
@
Pergamon

Neural Networks, Vol. 10, No. 6, pp. 1133–1141, 1997
01997 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0893-6080/97 $17.00+00

PII: S0893-6080(97)00032-4

CONTRIBUTEDARTICLE

Network Synthesis through Data-Driven Growth and Decay

CHUANYI JI1 AND DEMETRI PSALTIS2

‘Department of Electronics, Computing arrd Systems Engineering, Rensselaer Polytechnic Institute and
‘Department of Electrical Engineering, Califorrria Institute of Technology

(Received1 August1996;accepted21January1997)

Abstract—Analgorithm for addition and deletion (ADDEL) of resources during learning is developed to achieve two
goals: (1) tofind feed-forward multilayer networks that are as small as possible, (2) tojind an appropriate structure for
such small networks. These goals are accomplished by operating alternately between an adding phuse and a deleting
phase while learning the given input-output associations. The adding phase develops a crude structure by jilling in
resources (connections, units and layers) at a virtual multilayer network with a maximum of L possible layers. The
deleting phase then removes any unnecessary connections to obtain a rejned structure. The additions and deletions are
done based on a sensitivi~ measure and a corresponding probability rule so that only the synapses which are most
effective in reducing the output error are preserved. A generalization error estimated from a validation set is used to
control the alternation between the two learning phases and the termination of learning. Simulations, including hand-
written digit recognition, demonstrate that the algon”thmis effective in finding an appropriate network structure for a
small network which can generalize well. The algorithm is used to investigate when the size of a network is importantfor
generalization. O 1997 Elsevier Science Ltd.

1. INTRODUCTION

In this paper we describe a learning algorithm which
develops from data the structure of the network and the
values of the connections. Several learning algorithms of
this type have been previously developed. They can be
roughly divided into two categories: structure minimiza-
tion through weight decay and deletion, and structure
growth by adding resources. Most algorithms that use
weight deletions solve a regularization problem. That
is, a network with a fixed structure is used and an extra
term is added as a regularize to the original energy
function in a setting of supervised learning. Such a
term usually measures the complexity of the network
(Denker, Le Cun & Solla, 1989; Nowlan & Hinton,
1992; Weigend, Rumelhart & Huberman, 1990; Ji,
Snapp & Psaltis, 1990) and constrains the network to
learn the training samples using as few degrees of
freedom as possible. On the one hand, although these
methods have been shown to be capable of finding

Acknowledgements: The authors thank Dr Alan Yamrnuura for the
collaborations on the simulations on two-link manipulator. The support
of NSF and ARPA is gratefully acknowledged.

Requests for reprints should be sent to Chuanyi Ji, Department of
Electronics, Computing and Systems Engineering, Rensselaer Poly-
kCbIliC hldllte, ‘hey, NY 12180-3590, U.S.A.

networks which generalize well, they require either a
very slow tuning of weights from a fixed network
architecture or a lot of prior knowledge in the network
design. On the other hand, learning algorithms for net-
work structure growth (Fahlman & Lebiere, 1989; Frean,
1990; Nadel, 1989) add neurons and layers during the
learning phase without requiring a fixed structure to be
prespecified. However, since these algorithms usually
control additions of resources by trying to learn the train-
ing set as well as possible, overfitting rather than
generalization may occur. The learning algorithm
(ADDEL) presented in this paper combines both struc-
ture minimization and growth, and tries to circumvent
their individual drawbacks. Specifically, the algorithm
has three salient features.

First, it tries to find as small a network as possible that
learns the training samples.

Second, the architecture of the network is determined
through two learning phases: an adding phase and a
deleting phase, while the network learns the given
input–output associations using gradient descent. The
adding phase builds up a crude structure by filling the
connections and neurons at a large “virtual’ multilayer
network with a maximum of L possible layers. The delet-
ing phase refines the structure by trimming off any
unnecessary connections. The adding and deleting are

1134 C. Jiand D. Psaltis

controlled by sensitivity measures so that only those
connections which are most effective in reducing the
error are included. This method allows us to search for
an appropriate network structure without specifying a
fixed structure a priori.

