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Capacity of Two-Layer Feedforward
Neural Networks with Binary Weights

Chuanyi Ji,Member, IEEE and Demetri Psaltissenior Member, IEEE

Abstract—The lower and upper bounds for the information  The hidden and output units have integer and zero thresholds,
capacity of two-layer feedforward neural networks with binary  respectively. We then use a similar approach to that used by
interconnections,integerthresholds for the hidden units, and zero Baum to find a lower and an upper bound for the capagitf
threshold for the output unit is obtained through two steps. First, h networks. The | b d for th itv is found b
through a constructive approach based on statistical analysis, it is suc n_e \_Nor S. fhe _ower ound for the capacity Is oun_ y
shown that a specifically constructed V — 2L — 1) network with ~ determining the maximum number of samples whose arbitrary
N input units, 2L hidden units, and one output unit is capable dichotomies (random assignments of samples to two classes)
of implementing, with almost probability one, any dichotomy ~ can be implemented with probability almostby a network
of O(W/In W) random samples drawn from some continuous , the class. In particular, we define a method for constructing
distributions, where W is the total number of weights of the twork with bi iahts ch . ticul d
network. This quantity is then used as a lower bound for the a network wi Inary weights chosen in a particuiar way an
information capacity C' of all (N — 2L — 1) networks with then show that this network can implement any dichotomy
binary weights. Second, an upper bound is obtained and shown with probability almostl, if the number of samples does not
to bg O(W) by a simple cgunting argument. Therefore, we have exceed2(W/In W). Q(W/In W) can thus be used as a lower
QWi W) < € < O(W). bound for the capacity of the class @V — 2L — 1) networks

Index Terms—Binary weights, capacity, feedforward multi- with binary weights.
layer neural networks. The upper bound for the capacity is the smallest number

of samples whose dichotomies cannot be implemented with
|. INTRODUCTION high probability..We show thaQ(W) is an estirr_]ate of the.
) ] o ) upper bound which can be obtained through a simple counting

I HE information capacity is one of the most importanf o ment, Therefore, we have the main result of the paper

quantities for multilayer feedforward networks, since if 5t the capacity” satisfiesQ(W/In W) < € < O(W). The
characterizes the sample complexity that is needed for gengy < Tab

e ] ° 3 ganization of the paper is as follows. Table | provides a
alization. Roughly speaking, the capacify of a network is |ist of some of our notations. Section Il gives the analysis to

defined as the number of samples whose random assignmeqis ate a lower bound. Simulation results are given to verify
to two classes can be implemented by the network. For Wy analytical result. Section Il provides an upper bound for

layer (V — L —1) feedforward networks witlV input units,L e capacity. The Appendixes contribute to the proofs of the
hidden units, one output unit, amthalogweights, it has been |a;nmas and theorems.

shown by Cover [4] and Baum [1] that the capaditysatisfies
the relationQ(W) < C < O(W In L), whereW is the total I
number of weights[ is the number of hidden units, arid is o ) ]
the input dimension. In practical hardware implementations, Definition 1. The Capacity”: Consider a set ofi/’ sam-
we are usually interested in networks with discrete WeightE‘.es independently drawn from some continuous distribution
For a single neuron with binary weights, its capacity is show! RN - The capacityC’ of a class ofV — 2L — 1 networks
to be O(N) [12]. For feedforward multilayer networks with With binary weights and integer thresholds for the hidden
discrete weights, in spite of a lot of empirical work [2], [10]UNits is defined as the maximud/" so that for a random
there exists no theoretical results so far to characterize fesignment o/’ samples in two classes there exists a network
capacity of multilayer networks with discrete weights. In thi! the class of networks which can implement the dichotomy
paper, we present upper and lower bounds for the capéicit))"”th a probability at leastl — §, .wh.ereé goes to zero at a
of two-layer networks with binary weights. rate no slower than a polynomial in terms bfN and 1/L _
We consider a class 6N —2L—1) networks havingV input yvhen_N, L — 00 The random aj\sls,|gnme_nt of dichotomies
units, 2L threshold hidden units, and one threshold output unfg Uniformly distributed over the™ labelings of thel’

The weights of the networks only take binary valugsl), Samples. .
The capacity thus defined can be expressedCas—
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TABLE |
LisT oF NOTATIONS
Notation Explanations
Q) in the order of (for a lower bound)
O() in the order of (for an upper bound)
N-2L-1 two layer networks with N input units, 2L hidden units and one output unit
w total number of independently modifiable weights of a network
C the capacity of a class of networks with the same architecture
M the number of samples from class 1
M, the number of samples from class 2
M (=2 the number of samples stored at each pair of hidden units
Xl(m) the m-th sample stored at the [-th hidden unit pair taken from the set of samples in class 1
X; the j-th sample taken from the set of samples in class 2
zl(jm) the total input to the i-th pair of hidden units when X](m) is fed through the network
sgn) the combined contribution to the output unit from the I-th pair of hidden units

when the sample XJ(-m) is fed through the network

s15 the combined contribution to the output unit from the {-th pair of hidden units
when the sample X; is fed through the network

y,(m) the total input to the output unit when the sample X,(m) is fed through the network
Y5 the total input to the output unit when the sample X is fed through the network
Y, the total number of incorrectly classified samples in class 1
Y> the total number of incorrectly classified samples in class 2
Y (=Y1+Y2) the total number of incorrectly classified samples
Py the probability of incorrect classification of one stored sample by the network

for the independent samples. In general, the capacity canrsgwork in the class oV — 21 — 1 networks with a success

different for different ratesd = 65 r which tend to zero. probabilityl—6 that does not converge to one; indeed, we will

Here, we consider a certain polynomial rate #ar, .. arrange this probability to be no larger th@x1/L> N*t) for
This definition is similar to the definition of the capacity/V, L large,«; > 0, andj3; > 0, uniformly over all placements

given by Cover [4] in that the capacity defined essentially chapf the sample points.

