The storage density of shift-multiplexed holographic memory is calculated and compared with experimentally achieved densities by use of photorefractive and write-once materials. We consider holographic selectivity as well as the recording material's dynamic range (M/#) and required diffraction efficiencies in formulating the calculations of storage densities, thereby taking into account all major factors limiting the raw storage density achievable with shift-multiplexed holographic storage systems. We show that the M/# is the key factor in limiting storage densities rather than the recording material's thickness for organic materials in which the scatter is relatively high. A storage density of 100 bits/mum(2) is experimentally demonstrated by use of a 1-mm-thick LiNbO3 crystal as the recording medium. (C) 2001 Optical Society of America.