Third, an estimated generalization error evaluated on
line through a validation set is used to control the alter-
nation between the two learning phases and termination
of learning.

Theoretical investigations lead to the conclusion that
small networks should generalize better than large ones
(Barren, 1991; Baum & Haussler, 1989). In practice,
however, since it is not always true that each weight
can be considered as one degree-of-freedom, under-
trained large networks can also generalize well on
some occasions (Martin & Pittman, 1991). We use our
algorithm to investigate experimentally whether, and
when, a small network is needed to obtain good general-
ization. Our investigations on learning different mapp-
ings, including both analog and binary mappings, show
that small networks are necessary for good generalization
when the mapping is “difficult’ When a mapping is
“easy”, both under-trained large networks and small
networks can generalize well. The specific “difficult”
and “easy” mappings considered in this paper will be
explained later, and more rigorous specifications will
be given in subsequent research.

The paper is organized as follows. Section 2 explains
the algorithm and Section 3 gives simulation results.
Section 4 will address the problem on small and under-
trained large networks by providing comparisons
between the performance of under-trained large net-
works and small networks. The conclusion will summar-
ize the results and state some related issues.

2. LEARNING ALGORITHM

The algorithm develops network architecture through
two phases: an adding phase and a deleting phase.

Let L be the chosen maximum number of layers
possible for a virtual feedforward multilayer networks
with n(l) units at layer Z,where O s 1 s L (Z= O refers
to the input layer). Here n(0) and n(L) are fixed and the
remaining n(Z)are adaptable. The transfer function of all
the neurons is the sigmoid functionflx) = tanh(x), and
the quadratic energy function is used for training:

E= ~ l[~i–;il/2.
i

The ji5 ad ZiS denote the ith actual and desired outputs
of the network, respectively. The modification of the
weights is done using the gradient descent method.

2.1. Adding Phase

The adding process includes adding new units as well as
connections at different layers. The criterion for addition

is based on a sensitivity measure on connections which
in turn provides a sensitivity measure for units at
different layers.

Specifically, suppose n(l) units already exist at the l-th
layer of the virtual multilayer network, where Os 1= L
(the O-thlayer is the input layer). When we consider the
n(l) + l-th candidate unit at layer Zfor possible addition,
we first randomly choose small outgoing connections
for the candidate unit and then use a sensitivity criterion
to choose its incoming connection w(i,n(l) + 1,1),where
1 s i s n(l – 1) and 1 s Zs L. Here w(ij,l) denotes
the connection from unit i at the (1– 1)-th layer to unitj
at the Z-thlayer for 1 s i 5 n(l – 1), 1 <js n(l), and 1 =
1 s L – 1. Specific~ly, we have the sensitivity of
w(i,(rz(l)+ 1),1)defined as

[

8E 1
2

(1)Si(~(~)+l)~= dw(i,n(l)+ 1,1) “

This sensitivity measures how effective a connection
associated with a candidate unit can be in reducing the
training error, if added. The sensitivity S1of the candidate
unit n(l) + 1 at layer Z is just the summation of the
sensitivities over all its incoming connections. That is,

?@– 1)

‘1= ~ ‘i(n(l)+l)l. (2)
in 1

Similarly, S1(1 = 1 = L – 1) indicates how effective a
candidate unit can be, if added, in reducing the error.
Since S1depends on the outgoing weights of the candi-
date units which are chosen randomly, S1is also a random
varible. Therefore, a probabilistic rule is needed to
choose a candidate unit. The probability that the candi-
date unit at layer Zgets selected is defined as

Pr (a unit at layer 1is chosen) = #--- (3)

~ s.

The probability thus defined tends to choose a unit which
is most sensitive in reducing the error. Once a candidate
unit is chosen, a similar probability is defined to choose
the connections for this unit. For the incoming connec-
tions, we have

Pr(w(i, n(l)+ 1,1) is chosen given the unit at

‘i(n(l)+ 1)1layer 1chosen)= s’~ ‘ (4)

where S’1is obtained through summing the sensitivies
over both its incoming and outgoing connections, and
w(i,n(l) + 1,1)is the incoming connection for the chosen
candidate unit for 1 = i = n(l – 1). For the outgoing
connections, we have

Pr(w(n(l) + l,j, Z+ 1) is chosen given the unit at

layer Zchosen)=
S(n(l)+ 1](1+ 1)

S[’ (5)

where w(n(z)+ lj,l + 1) is the outgoing connection for 1

Network Synthesis through Data-Driven Growth and Decay

s j s n(l + 1), and S(fl(l)+ly(l+l)is its corresponding
sensitivity.