acterizes the number of samples whose arbitrary dichotomiedt is noted that the capacit/ is defined for allV —2L — 1

can be realized by the class &f — 2L — 1 networks with networks with all possible choices of binary weights, whereas

binary weights. On the other hand, this definition differs frorthe defined lower bound is for a constructed network whose

the capacity for a single neuron which is a sharp transitiowveights are chosen in a specific way. In other words, the

point. That is, when the number of samples is a little smallepnstructed network is included in all networks of the same

than the capacity of a single neuron, arbitrary assignmentsas€hitecture. Then the definition of a lower bound will follow

those samples can be implemented by a single neuron wigturally.

probability almostl. When the number of samples is slightly

larger than the capacity, arbitrary dichotomies of those samples lll. EVALUATION OF THE LOWER BOUND

are realizable by a single neuron with probability alm6ést

Since it is not clear at all whether such a sharp transitioq

point exists for a class of two-layer networks with either real-

valued weights or binary weights due to difficulties in findin hose blljnary fwe|ghtT areh_pamcularlI(y chosen. We (’;her f|n_d
the exact capacity, the above definition is not based on t number of samples this network can store and classify

concept of a sharp transition point. This, however, will n (Eorrectly with probability almost. This number is clearly a

affect the results to be derived in this paper, since we wiffWer bound on the capacity.
derive lower and upper bounds for the capacity )

Lower and Upper Bounds of the Capacity Consider an A. Construction of the Network
N — 2L — 1 network whose binary weights are specifically We assume that there are a set df 4 M, randomly
constructed using a set dff’ samples independently drawnassigned samples to two classes, whife samples belong
from some continuous distribution defined &". If an M’ to Class 1 and\/» samples belong to Class (24, > M>).
can be obtained such that this particular network can correcthe then construct a network so that the set of samples can be
classify all M’ samples with a probability at least— §, M’ correctly classified with almost probability.
is a lower bound for the capacity, whefegoes to zero at a The network’s structure groups ti&. hidden units intoL
rate no slower than a polynomial in terms bfNV and1/L pairs, and is shown in Fig. 1. The two weights between each
when N, L — oc. pair of hidden units and the output unit are chosen tg-beand

An upper bound for the capacity is a number of arbitrary —1. The hidden units are allowed to have integer thresholds in
samples whose random assignments are implemented by teyrangd—C’ N, C'N|, whereC’ = max(1, (1+8)o+/2/7)

To find a lower bound for the capacity’ of the class
networks, we first construct aWw — 2L — 1 network
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Fig. 1. Two-layer networks with binary weights and integer thresholds. ) ) )
Fig. 2. Two parallel hyperplanes formed by one pair of hidden umrits.

samples falling in between the hyperplanes which will haa total inputs
. 2 : P : the output unit—: samples falling outside of the hyperplanes which will
with o bemg the standard deVIa_tlon of the mput_samples a'ﬁg/eo total inputs to the output unit. The arrows indicate the positive sides
0 < # < 1. The reason whyC’ is so chosen will become of the hyperplanes.

clear when we explain how the constructed network works.

The threshold for the output unit is zero. . value of the total input to a hidden unit, assuming the sample
The weights of the network are constructed using onfiq 1o this unit is chosen from the group of samples assigned
the M, samples belonging to Class 1. In particular, the firgh the same pair of hidden units. We will be able to prove
M = M, /L samples are used to construct the weights of thge that generating the difference of the thresholds to be a
first pair of hidden units, the secorid, /L samples are used fraction (26) of this quantity will allow both units of this pair
to obtain the weights for the second pair of hidden units, agd gichotomize correctly the samples assigned to it with high
so on. The weightsy;'s connecting theth input with thelth probability.
pair of hidden unitf1 </ < L and1 < < N) are chosen * rig 2 gives an intuitive explanation on how the constructed
to be the same for both units, and can be represented as etwork works given a specific set of samples. Each pair
M of constructed hidden units can be viewed as two parallel
wy = Sgn(Z a:%’”) (1) hyperplanes. The amount of separation between these two
hyperplanes is characterized by the difference between the
wheresgn () = 1, if = > 0 and—1, otherwise; and. < i < two _thresholc_ls an_d it depends on the paraméte(D_ne pair
N. The quantitya:(f' is the ith element of thenth sample of hidden units will cont_rlbute+2_ to the output unit of th(_a
2(m) (,l,g) (m) : network for samples which fall in between the planes, since
vectorX;"” = (3", -+, oy’ ) that has been assigned to th(?hey lie on the positive sides of both planes. Each of the
Ith pair of hldden units. All the elements of sa}mple VeCtorsc’ampIes that has been stored in a particular pair will fall in
are qlrawn independently from the same contllnuous densﬂ)te\,/tween the two planes with high probability if the separation
function 4(z) of zero mean a_nd vana_mtaé’. h(z) IS assumed between the two planes is properly chosen. Specifically, the
fo have a compact support_w_l and is _symmetrlc about butseparation should be large enough to capture most of the
bounded away from the origin. That i&{z) > 0 only for stored samples, but not excessively large since this could allow
o S(Jjﬂ < b, wherea > 0 andb > 0 are constants. Therefore,, 4, examples from Class 2 to be falsely identified and
{X;""} are independent across dlland m; and wy;'s are  therefore deteriorate the performance. When the capability of
independent across dlandi. _ _ the entire network is considered, the pair of hidden units will
Each of the two hidden units in a pair has a differer{aye a response-2 to any sample stored in this pair. Since

threshold the outputs of all hidden unit pairs are dependent, the outputs
2 N due to the rest of the hidden unit pairs can be considered
te= |(Q1FOoy) = —— @)
T VM

m=1

v)

as noise. When the totdl of hidden unit pairs is not too

large, the noise is small, and the output of the network is
where the subscripts and— correspond to the two units in adominated by the output of the hidden unit pair where the
pair with weights+1 and—1 to the output unit. The thresholdssample is stored. That is, each hidden unit pair can classify
t+ are the same for all hidden unit pairs. As will be seen latehe A samples stored in this pair to one class, and samples
the quantityo+/2/(7) N/+/M, is approximately the expectedwhich are not stored in this pair to a different class with a
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high probability. How largeld should be can be characterizedVe observe tha'sﬁ) depends on
through the condition that the probability for dliAf samples
to be classified correctly should excegd- 6. That is, if Y} N W
is the total number of incorrectly classified stored samples by Z WyiTy; -
the constructed network, al¥ should result in a probability i=1
Pr(Y; = 0) > 1 -6, whereé is a polynomial in terms of )
1/N and1/L. Meanwhile, such a constructed network shoulfor 2 fixedi
also classifyM, samples in Class 2 correctly with almost N
probability 1 assumingi; is no bigger than the total number Z wziwgli)
of samples in Class 1. This will happen if the total number =1
of hidden unit pairs is not too large compared Ag since
the larger theL, the more likely for a given sample in Clasgs @ summation ofV independent and identically distributed
2 to fall within a pair of parallel hyperplanes, and thus bé.i.d.) random variables. However, for differehtsﬁ)’s are
classified incorrectly. dependent. In the meantime, the numbesf hidden unit pairs

