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Capacity of Two-Layer Feedforward
Neural Networks with Binary Weights
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Abstract—The lower and upper bounds for the information
capacity of two-layer feedforward neural networks with binary
interconnections,integer thresholds for the hidden units, and zero
threshold for the output unit is obtained through two steps. First,
through a constructive approach based on statistical analysis, it is
shown that a specifically constructed(N � 2L� 1) network with
N input units, 2L hidden units, and one output unit is capable
of implementing, with almost probability one, any dichotomy
of O(W= ln W ) random samples drawn from some continuous
distributions, where W is the total number of weights of the
network. This quantity is then used as a lower bound for the
information capacity C of all (N � 2L � 1) networks with
binary weights. Second, an upper bound is obtained and shown
to beO(W ) by a simple counting argument. Therefore, we have

(W= ln W ) � C � O(W ).

Index Terms—Binary weights, capacity, feedforward multi-
layer neural networks.

I. INTRODUCTION

T HE information capacity is one of the most important
quantities for multilayer feedforward networks, since it

characterizes the sample complexity that is needed for gener-
alization. Roughly speaking, the capacity of a network is
defined as the number of samples whose random assignments
to two classes can be implemented by the network. For two-
layer feedforward networks with input units,
hidden units, one output unit, andanalogweights, it has been
shown by Cover [4] and Baum [1] that the capacitysatisfies
the relation , where is the total
number of weights, is the number of hidden units, and is
the input dimension. In practical hardware implementations,
we are usually interested in networks with discrete weights.
For a single neuron with binary weights, its capacity is shown
to be [12]. For feedforward multilayer networks with
discrete weights, in spite of a lot of empirical work [2], [10],
there exists no theoretical results so far to characterize the
capacity of multilayer networks with discrete weights. In this
paper, we present upper and lower bounds for the capacity
of two-layer networks with binary weights.

We consider a class of networks having input
units, threshold hidden units, and one threshold output unit.
The weights of the networks only take binary values ().
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The hidden and output units have integer and zero thresholds,
respectively. We then use a similar approach to that used by
Baum to find a lower and an upper bound for the capacityof
such networks. The lower bound for the capacity is found by
determining the maximum number of samples whose arbitrary
dichotomies (random assignments of samples to two classes)
can be implemented with probability almostby a network
in the class. In particular, we define a method for constructing
a network with binary weights chosen in a particular way and
then show that this network can implement any dichotomy
with probability almost , if the number of samples does not
exceed . can thus be used as a lower
bound for the capacity of the class of networks
with binary weights.

The upper bound for the capacity is the smallest number
of samples whose dichotomies cannot be implemented with
high probability. We show that is an estimate of the
upper bound which can be obtained through a simple counting
argument. Therefore, we have the main result of the paper
that the capacity satisfies . The
organization of the paper is as follows. Table I provides a
list of some of our notations. Section II gives the analysis to
evaluate a lower bound. Simulation results are given to verify
the analytical result. Section III provides an upper bound for
the capacity. The Appendixes contribute to the proofs of the
lemmas and theorems.

II. DEFINITION OF THE CAPACITY

Definition 1. The Capacity : Consider a set of sam-
ples independently drawn from some continuous distribution
on . The capacity of a class of networks
with binary weights and integer thresholds for the hidden
units is defined as the maximum so that for a random
assignment of samples in two classes there exists a network
in the class of networks which can implement the dichotomy
with a probability at least , where goes to zero at a
rate no slower than a polynomial in terms of and
when . The random assignment of dichotomies
is uniformly distributed over the labelings of the
samples.

The capacity thus defined can be expressed as
. represents a function of the

input dimension , the number of hidden units , the
distribution of the samples, and the probability that
random dichotomies have an network implements
the dichotomy, where is evaluated by averaging both over
the distribution on the dichotomies and the distribution
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TABLE I
LIST OF NOTATIONS

for the independent samples. In general, the capacity can be
different for different rates which tend to zero.
Here, we consider a certain polynomial rate for .