One complete adding phase is done as follows. Each
incoming connection of a candidate unit is initially set
to zero while its outgoing connections are picked to be
small random numbers. Then the sensitivity of each
incoming weight is evaluated and the sensitivity of
each candidate unit is obtained through eqn (2). The
probability rule defined in eqn (3) is then used to select
a unit. Here we assume only one unit is added each time.
Specifically, if a number generated randomly from a
uniform distribution on (0,1) exceeds the probability
crdculated from eqn (3), the candidate unit n(l) + 1 is
selected. Once a unit is chosen, the same procedure
is applied to choose connections for this unit using the
probability defined in eqn (5). The weights associated
with the newly added unit are then adapted while the
old ones are kept frozen. After that, all the weights are
trained simultaneously until a new local minimum is
reached.

2.2. Deleting Phase

The deleting phase is the inverse of the adding phase,
i.e. connections which cause the least error increase
should be removed. The deleting scheme is based on
an exhaustive search:

Set w(i,j, Z)=O if E(w(ij, Z)=O)

= min E(w(k, rn,n)= O),
w(k,m,n)#O

(6)

where 1 s i s n(l – 1), 1 s j s n(l) and 1 s Zs L. Here
E(w(k,rn,n) = O) is the error obtained when the weight
w(k,rn,n) is set to zero. That is, each weight is set to
zero consecutively and the corresponding error is com-
puted and stored. The weight which causes the smallest
error increase is deleted. This approach always decides
correctly which weight should be removed. The com-
putational complexity is polynomial in W (- 0(W3))
since computing the corresponding errors for all nonzero
weights costs about MW2 multiplications, and M is at

/w\

[)most O z , which is chosen according to the theore-
6\-/

tical result (Baum & Haussler, 1989). Here W is the total
number of independently modifiable weights of the net-
work and Mis the total number of training samples. More
recent sophisticated deleting rules can be found in
(Hassibi & Stork, 1992).

In our experience, the most computational cost actu-
ally lies in the adding phase. If a network structure is
built up carefully, computation time spent on exhaustive
search in the deleting phase can be minimized.

2.3. The Algorithm

The algorithm uses a training set to modify the weight
vrdues and a validation set to obtain an estimate for the

1135

generalization error. Specifically, the algorithm runs as
follows.

1.

2.

3.

4.

5.

Train an initial network until the change of error
2

z (aw~~,z))
is smaller than a specified small

i,j, 1

quantity ~ where a local minimum is reached. Then
compute the validation error ~v.l at this local mini-
mum, and go to (2).
Add resources by completing the adding phase. Then
train the network until another local minimum is
reached. At this local minimum a new validation
error Cv.l’is obtained.
Choose a small positive quantity 6’ to evaluate the
change between the two validation errors at the two
consecutive local minima.
If ~Va[– e,al’ > ~’, i.e. the validation error decreases
through adding resources, the added resources have
improved learning. Then go back to (2). Otherwise,
repeat the adding process one more time to make sure
that the addition can not improve generalization any
fiuther. If this causes the validation error to decrease
again, go to (2). Otherwise, got to (3).
Apply the deleting phase repeatedly until ~valgoes
up. Then go back to the adding phase one more
time until a new local minimum is reached and CV.l’
is obtained. If cv~l—~val’> ~’, set ~val’- eVal’,and go
to (2). Otherwise, stop.

During the entire procedure always keep a record of
the weights which have yielded the smallest ~v.l.