In the following analysis, three steps are taken to obtaincan also change with respect to the input dimensiomhen
lower bound for the capacity. First, the probabiliB;, that N goes to infinity. This complicates the analysis. However,
one sample stored in the network is classified incorrectly, issing a theorem on normal approximation given in [9], it can
estimated using normal approximations. Similar approximhe shown in a lemma below that such a probabilty can
tions are then used to estimdte(Y> = 0). ThenPr (Y; = 0) be bounded by a probability due to a normal distribution with
is shown to be approximately a Poisson distribution with @n additive error term.
parameter depending df.;. Conditions on the numbe¥/ of Lemma 1:Let 2(1) < M < N/a In LN with « > 0, and
samples stored in each hidden unit pairs, as well as on the tdtaF o(N/%). Assume0 < 6 < 1.1
number L of hidden unit pairs are then obtained by ensuring

the errors due to approximations are small. Py=pPr(sV =0 s =0 .. s=0)
2N 2N

B. Probability of Error for a Single Sample <20 <—9 W) [1 - Q(—(l - 6) W)

As the first step to obtain a lower bound, we compute (—1)
FP.; which is the probability of incorrect classification of a 110 2N
single random sample stored. L@ﬁ"’) denote the output of +Q —(1+0) M
the network when thenth samplefl("’) stored in thdth pair 1 1
is fed through the network. Without loss of generality, we can + O(W) + O<\/—3> (5)
let m = 1 and! = 1. Since the labels for the stored samples N
are all(+1), an error occurs if;gl) = 0. Then the probability \\here
of error for classifying one stored sample can be expressed as
Pel = PI‘ (ijl) = 0) Q(—;Ij) = —1 /_x 6_'u2/2 dU/

Let sg") be the combined contribution due to tkté pair V21 J—oo '
of hidden units to the output unit wheﬁj("’) is fed through _ ,
the network, i.e., The proofs of the lemma can be found in Appendix I.

It is observed that the quantity

N N
el i) ol ) o o)
=1 =1 - T - - - T
wM wM

(3)
(L-1

Sincety <t_, sg") can only take two possible valuesand +Q| -(1+6) 2N
0. That is, when mM

‘< zj\: ™ <t is t_he normal approximation of the probabilit_y_ of misclassifi-

+ — vy cation of a stored sample, whereas the additive term
s{™ = 2; otherwise,s{"™ = 0. For the case we consider @) ! of 2
oo Cl T ' W + W

j =1andm = 1. Then Xl(l), which belongs to Class 1, is

e (1
classified incorrectly by the network ifiy) = 0 for all the s the error due to the normal approximation. This term will
hidden unit pairs(1 < < L). That is, go to zero at a rate polynomial in terms bfL and1/N, as

N and L go to infinity.
Py =Pr(y” = 0)

=Pr (sﬁ) =0, 3511) =0, S(Lll) =0). 4 Lf & < 6 < 1,6 would be replaced by — 6.
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C. Probability of Error for All Samples is the normal approximation of the probability Bf (y; = 1).
In this section, we evaluate the probability that all training"e added term
samples are classified correctly. o LM, <LM2)
e E— _l’_ J——
Let (NL) £1_222a \/ﬁ
Y=n+1 (6) is the error due to the normal approximation. This term will
. go to zero at a rate polynomial in terms ofN and 1/L,
with
when N, L are large but
L M
= g™ = 0) @) 1/4 N i 4
= = < — th —_
;g L=oN', M < 5, witha> ooy
and

M, It should be noted that the constraifit= o(N/%), is needed
Y, = Z I(y; =1) (8) in order for M, samples in Class 2 to be classified correctly.

o Then it remains to fmd%(Yl = 0). 'I_'hls is complicated

by the fact that the terms in summation (7) are dependent

where I(A) is the indicator function/(A) = 1 if Event A random variables. If the terms were independent, it would be
occurs, and/(A) = 0 otherwise. Hergy, is the output of the easy to find the corresponding probability. If the dependence
network when thejth sample in the set of samples assigneaimong these terms is weak, which is the case we have,
to Class 2 is fed through the network, whefes [1, M3]. under a certain condition, the terms can be treated as being
ThenY; andY; are random variables representing the numbeatmost independent. This restriction on the number of samples
of incorrectly classified samples in Class 1 and Class @an be obtained through a direct application of a theorem
respectively. Likewise} is the total number of incorrectly by Stein [11]. Specifically, the theorem shows that under
classified samples. To find a lower bound for the capacitgrtain conditionsPr (Y; = 0) is approximately a Poisson
using the constructed network, we need to findAdnand a distribution.
condition onL so that the probability’r (Y =0) > 1-6. To Theorem 1:Let 1;,, denoteI(yl(m) =1). ThenY; can be
do so, we need to evaluate the probabily(}Y” = 0). In the expressed as
lemma below, we will first show that

M
Z im- (13)

IIMh

Pr(Y=0)=Pr(Y; =0) Pr(Y>=0).

