previously
reported. The integral approach converged quickly for
this problem, and the comparison between prediction and
measurement was favorable.

Finally, we used the new integral method to predict the
diffraction behavior of the proposed DVD format for the
next generation of optical disks. Our analysis shows that
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the reflected signal for this format has a strong depen-
dence on the polarization of the incident light.

APPENDIX A:
THE TM CASE

For the TM case, the directions of J; , and J; ,, are re-
versed and mirrored with respect to their directions for

the TE case, so that
Js, e = Js, e%(s)a Js, m = _Js, m&' (AD)

Because of this antisymmetry, the matrix elements I'j;
and 'y, for the TM case are exactly mirrored to those for
the TE case in the manner

TM _ yTE
Iy, = Ty,

INTEGRAL EQUATIONS FOR

Iy =T, (A2)
The other matrix elements are
TR, . (r,) = joun(s) X {f [G1(R) — Gy(R)]

X Jg o(s")7(s")ds’

9 » | G(R) Go(R)
+V f 2 2
| By ko

x J, e(s’ﬁ(s’)ds'], (A3a)

*fL(S) o
Po'ds, m(rs) = o= X fﬁx[kﬂGl(R)—kozGo(R)]

X Jg m(s")y ds'. (A3b)
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