This definition is similar to the definition of the capacity
given by Cover [4] in that the capacity defined essentially char-
acterizes the number of samples whose arbitrary dichotomies
can be realized by the class of networks with
binary weights. On the other hand, this definition differs from
the capacity for a single neuron which is a sharp transition
point. That is, when the number of samples is a little smaller
than the capacity of a single neuron, arbitrary assignments of
those samples can be implemented by a single neuron with
probability almost . When the number of samples is slightly
larger than the capacity, arbitrary dichotomies of those samples
are realizable by a single neuron with probability almost.
Since it is not clear at all whether such a sharp transition
point exists for a class of two-layer networks with either real-
valued weights or binary weights due to difficulties in finding
the exact capacity, the above definition is not based on the
concept of a sharp transition point. This, however, will not
affect the results to be derived in this paper, since we will
derive lower and upper bounds for the capacity.

Lower and Upper Bounds of the Capacity: Consider an
network whose binary weights are specifically

constructed using a set of samples independently drawn
from some continuous distribution defined in . If an
can be obtained such that this particular network can correctly
classify all samples with a probability at least ,
is a lower bound for the capacity, wheregoes to zero at a
rate no slower than a polynomial in terms of and
when .

An upper bound for the capacity is a number of arbitrary
samples whose random assignments are implemented by any

network in the class of networks with a success
probability that does not converge to one; indeed, we will
arrange this probability to be no larger than for

, large, , and , uniformly over all placements
of the sample points.

It is noted that the capacity is defined for all
networks with all possible choices of binary weights, whereas
the defined lower bound is for a constructed network whose
weights are chosen in a specific way. In other words, the
constructed network is included in all networks of the same
architecture. Then the definition of a lower bound will follow
naturally.

III. EVALUATION OF THE LOWER BOUND

To find a lower bound for the capacity of the class
of networks, we first construct an network
whose binary weights are particularly chosen. We then find
the number of samples this network can store and classify
correctly with probability almost . This number is clearly a
lower bound on the capacity.

A. Construction of the Network

We assume that there are a set of randomly
assigned samples to two classes, where samples belong
to Class 1 and samples belong to Class 2 .
We then construct a network so that the set of samples can be
correctly classified with almost probability.

The network’s structure groups the hidden units into
pairs, and is shown in Fig. 1. The two weights between each
pair of hidden units and the output unit are chosen to beand

. The hidden units are allowed to have integer thresholds in
the range , where
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Fig. 1. Two-layer networks with binary weights and integer thresholds.

with being the standard deviation of the input samples and
. The reason why is so chosen will become

clear when we explain how the constructed network works.
The threshold for the output unit is zero.

The weights of the network are constructed using only
the samples belonging to Class 1. In particular, the first

samples are used to construct the weights of the
first pair of hidden units, the second samples are used
to obtain the weights for the second pair of hidden units, and
so on. The weights ’s connecting theth input with the th
pair of hidden units and are chosen
to be the same for both units, and can be represented as

(1)

where , if and , otherwise; and
. The quantity is the th element of the th sample

vector that has been assigned to the
th pair of hidden units. All the elements of sample vectors

are drawn independently from the same continuous density
function of zero mean and variance . is assumed
to have a compact support in, and is symmetric about but
bounded away from the origin. That is, only for

, where and are constants. Therefore,
are independent across alland ; and ’s are

independent across alland .
Each of the two hidden units in a pair has a different

threshold

(2)

where the subscripts and correspond to the two units in a
pair with weights and to the output unit. The thresholds

are the same for all hidden unit pairs. As will be seen later,
the quantity , is approximately the expected

Fig. 2. Two parallel hyperplanes formed by one pair of hidden units.+:
samples falling in between the hyperplanes which will have+2 total inputs
to the output unit.�: samples falling outside of the hyperplanes which will
have0 total inputs to the output unit. The arrows indicate the positive sides
of the hyperplanes.

value of the total input to a hidden unit, assuming the sample
fed to this unit is chosen from the group of samples assigned
to the same pair of hidden units. We will be able to prove
later that generating the difference of the thresholds to be a
fraction of this quantity will allow both units of this pair
to dichotomize correctly the samples assigned to it with high
probability.