We will then estimat®r (Y7 = 0) andPr (Y> = 0) separately. Define
Lemma 2:Y; andY, are independent, i.e.,

M
Z (- (14)

?‘\
IIMh

Pr(Y =0)=Pr (Y1 =0)Pr(¥Y> =0). 9)
Furthermore, where % is chosen arbltrarlly from
Pr (Y = 0) = [Pr (y; = 0)]*%=. (10) -, M, M+1,---, M]
Moreover, forQ(1) < M < N/a In NL, we have and

7 iy, if Iy =1andlm £k
mk =11, if I, = 1 andlm = k.

2N
Pr(y; =0) - 1—Q<—(1—9) W)
A single indexk is used to characterize the double indices

5N LM; I, m just for simplicity, wherek = Im indicates the((l —
+Q <_(1 +6)4 /mﬂ 1)M + m)th element in

[17"'7M7M+17"'7M1]

LM, LM,
<0 W +0 \/ﬁ : (11) Lorlé <l < Landl <m < M. Then the following inequality
olds:

Fora > 4/(1—6)%, My < ML, andL = o(N'/%) I Pr(Y; = 0) — Py, (0)

LM LM My
Pr(y; =0) 2 1_O<(NL)(1—0)2a/2> _O< /N3 ) (12) < min(A7t, )P, Z Ely; -Y,+1] (15)
k=1

The proof of this lemma is given in Appendix Il. The quantit
P g PP a Y h ere Py, (0) is a Poisson distributionP, (0) = e~*, and

2N o LM> = EY, = M; P, with P.; given in (5).
[1 -Q <_(1 A ) - Q( (1+6)y/ 7r—M>] The proof of the theorem is given in Appendix IIl. Roughly

speaking, this theorem indicates that the random variable
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has approximately a Poisson distribution if the bound in thehere~;, v2, v{, 7% > 0. Then by combining (12), (17), and
above inequality is small. If the random variablgs,’s were (18), the result will follow by the definition of a lower bound.
independent, the bound would be on the orderRf [7]. Intuitively, this corollary indicates that when the number
F.1, however, is an increasing function &f as shown in (5). L of hidden unit pairs is not too large with respect Ao
Therefore, for a givenV and L, to make the bound small/ the number of samples stored in each hidden unit pair is
cannot be excessively large. When the random variables &@V/1n V), which is on the order of the statistical capacity
weakly dependent, we have a similar situation. That is)pan [8] of a single neuron. In addition, the numh&f of samples
can be found as a function @f and L, which can result in each hidden unit pair can store is inversely proportional to
a similar bound. which characterizes the separation of two parallel hyperplanes
Theorem 2: When{(1) < M < N/« ln NL, we have in the pair. The larger thé, the larger the separation between
T e Fwo hidden units in a pair, the more likely it is for a sample
1Pr(Y; =0) — M| < O< NAL ) <L_) in Class 2 to fall within two parallel hyperplanes and thus be
- (NL)30%a/2 N1/6 misclassified. Then thé/ has to bes maller in order for all
(16) the stored samples to be classified correctly.

The Monte Carlo simulations are done to compare with the
analytical results. Specifically, the probabiliBt (Y = 0) is
estimated for differentd/; + M, averaged over 20 runs as
1 given in Fig. 32 At each run, different numbef$\/; + M>) of
m) (17) " random samples are generated independently from a uniform

distribution bounded from zero and assigned randomly to two

where \; = LMP.;, 0 < § < . For L = o(N%), and
a > 333, we have

Pr(Y1=0)21—0<

\é\/_here the constantsy, a; > 0.The proof is given in Appen- classes. A two-layer network is then constructed as described
IXP IV'. 11 d(16) i 9 h h in Section lll-A using thelM/; samples in Class 1. The samples
utting (11) and (16) into (9), we have when are then fed through the network one by one. A sample is
M < N for & > ma. 8 4 classified correctly by the network if its actual label assigned
— aln LN’ X\ 302 (1-6)2 by the network agrees with its true label. If all the samples
and L = of Né) are classified correctly by the network, one “successful” run
is obtained. The experiment is repeated 20 times. The ratio of
the total number of successful runs by the total number of runs
Pr(Y =0)>c™|[1-Q| -(1-0) 2N gives an estimate for the probability of correct classific_:ations
mM of eachAd; + M>. Meanwhile, the probability due to Poisson
LM, and normal approximations
2N
+Q| —(1+96) v LM:
m _ 2N 2N
I — )
LY N<2

is also plotted for comparison. An agreement between the

/ / H H
wherea;, a5 > 0. Such anM given in the above theorem ,,\rical results and the simulation is readily observed.
yields a lower bound for the capacity as stated in the corollary

below.

Corollary 1: If L = o(N%) and M = ozlriVLN for a > IV. EVALUATION OF AN UPPER BOUND

max (53, ﬁ and M, < LM, a lower bound for the As givenin the de_:finition, an upper boun_d is the number of
samples whose arbitrary assignments are implemented by any
network in the class with a negligible probability. This will
M + My = Q(ﬂ) (19) happen when the total number of possible binary mappings
In W generated by the networks is no more tha® é1/L* N/)

where W = Q(LN) is the total number of weights of thefraction of all possible dichotomies of the samples, where

capacity can be obtained as

network. a; > 0 andp; > 0 are two constants. The total number of
It is easy to check that when the aforementioned conditioR§1ary mappings the networks can possibly generate, however,
hold is no larger tha"V+2L leg €2V with ¢ > 0 being a constant.
1 Then for ay > 0 arbitrarily small, when the number of
A= O<m> samples equals ta ++)(W + 2L log 2C’N), the probability

for their arbitrary dichotomies to be implemented by an
and N—2L—1 network is no larger tha@ (1/27(W+2L log C'2N)y
SN sy \1"*:  Therefore,(1++)(W +2L log 2C'N) is an upper bound for
[1 - Q<_(1 —6) ) + Q<_(1 +6) )] the capacityC. This quantity is on the order d when N
and L are large. TherC < O (W) is obtained.