3. SIMULATIONS: HANDWRITTEN DIGIT
RECOGNITION

The algorithm was first tested on handwritten digit
recognition. Our goals include: (1) to test whether the
algorithm is capable of finding the smallest network
possible for the problem; (2) to compare the generaliza-
tion performance of small networks with that of large
ones. In what follows, we will show that the algorithm
is indeed capable of finding small networks generalizing
well. In the meantime, the comparison between small
and large networks reveals an unexpected good generali-
zation performance of large networks.

The training set contains 45010 X 10 binary (1,0)
images of handwritten digits: 3s, 6s and 8s obtained
from the Post Office zipcode data. The validation set
has 150 samples. The test set contains 440 samples. All
the simulations were done twice using different initial
conditions. Different network sizes are obtained from
different parameter ~’, which controls the variation on
validation error and thus controls the size of the resulting
network. In general, one would end up with a smaller
network if one could wait long enough for the validation
error curve to flatten out by using a very small 8’. For the
same 8’ chosen, networks with different initial conditions
result in the similar network structure consistently.

1136 C. Ji and D. Psaltis

TABLE 1
Experimentalresultsof ADDELfor the handwrittendigit recognitionwith snd without rejection

Nets E(train) E(test)/E(reject) E(test)/E(reject)

101-2-0-3” 2.22 7.2710 4.7717,00
101-5-O-3*2 1.20 7.50/0 5.00/8.41
101-2-2-3*3 2.00 8.8610 5.22/17.0

“*l”,““ “2 and‘“*3”:thenetworksobtainedusingADDELalgorithmwith W= 180,240and82 respectively,whereWis the total numberof weightsof the
network.
E(train),E(test)and E(reject):training,testingandrejectionerrorrates(%)respectively.

3.1. Finding Small Networks

We first examined the capability of the algorithm to find
the smallest network needed by the problem. Choosing
different ~’s, we obtained networks with different num-
ber of weights (Table 1) where the smallest 6 results in
the smallest network (*3), and the largest 8 leads to the
largest network (*2).

The results show that the network with the smallest
number of units is the network with two hidden units and
sparse connections from the input layer to the hidden
layer (*1 in Table 1). To verify that this is indeed
the minimum network required by the problem, multi-
dimensional discrirninant analysis (Duda & Hart,
1973) has been carried out to find the two dominant
eigenvectors of the scatter matrices of the digits. The
450 digits 3, 6 and 8s are then projected onto the two-
dimensional space spanned by these two eigenvectors.
Figure 1 shows that the three types of digits are well-
clustered in this reduced two-dimensional space where
two hidden units will be sufficient to perform the classif-
ication. Then in the original IOO-dimensional space, a

two-layer net with two hidden units will most likely be
the minimum network needed for the problem. This veri-
fies our experimental results.

3.2. Performance Comparison with Large Networks

To compare the the performance of the resulting small
networks with that of large ones, we also trained net-
works larger than necessary on the same data set using
back-error-propagation (BEP). The results are given in
Table 2.

Compared to Table 1, these results show that the large
networks have comparable test errors to the small (two-
layer) networks obtained through ADDEL when the
rejection rate is zero. When rejections are allowed to
achieve the same test error, around 570, the small (two-
layer) networks usually have smaller rejection rates than
the larger ones, except for the (101-10-2-3) network. If
the network is too small (too few connections), for
instance, the (101-2-2-3) net, its performance on the
test samples may deteriorate, possibly due to insufficient
resources.

2 -

1.5 -

1 -+

0.5 -

++ x
+++

&+ ++++++++
+ #*+++$ ++
‘+ .#++g . +

%; + ++++
+ .#i#$*:$+ J++

+**++$:+ +# + +++*

.;++++

+
●

☞

x

x

x

~* ‘;X “ “- x
x* %“x*

x ,Xx x*x

*$*** * *X * *

* * - :. *

V*●** ***

4?
**** **#*** * ● *

* * .$*****?●.

*
*
*.

- w- $<” * ‘**** ‘*%* ***●*** **%** * ~*:*: ******● ** **:* *

x

* *

01 *
-1 -0.5 0 ;.5 1 1.5 2

FIGURE 1. Digits projeeted onto the two-dimensional spaoe spanned by the two eigenvectore. “*”, “ + “ and “x”: 3s, 6s and 8s,
reapectlvely.