Fig. 2 gives an intuitive explanation on how the constructed
network works given a specific set of samples. Each pair
of constructed hidden units can be viewed as two parallel
hyperplanes. The amount of separation between these two
hyperplanes is characterized by the difference between the
two thresholds and it depends on the parameter. One pair
of hidden units will contribute to the output unit of the
network for samples which fall in between the planes, since
they lie on the positive sides of both planes. Each of the
samples that has been stored in a particular pair will fall in
between the two planes with high probability if the separation
between the two planes is properly chosen. Specifically, the
separation should be large enough to capture most of the
stored samples, but not excessively large since this could allow
too many examples from Class 2 to be falsely identified and
therefore deteriorate the performance. When the capability of
the entire network is considered, the pair of hidden units will
have a response to any sample stored in this pair. Since
the outputs of all hidden unit pairs are dependent, the outputs
due to the rest of the hidden unit pairs can be considered
as noise. When the total of hidden unit pairs is not too
large, the noise is small, and the output of the network is
dominated by the output of the hidden unit pair where the
sample is stored. That is, each hidden unit pair can classify
the samples stored in this pair to one class, and samples
which are not stored in this pair to a different class with a
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high probability. How large should be can be characterized
through the condition that the probability for all samples
to be classified correctly should exceed . That is, if
is the total number of incorrectly classified stored samples by
the constructed network, an should result in a probability

, where is a polynomial in terms of
and . Meanwhile, such a constructed network should

also classify samples in Class 2 correctly with almost
probability assuming is no bigger than the total number
of samples in Class 1. This will happen if the total number
of hidden unit pairs is not too large compared to, since
the larger the , the more likely for a given sample in Class
2 to fall within a pair of parallel hyperplanes, and thus be
classified incorrectly.

In the following analysis, three steps are taken to obtain a
lower bound for the capacity. First, the probability , that
one sample stored in the network is classified incorrectly, is
estimated using normal approximations. Similar approxima-
tions are then used to estimate . Then
is shown to be approximately a Poisson distribution with a
parameter depending on . Conditions on the number of
samples stored in each hidden unit pairs, as well as on the total
number of hidden unit pairs are then obtained by ensuring
the errors due to approximations are small.

B. Probability of Error for a Single Sample

As the first step to obtain a lower bound, we compute
which is the probability of incorrect classification of a

single random sample stored. Let denote the output of
the network when the th sample stored in the th pair
is fed through the network. Without loss of generality, we can
let and . Since the labels for the stored samples
are all , an error occurs if . Then the probability
of error for classifying one stored sample can be expressed as

.
Let be the combined contribution due to theth pair

of hidden units to the output unit when is fed through
the network, i.e.,

(3)

Since , can only take two possible values:and
. That is, when

; otherwise, . For the case we consider,

and . Then , which belongs to Class 1, is
classified incorrectly by the network if for all the
hidden unit pairs . That is,

(4)

We observe that depends on

For a fixed

is a summation of independent and identically distributed
(i.i.d.) random variables. However, for different, ’s are
dependent. In the meantime, the numberof hidden unit pairs
can also change with respect to the input dimensionwhen

goes to infinity. This complicates the analysis. However,
using a theorem on normal approximation given in [9], it can
be shown in a lemma below that such a probability can
be bounded by a probability due to a normal distribution with
an additive error term.

Lemma 1: Let with , and
. Assume .1

(5)

where

The proofs of the lemma can be found in Appendix I.
It is observed that the quantity

is the normal approximation of the probability of misclassifi-
cation of a stored sample, whereas the additive term

is the error due to the normal approximation. This term will
go to zero at a rate polynomial in terms of and , as

and go to infinity.

1If 1

2
< � < 1, � would be replaced by1� �.
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C. Probability of Error for All Samples

In this section, we evaluate the probability that all training
samples are classified correctly.