1
>1- O< — ) (20) 2Note that due to the limitation of computer memoty, could not be
chosen to be large enough forto be small compared t&/1/2.
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Fig. 3. Monte Carlo simulation for the probabilifyr (Y" = 0). The solid curve corresponds to the probability obtained in (18). The vertical and horizontal
axes are’r (Y = 0) and (M, + M)/ LN, respectively. The crosses are Monte Carlo simulation®fdY” = 0) averaged over 20 runs. In the simulations,
the samples are drawn from the uniform distribution[4nl, —0.5] and [0.5, 1]. N = 1000, L = 60, My = M, 6 = 0.5

It should be noted that since such an upper bound és. (20.49)] for normal approximaticrwWe will then use this
obtained through counting the total number of binary mapheorem to estimaté’.; in Part Il.
pings possible, it is independent of the distribution of the Part I. Normal Approximation of Probability of A Sum-
samples. mation of Random VectorsOne major result we will use
in this work is normal approximations of joint probabilities
V. CONCLUSION of a summation of i.i.d. random vectors with (absolutely)
In this work, we have shown that the capacit ontingous .density funf:tions [9]. A similar result was used
C(N, L, P, 8y, 1) is lower-bounded bf2(:'%-) at a certain ' lattice distributions in [6]. o
polynomial rate foréy 5, and for any fixed continuous Let ‘_{“i’ 1< S_N} be '_"'d' random vectors idt W'th.
distribution of samplesP with a compact support and® continuous density functlo_ns, Zero mean, anq a covariance
bounded away from zero a5 — oo and N — oo with matrix G. k is a constant which does not vary wiffi.* Let
L = o(N%), whereW ~ 2LN is the total number of weights. 1
We have also shown thaB(N, L, P, 6x. 1) < O(W) as Uy =—= Z ;. (22)
N — o0 and L — oo for all placements of samples points. VN i=1

Combining both lower and upper bounds, we have Let A be a convex set iR, Let Pr(A) be the probability

Q<1nWW> <C <o 21) Un € A, and®(A4) be the normal approximation dfr (A4).

That is,

Compared with the capacity of two-layer networks with real

1 T
. ) = TG

weights, the results here show that reducing the accuracy (4) V(2m)N det G //A exp(=v

of the weights to just two bits only leads to a loss of < h fini h absol ¢

capacity by at most a factor dfa W. This gives strong Assumex;’s have a finite up tath absolute moment for some

theoretical support to the notion that multilayer networks witf = 3+ -€- Elju|[" < O(1) for 0 < v < s andl <7 < V.
binary interconnections are capable of implementing complgx en

functions. Theln W factor difference between the lower and 22 )

upper bounds for two-layer networks, however, may be due 8'P. Pr(4) — ®(A) - Z N Po(=D:{x, })®(4)
the limitations of the specific network we use to find a lower<" r=1

bound. A tighter lower bound could perhaps be obtained if a = O(N_(S_l)/Q) (24)
better construction method could be found.

L)ydv. (23)

where P,.(=D: {x, })®(A)'s are the signed measures

APPENDIX |

PROOF OF LEMMA 1 3The main theorem we will be using is the corollary given by [9, eq.
. (20.49)]. The corollary is based on [9, Theorem 20.1].
Proof: The proof of the lemma consists of two parts. 4For the two cases of our interests as will be shown ldtes, 1, 2.

In the first part, we describe a general theorem given by [9given by [9, eq. (7.3)].
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P.(-D: {X,,}) (A ) whereD is the compact support af Equation (29) is obtained
due to the fact that fond large

_ Z Z Z ok Xm T X
!
m=1 m! G1, o G PLsees beoe v <Z x(m) )
X (=D)1ttrmp(A), (25) m=2
The summation)_* is over allm-tuples of positive integers and
(1, -+, gm) Satisfyingd""" | j; = s, andd>_"" is over allm-
tuples of nonnegative integral vectdps, -- -, ,,,) satisfying <Z a:(m) )
|vi| = 7: +2 for 1 < ¢ < m. x, is therth cumulant (or the m=2
so-called semi-invariant) of the random vectars. As given .
in [9, eq. (6.28)], for any nonnegative integral vector can be approximated by — Q(—(z/v/(M —1)o)) and
¥ —(z/+/(M — 1)a)), respectively. Moreover, whef/ >
x| < c(v) Elfuil] (26) max |z|, which is true sincer has compact support,
where ¢(v) is a constant depending an only. Meanwhile, 1
vi!=0(1) fori=1,---, m. Then we have Q(=(z/ V(M = 1)o)) = 3 —/V2r(M = 1)o
|Py(A ) — o(A)] through the Taylor expansion. Then (31) is obtained, i.e.,
. (1) _ 2
<ZN /22 —~ Z Exy’' =N v (32)
m=1 Jis0 dm L . .
Similarly, we can show that the variance df’ is
Y OE|u|ttmh(—Dy et a(A) ’ 1 §
YL Var(7( )) <1 - O<—>>\/Na (33)
+ O(N~(=D/2) 27) “ M

wherew; is used without loss of generality. This inequalityynich is approximately/No for M large. Then we have
will be used in Part Il to estimaté,;.

Part Il. EstimatingP.;: To estimateF.;, we first consider (sﬁ) =0) =2Q(—0t1))(1+ O(1/M))
the difference|P€1 — ®(FE1)|, where F; corresponds to the
error eventﬂl L {sll) = 0} for P.;, and®(F4) is a normal and
approximation taP.;. To obtain the expression fdr(E1), we  ®(A) = 2Q(—6t,)[1 — Q(—(1 — O)t,
first note that since inputs to different hidden unit pairs are Q-1 +9)t1)](L_1)(1 +O(1/M)).

uncorrelated,
Next, we observe that

H Pr sgll) =

|P€1 bt (I)(El)| S max(Pel, (I)(El))

Each termin the product is the probability of a normal random < max(Pr(sﬁ) =0), 2Q(—6t1)) (34)
variable. For2 <[ < L, it is easy to check thaEzl(f) =0, _
and Var(7l(1)) — N. Then where W(_a assumeV! is Iarge(le)nough(l)so that the factor
O (1/M) is neglected. Let = 2,7’ — Ez . Then
Pr (s = 0) = [1 - Q(=(1 = 6)t2) + Q(—(1 + )t)] “~V W
(28) Pr(s;y) =0)=Pr(a<z<b)
N wherea = t; — EzY, andb = t_ — E2{Y. Sincez is a
wherety = /<y Forl =1 summation oJ;N i.i.d. 1random variables, anlé the interyal b]
Ezﬁ) :NEwlla:(l) is convex, using the normal approximation given in (27) for
+oo the dimension of the random vectér= 1, and s is chosen
Ew11x§11> = / 2 )E(w11|$(1)) (x§11>)dx§11> to be 4, we can obtain