Network Synthesis through Data-Driven Growth and Decay 1137

I I7 Plant

(b)

A * NN

Plant
<

FIGURE 2. (a) Off-lina training ayatam, and (b) on-llna control ayatam. “NN” and “Plant” atand for the neural network and two-link
manipulatorreapactively.“e”: error betweentha outputsof the neural networkand the plant.

More comparisons are made by testing both large and
small networks on two types of noisy input patterns.
First, the noisy patterns are generated, for which the 1s
in each image are changed to 0s with a probability of
0.05. Seeond, patterns with additive white noise are pro-
duced by adding a number generated from the uniform
distribution in [0, 0.5] to each bit. The results shown in
Table 3 demonstrate that small networks with two layers
are more robust to the (l–O) noise, while large networks
are less sensitive to the additive white noise.

One important feature exhibited by all these results
is that networks larger than necessary, in terms of the
number of weights, can generalize surprisingly well.
Similar results have also been reported in Lee (1991),
Martin & Pittman (1991) and Geman, Bienenstock and
Doursat (1992). Lots of effort has been made to provide
answers to this paradoxical generalization of large net-
works including various measures on the effective com-
plexity of networks (Amari & Murata, 1993; Moody,
1991). In what follows, we will discuss two aspects of

TABLE2
Simulationreaultsfor the handwrittendigit reeognltlonwith and without rejeotionueing large networketrained with beckpropagation

Nets E(train) E(test)/E(reject) E(test)/E(reject)

101-10-2-3 2.00 7.24/0 5.00/5.91
101-20-03 0.89 7.72/0 5.00/10.7
101-4O-G3 1.05 7.7210 5.00/8.84

1138 C. Ji and D. Psaltis

TABLE3
Teet reeulteon the noisy handwrittendigits

Nets E(l-0)/E(l-O reject) E(w-n)/E(w-n-reject)

101-2-0-3*1 8.18/0, 5.00/13.4 16.610,8.18/51.6
101-5-O-3*2 8.4110,5.23112.3 18.610,5.00144.8
101-2-2-3*3 11.1/0, 5.23/26.8 20.7/0, 10.0/50.0
101-10-2-3* 9.5510,5.00/9.32 13.0/0, 5.23130.0
101-2O-G3* 11.4/0, 5.23/19.5 12.7/0, 5.00/25.7
101-4O-G3* 10.010,5.23113.9 8.4110,5.0019.32

E(l-O)and E(l-Oreject):thetesterrorandrejectionratesondigits withthel-O noise.
E(w-n)andE(w-n-reject):thetesterrorandrejectionrateson digitswiththewhite noise.
Therestof the notationfollowsthatinTables land 2.

the problem which have been explored very little,
namely, howthegeneralization performanceoflarge net-
works varies with: (1) different types of problems, and
(2) the dynamics ofgradient decent algorithm. Wewill
mainly discuss the former aspect in the next section, and
briefly mention the work related to the second aspect of
the problem.

4. PROBLEMS FOR WHICH LARGE NETWORKS
ARE HARD TO GENERALIZE

We expect that the proper size of a network is related to
the problem. Intuitively, “difficult” problems require a
precise match between the network complexity and the
problem complexity in order to achieve good general-
ization. Roughly speaking, for binary mappings, the dif-
ficulty of a problem can be characterized by how well
samples belonging to different classes are clustered. In
what follows, we will show examples of “difficult’ pro-
blems for which small networks are more likely to gen-
eralize well than large ones. The results can suggest a
precise definition of the difficulty of a problem as well as
its effect on required network complexity. This topic will
be investigated further in future research.