Let

(6)

with

(7)

and

(8)

where is the indicator function, if Event A
occurs, and otherwise. Here is the output of the
network when the th sample in the set of samples assigned
to Class 2 is fed through the network, where .
Then and are random variables representing the number
of incorrectly classified samples in Class 1 and Class 2,
respectively. Likewise, is the total number of incorrectly
classified samples. To find a lower bound for the capacity
using the constructed network, we need to find anand a
condition on so that the probability . To
do so, we need to evaluate the probability . In the
lemma below, we will first show that

We will then estimate and separately.
Lemma 2: and are independent, i.e.,

(9)

Furthermore,

(10)

Moreover, for , we have

(11)

For , , and

(12)

The proof of this lemma is given in Appendix II. The quantity

is the normal approximation of the probability of .
The added term

is the error due to the normal approximation. This term will
go to zero at a rate polynomial in terms of and ,
when , are large but

with

It should be noted that the constraint, , is needed
in order for samples in Class 2 to be classified correctly.

Then it remains to find . This is complicated
by the fact that the terms in summation (7) are dependent
random variables. If the terms were independent, it would be
easy to find the corresponding probability. If the dependence
among these terms is weak, which is the case we have,
under a certain condition, the terms can be treated as being
almost independent. This restriction on the number of samples
can be obtained through a direct application of a theorem
by Stein [11]. Specifically, the theorem shows that under
certain conditions is approximately a Poisson
distribution.

Theorem 1: Let denote . Then can be
expressed as

(13)

Define

(14)

where is chosen arbitrarily from

and

if and
if and .

A single index is used to characterize the double indices
just for simplicity, where indicates the

th element in

for and . Then the following inequality
holds:

(15)

where is a Poisson distribution: , and
with given in (5).

The proof of the theorem is given in Appendix III. Roughly
speaking, this theorem indicates that the random variable
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has approximately a Poisson distribution if the bound in the
above inequality is small. If the random variables ’s were
independent, the bound would be on the order of [7].

, however, is an increasing function of as shown in (5).
Therefore, for a given and , to make the bound small,
cannot be excessively large. When the random variables are
weakly dependent, we have a similar situation. That is, an
can be found as a function of and , which can result in
a similar bound.

Theorem 2: When , we have

(16)

where , . For , and
, we have

(17)

where the constants .The proof is given in Appen-
dix IV.

Putting (11) and (16) into (9), we have when

for

and

(18)

where . Such an given in the above theorem
yields a lower bound for the capacity as stated in the corollary
below.

Corollary 1: If and for

and , a lower bound for the
capacity can be obtained as

(19)

where is the total number of weights of the
network.

It is easy to check that when the aforementioned conditions
hold

and

(20)

where . Then by combining (12), (17), and
(18), the result will follow by the definition of a lower bound.

Intuitively, this corollary indicates that when the number
of hidden unit pairs is not too large with respect to,

the number of samples stored in each hidden unit pair is
, which is on the order of the statistical capacity

[8] of a single neuron. In addition, the number of samples
each hidden unit pair can store is inversely proportional to
which characterizes the separation of two parallel hyperplanes
in the pair. The larger the, the larger the separation between
two hidden units in a pair, the more likely it is for a sample
in Class 2 to fall within two parallel hyperplanes and thus be
misclassified. Then the has to bes maller in order for all
the stored samples to be classified correctly.

The Monte Carlo simulations are done to compare with the
analytical results. Specifically, the probability is
estimated for different averaged over 20 runs as
given in Fig. 3.2 At each run, different numbers of
random samples are generated independently from a uniform
distribution bounded from zero and assigned randomly to two
classes. A two-layer network is then constructed as described
in Section III-A using the samples in Class 1. The samples
are then fed through the network one by one. A sample is
classified correctly by the network if its actual label assigned
by the network agrees with its true label. If all the samples
are classified correctly by the network, one “successful” run
is obtained. The experiment is repeated 20 times. The ratio of
the total number of successful runs by the total number of runs
gives an estimate for the probability of correct classifications
of each . Meanwhile, the probability due to Poisson
and normal approximations

is also plotted for comparison. An agreement between the
analytical results and the simulation is readily observed.