Pa(siy’ = 0)
= / =B <Sgn <a: + Z a:(m)> )h(a:) dx

m=2 <2Q etl +Z N_1/2 Z ml Z Z
T m=1 J1s Jm V1,00
N/merll_m(_ = 1>a>]h(x)dx K OB+ (DY e Q)
(29) L)
] 2 2p(5)d (30) +O<\/ﬁ .
“V oM /xer (@) dw where
=z @) o= L) — i)
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Sinceuo is a bounded random variabld|u |1+l < APPENDIX I
O(1). In addition, for any positive integer PROOF OF LEMMA 2

[(=D)"Q(=0t1)| < O(t1$(—011)) (36)

The proof of the lemma also consists of two parts. In Part I,
we will prove (9) and (10) are true. In Part I, we will derive
(11) and (12).

Part I: First, we show thal; andY; are independent.
Consider the inputs to each of two units in the first hidden
unit pair when the sampIeX( ) in Class 1 andX; in Class

% are fed through the network. Without loss of the generality,
we can choose = 1. Then we have

Z m' Z Z O(E|ug|"*+rm) 7:51) = Z whal:lZ (42)

whereg(z) = —=e=(*/2, andt; (t, = |/ 27) is assumed
to be larger thari. Furthermore, it is noticed that the highest
order tern§ in P.(=D: {x,})®(A) given in (25) is3s [9,
Lemma 7.1], and there are finite terms in the summation
Then fors =4 andl1 <r <s

m=1 1 VL s e
X |[(=D) Tt Q(—6ty))] and
< O((=D)*Q(=61)) (37) S0 _ Z . 43)
< Ot p(—0t1)). (38) o
For M < ¥ and M, N, L large where z,;'s are the elements ok for ¢ € [1, N]. 20 s
the total input to each of the two units in the first hidden
vVin NL unit pair when a sample assigned to Class 2 is fed through
Q(=0t1) =0 W the network. Since the terms with different subscriptare

. independent, which is easy to check, we only need to show
' =0[(ln NL)=]. the independence of the two terms with the same subsdaript
the above two summations. Let= whxgj andv = wy;xy;.
Then the terms due to the signed measurase of the Then for anya’, b € (=b, b)
smaller order compared ¥@(—#6t;). Therefore, by taking the ,
dominant terms in the bound in (35), we can obtain Priu<d,v<¥)

=Pr(u<d,v<V|wy,=1)Pr(w,; =1)

(1):0< 1 1 39 +Pr(u<d,v<¥|wy;=-1)Pr(wy =-1 44
el =0) <O e ) 0 4w ) @9 (<1> gy = =)Pr(w = -1)  (44)
=Pr(zy; < d'lwy = 1)Pr(z; < V) Pr(wy; =1)
where the logarithmic term in + Pr(a! (L ) < dwy = =1)Pr(zy > —V)
o YinNL x Pr (wu =-1) (45)
TATTNO2 /2 1
(NL)#er2 = 5Pr (e} <dlwi = 1)+ Pr(ay)) > —d'|ws; = 1))
/
is neglected, since it is of the smaller order. Putting (39) into Pr(ay <V). (46)
(34), we have Here (45) is obtained from (44) due to the independence of
) ) the samples; while (46) is derived from (45) since
P —-®(F)| <L —_— i 40
| el ( 1)|_O<(NL)020‘/2>+O<\/W> ( ) Pr(wlizl):Pr(wli:—l):%
ie., x1; is independent ofv,; andzy; is symmetrically distributed,
i.e., Pr(zy; < V) =Pr(zy; > —0b'). On the other hand,
1 1
Pel S (I)(El) + O<W> + O<W) PI‘ (U/ < CL/)(P)I' (U < b/)
— / L L
<2Q(-60)[1 - Q(=(1 = )+ Q(~(1+ o)) = PP <l =D Prws = 1)
1 1 + Pr (a:_ﬁ) —d'|wy; = =1) Pr (wy; = —1)]
+O0| =575 | + 0| —= (41)
(NL)#*/2 VN3 X [Pr(z1; < V')
P . —_ / L= —
It should be noted that due to the use of inequality (34) - Prwii = 1)+ Pr(zy; > =) Pr (wyi = —1)] (47)
the resulting bound is not very tight. However, as will be = = Pr(zy; < ¥)[Pr (2 < ¢jwy = 1)
seen later, such an error estimate is good enough to obtain a W _y
satisfactory lower bound for the capacity. QE.D.  tPr(z > —dfwn=-1)] (48)
o Therefore,
in the power ofD
7u;'s are on the order o®(1) as well. Pr(u<d,v<?b)=Pr(u<d)Pr(v<i)

8which are in the order o@( i.e., v andv are independent.

1
\/1\7’(1\11_,)92(\/2)
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This approach can be extended to Allvariables in sum- For M, < LM, a > 4/(1 — 6)?, and L = o(N/4)
mations (42) and (43) to show the mutual independence of I2N 12
all terms. Thenzﬁ) and ;ﬁ) are independent. Similarly, we  Pr(Y>, =0) >1— O<—> - O<—)

can show the independence for the other pairs of hidden units. (NL)(=a/2 VN
Therefore,I(y™ = 0) and I(y; = 1) are independent. The >1— 0<#) (55)
mutual independence d’f(yl(m) = 0) and I(y; = 1) for all NerLes
le[1, L], me[1, M],andy € [1, M;] can be shown using awherea:, oz > 0. Q.E.D.
similar approach extended to multiple variables. Thgrand
Y, can be shown to be independent. APPENDIX 111

Similarly, we can show thaf(y; = 0)'s for j € [1, M;] PROOE OF THEOREM 1

are also mutually independent. Then . . . . .
y P This theorem is a direct application of a theorem by Stein

Pr(Y; = 0) = [Pr(y; = 0)]2. (49) [11] which can be described as follows.
Theorem 3. Stein’s Original Theorenket
Part Il: We use normal approximation given in Part | of <

Appendix | to obtain a bound faPr (y; = 0). Let s;; be the 7 Z I (56)

total output of the/th hidden unit pair wherx; € €, is fed o ‘ "

through the network. Leti; = ﬂle {s1; = 0}. Sinces;;’s are . " ) )

uncorrelated, it is easy to obtain that the normal approximati¥fere..’s are Bernoulli random variables taking valueand

®(A;) of Pr(y; = 0) as 0, andEl, = P,. N is the total number of random variables.