4.1. Learning a “Critical” Target Perception

To investigate whether there is a problem for which large
networks do not generalize well, a simple example is
chosen in which networks of different sizes are trained
to learn a target network which is a single-neuron (15-1)
network with random weights. The training samples

TABLE4
Simulationreeultsfor Ieerningthe criticsi terget perception

Nets E(train) (%) E(test) (%)

15-1* 8.70 9.80
15-2-1 6.89 9.40
15-10-1 5.50 53.0

““”: trainedusingADDELwhichresultedin 14connections;andthe other
two networksweretrainedusingBEPalongwiththe validationset.
E(train)andE(test):thetrainingandtesterrorrates.

generated independently from an uniform distribution
in [–3,3] are fed through the target perception to obtain
their labels. Two networks (15-1 and 15-20-1) were
trained with BEP using 600 training samples, and then
tested on another 1000 randomly drawn samples from
the same distribution. Their training and test error rates
are all below 2.5 and 4.2Y0,respectively. However, when
both networks are tested on 1000 samples that were
selected to lie very close to the original decision bound-
ary (i.e. samples whose outputs are in the range [–0.1,
0.1] at the output of the random target network), they
both make about 50% errors on the test samples! The
reason for the apparent success previously is that there
are only 0.2~o samples in the 1600 samples used which
are close to the boundary. That is, the randomly drawn
samples from two classes are well separated. So the
resulting small network is actually tilted away from
the original decision boundary while the large one is
wiggling around it.

To investigate a case for which an under-trained
large network does not generalize well, we use training
and validation sets of the same sizes as before, but the
samples are only those close to the boundary (within
the [–0.1, 0.1] range) defined by the target perception.
Similar training for networks with different sizes is
carried out; and the results are given in Table 4. The
networks that are trained all start with very small random
initial weights in the range [–a,a], where a < 10–5.
Being consistent with the perception convergence theo-
rem (Duda & Hart, 1973), ADDEL results in a single
neuron with 14 connections which generalizes well.
The 15-2-1 network trained with BEP also converges
to a network with equivalently the same number of
weights as the target perception (some of the weights
in the resulting networks are almost zero), although
the loading of the training samples takes quite long.
The 15-10-1 network, however, learns the training
samples but fails completely to learn the mapping.

4.2. Handwritten Digit Recognition Revisited

Similar arguments can be provided for handwritten
digit recognition to explain why large networks can

Network Synthesis through Data-Driven Growth and Decay 1139

3.0

2.5

2.0

1.5

2,5

2.C

1.5

I

> -0.20 000 0.20 0.40

,
-0.40 -0.20 O.oa 0.20 0.40

2.5

2.0

L

2.0

1.5 ~ ,

-0.40 -0.20 0.00 0.20 0.40

FIGURE3. Charactersdrawn by a networktrained with the algorithmADDEL.The dashedand solid curveeare the teachertrajectories
and the actual trajectoriesgiven by the networks,respectively.

also generalize well. Consider Figure 1 again. Since
even in the reduced two-dimensional space, the samples
belonging to different classes form well-separated
clusters, it is natual to imagine that in the original 100-
dimensional space, the samples will be even better
separated. Therefore, the well-seperated clusters formed
by the digits make this classification problem “easy”,
which is similar to the situation in learning the target
perception that generates well-clustered samples.

It should be noted that the relatively small training set
size also makes the problem somewhat easier. This is
because a large training set may reveal a more compli-
cated data structure so that the corresponding classifica-
tion error is more sensitive to the size of the network.

4.3. Learning an Analog Mapping

In general, analog mappings are more difficult to learn
than binary mappings, since every sample point needs

to be learned to a certain degree of accuracy for its
analog value, instead of only the signs around a threshold
as in the case of binary mappings. In what follows, we
show experimentally that the generalization performance
is sensitive to the size of a network in learning an analog
mapping.

The problem considered is the off-line training of a
network shown in Figure 2 to approximate an inverse
plant to control a two-link manipulator to draw charac-
ters. The dynamics of the two-link manipulator are
described by the Newton-Euler equation (Craig, 1986).
The task is to train a network to draw characters inside a
window. The training set contains 100 desired inputs
(3(@’= (61,Oz)),~,@,which are the angular position, velo-
city and acceleration vectors, and desired outputs
T(Z’= (~1,72)), which are the torques to be applied to
the two-links. These input and output samples are
drawn from a single trajecto~ for drawing the letter P.
For more details on the mapping see Craig (1986).