IV. EVALUATION OF AN UPPER BOUND

As given in the definition, an upper bound is the number of
samples whose arbitrary assignments are implemented by any
network in the class with a negligible probability. This will
happen when the total number of possible binary mappings
generated by the networks is no more than a
fraction of all possible dichotomies of the samples, where

and are two constants. The total number of
binary mappings the networks can possibly generate, however,
is no larger than with being a constant.
Then for a arbitrarily small, when the number of
samples equals to , the probability
for their arbitrary dichotomies to be implemented by an

network is no larger than .
Therefore, is an upper bound for
the capacity . This quantity is on the order of when
and are large. Then is obtained.

2Note that due to the limitation of computer memory,N could not be
chosen to be large enough forL to be small compared toN1=8.
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Fig. 3. Monte Carlo simulation for the probabilityPr (Y = 0). The solid curve corresponds to the probability obtained in (18). The vertical and horizontal
axes arePr (Y = 0) and(M1+M2)=LN , respectively. The crosses are Monte Carlo simulations forPr (Y = 0) averaged over 20 runs. In the simulations,
the samples are drawn from the uniform distribution in[�1; �0:5] and [0:5; 1]. N = 1000, L = 60, M1 = M2, � = 0:5

It should be noted that since such an upper bound is
obtained through counting the total number of binary map-
pings possible, it is independent of the distribution of the
samples.

V. CONCLUSION

In this work, we have shown that the capacity
is lower-bounded by at a certain

polynomial rate for , and for any fixed continuous
distribution of samples with a compact support and
bounded away from zero as and with

, where is the total number of weights.
We have also shown that as

and for all placements of samples points.
Combining both lower and upper bounds, we have

(21)

Compared with the capacity of two-layer networks with real
weights, the results here show that reducing the accuracy
of the weights to just two bits only leads to a loss of
capacity by at most a factor of . This gives strong
theoretical support to the notion that multilayer networks with
binary interconnections are capable of implementing complex
functions. The factor difference between the lower and
upper bounds for two-layer networks, however, may be due to
the limitations of the specific network we use to find a lower
bound. A tighter lower bound could perhaps be obtained if a
better construction method could be found.

APPENDIX I
PROOF OF LEMMA 1

Proof: The proof of the lemma consists of two parts.
In the first part, we describe a general theorem given by [9,

eq. (20.49)] for normal approximation.3 We will then use this
theorem to estimate in Part II.

Part I. Normal Approximation of Probability of A Sum-
mation of Random Vectors:One major result we will use
in this work is normal approximations of joint probabilities
of a summation of i.i.d. random vectors with (absolutely)
continuous density functions [9]. A similar result was used
for lattice distributions in [6].

Let be i.i.d. random vectors in with
a continuous density functions, zero mean, and a covariance
matrix . is a constant which does not vary with.4 Let

(22)

Let be a convex set in . Let be the probability
, and be the normal approximation of .

That is,

(23)

Assume ’s have a finite up to th absolute moment for some
, i.e., for and .

Then

(24)

where ’s are the signed measures5

3The main theorem we will be using is the corollary given by [9, eq.
(20.49)]. The corollary is based on [9, Theorem 20.1].

4For the two cases of our interests as will be shown later,k = 1; 2.
5given by [9, eq. (7.3)].
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(25)

The summation is over all -tuples of positive integers
satisfying , and is over all -

tuples of nonnegative integral vectors satisfying
for . is the th cumulant (or the

so-called semi-invariant) of the random vectors’s. As given
in [9, eq. (6.28)], for any nonnegative integral vector

(26)

where is a constant depending on only. Meanwhile,
for . Then we have

(27)

where is used without loss of generality. This inequality
will be used in Part II to estimate .