Letk € [1, ---, N]. Define
®(A) =[1- Q(—(1-60)t) + Q(-(1 +O)t)".  (50)

X
Then forPr(4;) = Pr(y; = 0) Zi=Y I (57)
n=1

|Pr(A;) — ©(41)| =|Pr (Zl) - ‘I’(Zl)| such that the distribution of;, is the same as the conditional

< max (Pr(4,), ®(4))) distribution of Z given I;, = 1. Then
< max (LPr(s;; =2), 5
LQ(-1=0)t1) = Q(=(1+0)t)])  |Pr(Z=14)— A()| <min(A™, 1))~ PE|Z - Z; + 1]
k=1
&1 | (58)
where 4, is the complement of4;. The last inequality is Where Pa(i) = @_A?_!,v and\ = EZ. .
obtained using the union bound. Furthermore, The proof of Stein’s theorem can be found in [11].
To apply Stein’s theorem to our case, we defijeandY’,
1 & as given in (13) and (14), respectively. TheA/ corresponds
Pr(s;;=2)=Pr{ (1-6)t; < N > wuwi S+t | o N. 1, andIl, , correspond td, and’,, respectively. In
=1

addition, sincel;,,,’s are exchangeable random variables [3],
using the normal approximation given in (27) and similahe distribution ofY} is the same as the conditional distribution

derivations from (34) and (39), we have, fof < N/o In LN 0f Y1 given I for any k € [1, ---, LM] by the definition of

and M, N, L large Y).. Then the result given by (58) applies to our case directly.
. Q.E.D.
[Pr(ss; =2) £ Q- (1-6)1) - Q- (1+63)+0( 7375 )
APPENDIX IV
1 1 PROOF OF THEOREM 2
<o i) o) o
(NL)=0rar2 N3 There are two parts in the proof. In Part |, we will derive

where the terms due to the signed measures are neglecteound for the Poisson approximation. In Part Il, we will
since they are of the smaller order. Putting (52) into (51), westimate the joint probabilities needed in the bound using

can obtain normal approximations.
Part I: We will start with a brief outline of the proof. Based
|Pr(y; =0) = [1 = Q(— (1 —0)t1) + Q(— (1 + 0)t1)]“| on Stein’s theorem, to show that the Poisson approximation
L L holds, it suffices to show that the bound given in (15) is
S O<W> +O<W) (53) asymptotically small forNV, L large (butL < N) when

the number of stored samples at each p&ir grows at
Therefore, certain rate in terms ofV and L. To do that, we will first
_ LM, obtain a new bound for (15) through Jensen’s inequality. Each
Pr(Y; =0) > [1 = Q(—(1 = 0)t1) + Q(—(1 + 6)t1)] individual term in the new bound will be further bounded using
-0 _ LMy -0 LM, 54) Schwartz's inequality to simplify the derivations. Finally,
(1=6)2a/2 3 /) (54) S ; . .
(NL) vN normal approximations will be used to estimate the joint
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probabilities in each term. The detailed proof is given abherefore,

follows.
Due to the fact thaf;,,’s (1 <! < Landl < m < M)
are exchangeable random variables

EYY,-Y,+1| =E|Y1-Y{+1|, foralkell,- -, Mi].
Then
LM
min(A[t, 1)P.; Z ElY; - Y, +1]
k=1
=min(A;, DEY; - Y{ +1| (59)
where A\; = LM P,.;. By Jensen’s inequality,

ElY, Y/ +1| <\ EY, - Y] +1)°.

If min(A;, 1) = Ay which will be the case we consider, to
show the Poisson approximation holds, we only need to find

conditions onM so that\? E(Y; —
small for largeN and L. M2E(Y; —
be expressed as

V{ +1)? |s asymptotically
Y{ 4+ 1)*, however, can

NEY, -Y{+1)' =1 (60)
i=1
where
T, =\P, (61)
:)\%ME(IIQ - 1121)2 + )‘%(M - 1)(M -2)
X E(Im - 1121)(113 - I{?,l) (62)
T3 =2(M = D)NEL;i(I12 — I}5;) (63)
Ty =2(L - )MMNEIL (112 — I]5) (64)
T5 =2(L — 1)(M — )M E(I12 — I}y, )(Iz2 — I3y,) (65)
Ts=(L - 1)M)\%E(I21 - I§11)2 + )‘%(L -DM(M -1)
X BE(Iy — Iy, )(Iny — I3y ) + AJ(L — 1)(L — 2)M?
X E(121 - Iéll)(l?ﬁ - I:/%Ql)' (66)

Due to the fact thafj,,,, 's are exchangeable random variables, | Pr(
the subindices in (62)—(66) are chosen without loss of general-
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only two expectationsE(I;; — I},,)° and

E(I,; — I};,)* need to be evaluated to estimate the bound.