1140 C. Ji and D. Psaltis

TABLE5
Simulationand test resultsfor drswingcharacters,trained and

untrained

Characterdrawn Hidden Numberof MSE
units failures

P 3* o 0.005
(training samples 10 0 0.046
were drawn from
this character)

20 9 **

M 3* o 0.005
10 0 0.009
20 7 ●*

Circle 3* o 0.004
10 1 0.011
20 7 ●*

Line 3* o 0.004
10 1 0.013
20 6 **

to generalize from discrete samples on a specific trajec-
tory to the other trajectories in the input space. The
normed difference between the angular positions yielded
from the actual trajectory and the desired trajectory is
used to evaluate the generalization quantitatively. The
resulting networks are tested on the trained P as well
as the unseen character M, a circle and a straight line.
The results given in Table 5 demonstrate that small net-
works generalize consistently better than large ones.
However, the latter can learn each individual training
point well, but fail even to follow the whole trajectory
for the trained letter P. Some unseen characters success-
fully drawn by the small networks are given in Figure 3.
Further testing is done on the translated, rotated and
scaled versions of the Ps. The results are given in
Table 6. In this case, the small networks out perform
the large ones even more convincingly.

“*”: nelworkstrainedwithADDEL.
“10” “20”: networkswith 10and20 hiddenunitstrainadwithBEP.
“Numberof Failures”:numberof networksoutof 10networkawhichdraw
thecharacterunsuooessfully.
“**”: the MSEcannotbeevaluateddue to the overflowof the numbersin
failures:f drawingthe charsctera.
MSE= E 1l~–~llz, where&and 6Jarethei-thtestasmpleforthesngular
position~fromthe actualandidealtrajectoriesrespectively.

The off-line training process is equivalent to
finding a network which approximates the analog
mapping f: R6 ~ R2. A more restricted version of the
algorithm is used, which only adds and deletes units at a
two-layer structure, resulting in 8 networks with 3 hidden
units out of 10 simulations starting with different random
initial conditions. Large networks with 10 and 20 hidden
units were also trained 10 times each using BEP. The
resulting networks are then connected in a feedback
fashion, as shown in Figure 2b, with the simulated two-
link manipulator to test the generalization.

The expected generalization is twofold: (1) how well
the resulting networks generalize from the discrete train-
ing points to the whole trajectory for drawing the letter
P? (2) cm ~ unseen character other ~~ P be drawn

successfully? That is, the resulting networks are expected

4.4. Initial Complexity

In our recent work (Atiya & Ji, 1997), we investigated
another aspect of the problem, namely, the effect of
initial conditions on the generalization of resulting
networks.

Intuitively, the strong influence of initial conditions
on generalization performance of resulting networks
can be attributed to the intrinsic properties of gradient
decent methods and the under-training of a large net-
work. That is when the step size used is sufficiently
small, gradient decent methods search for a solution
only within a neighborhood of initial conditions. There-
fore, the information on network complexity determined
by the initial distribution of weights will be carried over
to the complexity of resulting networks. The extreme
case is that the initial network is linear due to the small
random initial weights. Then the nonlinearity grows
during learning. In short, the combination of the initial
condition and the gradient decent type of algorithms
actually limit the search space that the algorithm may
explore, and therefore eliminate the number of networks
possible determined by the architecture itself. This
contributes another factor to the good generalization

TABLE6
Test reaultafor the shifted, rotstedand scaled P

dx dy O(degree) Scale Hidden Numberof MSE
units failure

o 0 0 0.9 3’
10
20

0 0 10.0 1.0 3*
10
20

– 0.3 – 0.1 0 1.0 3*
10
20

1
5
10
0
5
10
1
3
10

0.009
0.046

●*

0.007
0.215

●*

0.007
0.073

**

Network Synthesis through Data-Driven Growth and Decay 1141

performance of large networks as in the handwritten digit
recognition. It remains an open problem to characterize
the problems for which large networks that generalize
well can be easily found versus problems for which
small networks (such as the ones created by ADDEL)
can be obtained through effective training methods.

5. CONCLUSION

The algorithm presented in this paper consistently
finds small networks that give good generalization. The
examples we consider indicate that, in learning both
analog and binary mappings, small networks are more
likely to achieve good generalization only if a problem
is ‘‘difficult”.