Part II. Estimating : To estimate , we first consider
the difference , where corresponds to the
error event for , and is a normal
approximation to . To obtain the expression for , we
first note that since inputs to different hidden unit pairs are
uncorrelated,

Each term in the product is the probability of a normal random
variable. For , it is easy to check than ,
and . Then

(28)

where . For

(29)

(30)

(31)

where is the compact support of. Equation (29) is obtained
due to the fact that for large

and

can be approximated by and
, respectively. Moreover, when

, which is true since has compact support,

through the Taylor expansion. Then (31) is obtained, i.e.,

(32)

Similarly, we can show that the variance of is

(33)

which is approximately for large. Then we have

and

Next, we observe that

(34)

where we assume is large enough so that the factor
is neglected. Let . Then

where , and . Since is a
summation of i.i.d. random variables, and the interval
is convex, using the normal approximation given in (27) for
the dimension of the random vector , and is chosen
to be , we can obtain

(35)

where
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Since is a bounded random variable,
. In addition, for any positive integer

(36)

where , and is assumed
to be larger than . Furthermore, it is noticed that the highest
order term6 in given in (25) is [9,
Lemma 7.1], and there are finite terms in the summations.7

Then for and

(37)

(38)

For and large

Then the terms due to the signed measures8 are of the
smaller order compared to . Therefore, by taking the
dominant terms in the bound in (35), we can obtain

(39)

where the logarithmic term in

is neglected, since it is of the smaller order. Putting (39) into
(34), we have

(40)

i.e.,

(41)

It should be noted that due to the use of inequality (34)
the resulting bound is not very tight. However, as will be
seen later, such an error estimate is good enough to obtain a
satisfactory lower bound for the capacity. Q.E.D.

6in the power ofD
7�i!’s are on the order ofO(1) as well.

8which are in the order ofO 1
p
N(NL)

APPENDIX II
PROOF OF LEMMA 2

The proof of the lemma also consists of two parts. In Part I,
we will prove (9) and (10) are true. In Part II, we will derive
(11) and (12).

Part I: First, we show that and are independent.
Consider the inputs to each of two units in the first hidden

unit pair when the samples in Class 1 and in Class
2 are fed through the network. Without loss of the generality,
we can choose . Then we have

(42)

and

(43)

where ’s are the elements of for . is
the total input to each of the two units in the first hidden
unit pair when a sample assigned to Class 2 is fed through
the network. Since the terms with different subscriptsare
independent, which is easy to check, we only need to show
the independence of the two terms with the same subscriptin
the above two summations. Let and .
Then for any

(44)

(45)

(46)

Here (45) is obtained from (44) due to the independence of
the samples; while (46) is derived from (45) since

is independent of and is symmetrically distributed,
i.e., . On the other hand,

(47)

(48)

Therefore,

i.e., and are independent.
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This approach can be extended to allvariables in sum-
mations (42) and (43) to show the mutual independence of
all terms. Then and are independent. Similarly, we
can show the independence for the other pairs of hidden units.
Therefore, and are independent. The
mutual independence of and for all

, , and can be shown using a
similar approach extended to multiple variables. Thenand

can be shown to be independent.
Similarly, we can show that ’s for

are also mutually independent. Then

(49)

Part II: We use normal approximation given in Part I of
Appendix I to obtain a bound for . Let be the
total output of the th hidden unit pair when is fed
through the network. Let . Since ’s are
uncorrelated, it is easy to obtain that the normal approximation

of as

(50)

Then for

(51)

where is the complement of . The last inequality is
obtained using the union bound. Furthermore,

using the normal approximation given in (27) and similar
derivations from (34) and (39), we have, for
and large

(52)

where the terms due to the signed measures are neglected,
since they are of the smaller order. Putting (52) into (51), we
can obtain

(53)

Therefore,

(54)

For , , and

(55)

where . Q.E.D.

APPENDIX III
PROOF OF THEOREM 1

This theorem is a direct application of a theorem by Stein
[11] which can be described as follows.

Theorem 3. Stein’s Original Theorem:Let

(56)

where ’s are Bernoulli random variables taking valuesand
, and . is the total number of random variables.

Let . Define

(57)

such that the distribution of is the same as the conditional
distribution of given . Then

(58)
where , and .