E(ly; - I,))* = EI, — 2EI, I, + EIL,, (73)

where the identities have been used for the indicator variables:
EI?, = El, and EI}%, = EI},,. Since

EL,I,, =EL:E(I5| L2, I11 = 1)

el (74)
EIlg = PI‘(Ilg = 1)
el
EIlQl = PI‘(Ilg = 1|Ill = 1) (75)
we have
Pr(lio=11;; =1
Bl — I}y, = 20 5 )Py (16)
el
Similarly, we have
Pr(lo1 =1, 111 =1
E(Iy —I§11)2 = ! P’l n=1_ A (77)

Then to estimate the error bound for the Poisson approxima-
tion, we need to estimate the joint probabilitid¥; (1, =
1,11 = 1) andPr(I21 =11 = 1)
Part Il: To estimate these probabilities, we use the theorem
for the normal approximation given in Part | of Appendix I.
Let the joint error evenB = {I}; =1, I1» = 1}, i.e,,

L
1 2
5= (e =o) N (m{sw ~o1).
=1
Let
By = {3(1) 0} ﬂ{s@) _
Then using the similar inequality as that given in (34), we have

112 = 1, Ill = 1) bt (I)(B)| S max (PI‘ (Bo), (I)(Bo))

(78)

ity. To further simplify the derivations, Schwartz’s inequality

is used to obtain

|E(Ilm - Il/ml)(‘[ I;Lol)|

< \/E Ilrn_

wherel < I, n, m, o < 2.
Then by taking the dominant terms for largeand A, we
can obtain

lml E(Ino -1

nol

) (67)

11| <O(M2NE(L1s — I15))%) (68)
| T3 <O<M)\2 E(I,, —1121)2) (69)
|Ty| <O LM/ E(Iy — 1211)2> (70)
T3] < O<L AQ\/E (Iig — I}y E(Iy — 1511)2> (71)
Ts| <O (L2M2NE(Ioy — Iyy,)). (72)

where ¢(B) is the normal approximation oPr(l;» =

1,1;; = 1), and ®(By) is the normal approximation of
Pr(Bo). Let

w = (1/VNo)(z1y ~ Ezly))
and

ur = (1/VNo)(z1} ~ EzY)

where the meaz\ (Ez? = Ez{})) and the variance are
given in (32) and (33) respectively. The evéht corresponds
to the random vectofu; , u2)? falling into the four convex
regions,B;'s, for i = 1, ---, 4, where

Bl ={(z,y):x < -0,y < —Ot1}
(z,9):z < =6ty > 0t}
(2, y)

(2, y)

‘/177
L,y
)

<

tw >0ty < —0t}
X Z 9t1, y Z 9t1}

||
-
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Then To estimate the bound in the inequality given in (80), we use
4 similar derivations as given in Part Il of Appendix I. Specifi-
|Pr(Bg) — ®(Bo)| < Z | Pr(B;) — ®(B;)|. (79) cally, it is noted that the derivativg— D)+t &(By )| in
- (80) can be bounded (fa¥/ large) through the inequality

Using the normal approximation foir (B;) — ®(B;)I's and  |(_py+-+rmg(By)| < O Tl p(—6t,, —61)).
taking s = 8, we have N

(87)
| Pr(Bo) — ©(Bo)| : . : _
Since the highest order term is of the or8er ands is chosen
< O(Z N2 Z ' Z Z to be &, we have
m.
R [(=Dy++ma(By)| < O(E3¢(~0t1, —6t1)).  (88)

O(E||u|||”1+"'+”m|)|(—D)”1+"'+”m<1>(Bl)|> Furthermore, since; andw, are boundedE||u||” < O (1)
for any finiter > 0. In addition, there are finite terms in the

+ O(N—(7/2)) (80) summations given in (80). Then by taking the dominant term,
we have
where
1 T N—1/2 OE||u|||V1+ +um|)
uz(;(wllxgll)_Ewllxgll))v(l/o—)(wllxgl)_‘Ewllxﬁ))> : Z r;m' JI,Z,:JM ul,z,:
vt trn (B 89
R is the covariance matrix of; <= 423 D) (B)] (89)
<O == ¢(—6t1, —6t ) (90)
R= C f) (81) <\/_ s =0h)
For M S @ lrjlvNL

and|p| = o(ﬁ). O(By) = B(—0t,, —0t,), where

NL)*
—ot, 6t tPP(—0ty, —0t1) = O[%}
<I>(—9t1, —9t1) = / / ¢(U17 UQ) dvl dvg (82)
oo T and
with ¢(v1, v2) being the probability density function of two In NL
jointly normal random variables, i.e., ®(By) = O<w)
P(v1, v2) = o W exp{—(v1, v2)" R (v1, v2)}. Then the summation given in (89) is of smaller order compared
€

(83) With ®(By). Therefore, taking the dominant terms, we have

To estimate®(—6t,, —6t1), we note thatp(vi, v2) can be In NL 1
expanded as [6] Pr(lio=1, I;;=1) < ‘P(B)+O<W>+O<W).
+oo pr (91)
P(ur, v2) = p(o1)p(v2) + Y = m(vr)T(va)  (84)
=1 Finally, using the triangle inequality, we can have
where ) |Pr(ly =1, I;; = 1) = P}
rz) = <_di) o), forz e RL. <|P% - @(B)|+|Pr(lip =1, L1 = 1) - 2(B)|. (92)
X

From (5), we can easily derive that
Then for|p| = O( and M large, by putting (84) into

1
r) 1
(82), we have |P2, —@(B)| < O<$) +0<#). (93)

e Ar/M)) +o() Combining (92) and (93) together, we have
85
(89 |Pr(fl2=1711121)_P31|SO<(1117NLQ>+0<L>-

O(=0t1, —0t1) =4Q*(—6t)) + O<\/}\_4

whereo() is a smaller order term. In addition, it is easy to NL)? VNT
check that alls{7”'s for 2 < I < L andm = 1,2 are (94)
uncorrelated, we have Using similar derivations, we can obtain
®(B) =4Q*(—011)[1 - Q(=(1 - 6y) In NL 1
1 |PI‘(_[21:]_7 111:1)—P€21|SO<W>+O<—>
+Q(—(1+9)t1)]2L_2<1+O<—>). (86) (NL) VN7
VM (95)
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Furthermore,
In NL 1
P, <Ol ——— ol —= ).
1S <<NL>M)+ <\/_N>

Since the bound fof7s| dominates all bounds, whel/ <
2o with a > 55;, andL = o(N+), we have

N4L4 LA/3
|TZ| SO((NL)302a/2> + O<N1/6>
1
< -
_0< o Na2> (96)
for 1 <i<6, ay, as, ag > 0.° Q.E.D.
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