In terms of learning time, the under-trained large
networks usually learn faster than the small ones. For
instance, the average rtming time for ADDEL for the
3-6-8 problem is about twice that for the large networks
with 20 hidden units, if it is required to obtain a small
network with about 150 connections.

In terms of choice of an algorithm, it is certainly best
to incorporate clever designs (Sackinger, Boser, Brom-
ley, LeCun & Jackel, 1992) into a network if some a
priori knowledge is available, then to use a data-driven
approach like ADDEL to find the complete network
architecture. However, even if no a priori knowledge is
available, the network addition-deletion algorithm can
be reliably used to find a structure which will yield good
generalization.

REFERENCES

Amari, S., & Murata, N. (1993). Statistical theory of learning curves
under entropic loss criterion. Neural Computation, 5, 140-153.

Atiya, A. & Ji, C. (1997). How do initird conditions affect generaliza-
tion performance of large Networks? IEEEtransactionsonNeural
Networks,8(2),448-451.

Barron, A. (1991). Approximation and estimation bounds for artificial
neurrd networks. Proc. of The 4th Workshopon Computational
LearningTheory(pp. 243-249).

Baum, E., & Haussler, D. (1989). What size net gives valid
generatization? NeuralComputation,1, 151-160.

Craig, J. J. (1986). Introductionto robotics:mechanicsand control.
New York: Addison-Wesley.

Denker, J. S., LeCun, Y. & Solla, S. A. (1989). Optimrd Brain
Darnage. In D. Touretzky (Ed.), Advancesin neural irrfornrution
processingsystems, Vol. 2, (pp. 598–605). San Mateo: Morgan
Kaufmarm.

Duda, R. & Hart, P. (1973). Patternclassificationandsceneanalysis.
New York: John Wiley and Sons.

Fahlman, A.E. & Lebiere, C. (1989). The cascade-correlation learning
architecture. In D. Touretzky (Ed.), Advancesinneuralinformation
processingsystems, Vol. 2, (pp. 524–532). San Mateo: Morgan
Kaufmrmn.

Frerrn, M. (1990). The upstart algorithm: a method for constructing
and training feedforwsrd neural networks. Neural Computation,2,
198–209.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and
the biaa/variance dilemma. NeuralComputation,4, 1-58.

Hassibi, B. & Stork, D.G. (1992). Second order derivatives for network
pruning: optimal brain surgen. In D. Touretzky (Ed.), Advanesin
neuralinformationprocessingsystems,Vol. 5, (pp. 164-171). San
Mateo: Morgan Kaufmarm.

Ji, C., Snapp, R., & Psaltis, D. (1990). Generalizing smoothness con-
straints from discrete samples. Neural Computation,2, 190–199.

Lee,Y. (1991).Handwritten digit recognition using knearest neighbour
radial-basis function, and backpropagation. Neural Networks,3,
440-449.

Martin, G.L., & Pittman, J.A. (1991). Recognizing hand-printed letters
and digits using back propagation learning. Neural Computation,3,
258-267.

Moody, J. (1991). The effective number of parameters: an anatysis of
generatization and regrdarization in nonlinear learning systems. In
D. Touretzky (Ed.), Advances in neuralinformationprocessing
systems,Vol. 4, (pp. 847–854). San Mateo: Morgan Kaufmann.

Nadel, J. (1989). Study of a growth algorithm for neurat networks.
InternationalJournalof NeuralSystems,1, 55-59.

Nowlan, S.J., & Hinton, G.E. (1992). Simplifying neurrd networks by
soft weight sharing. NeuralComputation,4, 473–493.

Sackinger, E., Boser, B. E., Brornley, J., Lecun, Y., & Jackel, L. D.
(1992). Application of the anna neurrd network chip to high-speed
character-recognition. IEEE Transactionson NeuralNetworks, 3,
498-505.

Weigend, A., RumeJhart, D. E. & Hrrberman, B. A. (1990). General-
ization by weight elimination with application to forecasting. In
D. Touretzky (Ed.), Advances in neuralinformationprocessing
systems,Vol. 3, (pp. 875–882). San Mateo: Morgan Kaufmamr.