The proof of Stein’s theorem can be found in [11].
To apply Stein’s theorem to our case, we defineand

as given in (13) and (14), respectively. Then corresponds
to . and correspond to and , respectively. In
addition, since ’s are exchangeable random variables [3],
the distribution of is the same as the conditional distribution
of given for any by the definition of

. Then the result given by (58) applies to our case directly.
Q.E.D.

APPENDIX IV
PROOF OF THEOREM 2

There are two parts in the proof. In Part I, we will derive
a bound for the Poisson approximation. In Part II, we will
estimate the joint probabilities needed in the bound using
normal approximations.

Part I: We will start with a brief outline of the proof. Based
on Stein’s theorem, to show that the Poisson approximation
holds, it suffices to show that the bound given in (15) is
asymptotically small for large (but ) when
the number of stored samples at each pair grows at
certain rate in terms of and . To do that, we will first
obtain a new bound for (15) through Jensen’s inequality. Each
individual term in the new bound will be further bounded using
Schwartz’s inequality to simplify the derivations. Finally,
normal approximations will be used to estimate the joint
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probabilities in each term. The detailed proof is given as
follows.

Due to the fact that ’s and
are exchangeable random variables

for all

Then

(59)

where . By Jensen’s inequality,

If which will be the case we consider, to
show the Poisson approximation holds, we only need to find
conditions on so that is asymptotically
small for large and . , however, can
be expressed as

(60)

where

(61)

(62)

(63)

(64)

(65)

(66)

Due to the fact that ’s are exchangeable random variables,
the subindices in (62)–(66) are chosen without loss of general-
ity. To further simplify the derivations, Schwartz’s inequality
is used to obtain

(67)

where .
Then by taking the dominant terms for largeand , we

can obtain

(68)

(69)

(70)

(71)

(72)

Therefore, only two expectations and
need to be evaluated to estimate the bound.

(73)

where the identities have been used for the indicator variables:
and . Since

(74)

(75)

we have

(76)

Similarly, we have

(77)

Then to estimate the error bound for the Poisson approxima-
tion, we need to estimate the joint probabilities,

and .
Part II: To estimate these probabilities, we use the theorem

for the normal approximation given in Part I of Appendix I.
Let the joint error event , i.e.,

Let

Then using the similar inequality as that given in (34), we have

(78)

where is the normal approximation of
, and is the normal approximation of

. Let

and

where the mean and the variance are
given in (32) and (33), respectively. The event corresponds
to the random vector falling into the four convex
regions, ’s, for , where
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Then

(79)

Using the normal approximation for ’s and
taking , we have

(80)

where

is the covariance matrix of

(81)

and . , where

(82)

with being the probability density function of two
jointly normal random variables, i.e.,

(83)
To estimate , we note that can be
expanded as [6]

(84)

where

for

Then for and large, by putting (84) into
(82), we have

(85)

where is a smaller order term. In addition, it is easy to
check that all ’s for and are
uncorrelated, we have

(86)

To estimate the bound in the inequality given in (80), we use
similar derivations as given in Part II of Appendix I. Specifi-
cally, it is noted that the derivative in
(80) can be bounded (for large) through the inequality

(87)

Since the highest order term is of the order, and is chosen
to be , we have

(88)

Furthermore, since and are bounded,
for any finite . In addition, there are finite terms in the
summations given in (80). Then by taking the dominant term,
we have

(89)

(90)

For

and

Then the summation given in (89) is of smaller order compared
with . Therefore, taking the dominant terms, we have

(91)

Finally, using the triangle inequality, we can have

(92)

From (5), we can easily derive that

(93)

Combining (92) and (93) together, we have

(94)

Using similar derivations, we can obtain

(95)
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Furthermore,

Since the bound for dominates all bounds, when
with , and , we have

(96)

for , .9 Q.E.D.

ACKNOWLEDGMENT

This paper is dedicated to the memory of Prof. Ed Posner.
The authors wish to thank anonymous referees and the

associate editor for pointing out an error in the previous
manuscript and for their valuable comments.

9It can easily be shown thatLMPe1 = o(1) is also satisfied.
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