
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr M. Farhat, président du jury
Prof. M. Deville, Prof. D. Favrat, directeurs de thèse

Prof. F. Gallaire, rapporteur 
Prof. G. Mompean, rapporteur 
Prof. T. N. Phillips, rapporteur 

Simulation of Time-Dependent Viscoelastic Fluid Flows by 
Spectral Elements

THÈSE NO 4955 (2011)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 25 mars 2011

 À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'INGÉNIERIE NUMÉRIQUE
PROGRAMME DOCTORAL EN MÉCANIQUE 

Suisse
2011

PAR

Azadeh Jafari





To my parents  
ی ඼ی و  م ଘ ماభ و ৮در ସ୍م  عਚقد ෙय़ ৤ ৎ  





Abstract

The research work reported in this dissertation is aimed to develop efficient and

stable numerical schemes in order to obtain accurate numerical solution for viscoelas-

tic fluid flows within the spectral element context. The present research consists in the

transformation of a large class of differential constitutive models into an equation where

the main variable is the logarithm of the conformation tensor or a quantity related to

it in a simple way. Particular cases cover the Oldroyd-B fluid and the FENE-P model.

Applying matrix logarithm formulation in the framework of the spectral element method

is a new type of approach that according to our knowledge no one has implemented before.

The reformulation of the classical constitutive equation using a new variable namely the

logarithmic formulation, enforces the eigenvalues of the conformation tensor to remain pos-

itive for all steps of the simulation. However, satisfying the symmetric positive definiteness

of the conformation tensor during the simulation is the necessary condition for stability;

but definitely, it is not the sufficient condition to reach meaningful results. The main

effort of this research is devoted to introduce a new algorithm in order to overcome the

drawback of direct reformulating the classical constitutive equation to the logarithmic one.

To evaluate the capability of the extended matrix logarithm formulation, comprehen-

sive studies have been done based on the linear stability analysis to show the influence

of this method on the resulting eigenvalue spectra and explain its success to tackle high

Weissenberg numbers. With this new method one can treat high Weissenberg number

flows at values of practical interest.

One of the worst obstacle for numerical simulation of viscoelastic fluids is the presence

of spurious modes during the simulation. At high Weissenberg number, many schemes

suffer from instabilities and numerical convergence may not be attainable. This is often

attributed to the presence of solution singularities due to the geometry, the dominant

non-linear terms in the constitutive equations, or the change of type of the underlying

mixed-form differential system. Refining the mesh proved to be not very helpful. In this
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study, to understand more deeply the mechanism of instability generation a comprehensive

study about the growth of spurious modes with time evolution, mesh refinement, boundary

conditions and Weissenberg number or any other affected parameters has been performed.

Then to get rid of these spurious modes the filter based stabilization of spectral element

methods proposed by Boyd was applied with success.

Keywords: viscoelastic fluid flows, High Weissenberg number problem, Matrix loga-

rithm conformation tensor, spectral element method, filter based stabilization method,

linear stability analysis.



Résumé

Le travail de recherche décrit dans cette dissertation a pour but de développer des méthodes

numériques efficaces et stables afin d’obtenir des solutions précises des écoulements de flu-

ides viscoélastiques dans le cadre des éléments spectraux. Cette recherche consiste en la

transformation d’une grande classe de modèles constitutifs différentiels en une équation

dont la variable principale est le logarithme du tenseur de conformation ou d’une quantité

qui lui soit reliée de manière simple. Les cas particuliers couvrent les modèles d’Oldroyd-B

et FENE-P. L’application de la formulation du logarithme matriciel dans le cadre de la

méthode des éléments spectraux est une nouvelle approche qui à notre connaissance n’a

pas été implantée auparavant.

La reformulation de l’équation de comportement classique au moyen d’une nouvelle variable,c.-

à-d. la formulation logarithmique, exige que les valeurs propres du tenseur de conforma-

tion demeurent positives pendant toute la simulation. Cependant, satisfaire la propriété

de symétrie définie positive du tenseur de conformation durant la simulation est une con-

dition nécessaire pour la stabilité; mais elle n’est de loin pas la condition suffisante pour

atteindre des résultats significatifs. L’effort principal de cette recherche est consacré à

l’introduction d’un nouvel algorithme afin de surmonter l’inconvénient de la réécriture de

l’équation constitutive classique en la formulation logarithmique.

Afin d’évaluer la capacité de la formulation du logarithme matriciel étendu, des études

très complètes ont été réalisées sur la base de l’analyse de la stabilité linaire pour mon-

trer l’influence de cette méthode sur les spectres de valeurs propres qui en résultent et

pour expliquer son succès à traiter des nombres de Weissenberg élevés. Avec cette nou-

velle méthode, on peut traiter des écoulements à hauts nombres de Weissenberg pour des

valeurs d’intérêt pratique.

Un obstacle majeur dans la simulation numérique des fluides visco-élastiques provient

de la présence de modes parasites durant la simulation. A nombre de Weissenberg élevé,

beaucoup de schémas souffrent d’instabilités et la convergence numérique n’est pas at-
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teinte. Cette déficience est souvent attribuée à la présence dans la solution de singularités

dues à la géométrie, aux termes non linéaires dominants dans l’équation de comportement,

ou encore le changement de type du système différentiel mixte sous-jacent. Le raffinement

de maillage ne permet pas de surmonter cette difficulté. Dans cette étude, afin de com-

prendre plus profondément le mécanisme de génération de l’instabilité, une étude complète

de la croissance des modes parasites avec l’évolution temporelle, le raffinement de mail-

lage, les conditions aux limites, le nombre de Weissenberg ou de tout autre paramètre

impliqué a été entreprise. Afin de se débarasser de ces modes parasites, une stabilisation

de la méthode des éléments spectraux par un filtre proposé par Boyd a été appliquée avec

succès.

Mots-clés: écoulements de fluides viscoélastiques, problème du nombre de Weissenberg

élevé, tenseur de conformation en formulation matricielle logarithmique, éléments spec-

traux, stabilisation par filtrage, analyse de stabilité linéaire.
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Chapter 1

Introduction

The challenge for computational rheologists is to develop efficient and stable numerical

schemes in order to obtain accurate numerical solutions for the governing equations at

values of practical interest of the Weissenberg number, We, i.e. within the range [0-150].

The Weissenberg number is the ratio of the material relaxation time of viscoelastic fluids

to the inertial time of the flow.

In the past three decades, considerable efforts have been devoted to the development

of robust and stable numerical methods for simulating non-trivial flows of complex flu-

ids. Without any exception, the standard viscoelastic models like Oldroyd-B, Maxwell,

Phan-Thien-Tanner, FENE-P, etc. have failed in the simulation of high Weissenberg num-

ber flows in any available numerical techniques such as: finite differences, finite volumes,

finite elements, spectral elements, etc. Nowadays one has come to the conclusion that

selection of an appropriate constitutive equation constitutes a very crucial step to simu-

late viscoelastic fluid flows, although implementing a suitable numerical technique is still

important for successful discrete modelling of non-Newtonian flows [129].

The present dissertation is devoted to a new type of approach published in the recent past

[69, 70, 102, 51, 120] within the framework of spectral element method [60]. It consists

in the transformation of a large class of differential constitutive models into an equation

where the main variable is the logarithm of the conformation tensor or a quantity related

to it in a simple way. Particular cases cover the Oldroyd-B fluid and the FENE-P model.

Applying matrix logarithm formulation in the framework of spectral element method is a

new type of approach that according to our knowledge no one has implemented before.

Therefore, on the one hand, this dissertation is devoted to this new type of approach,

transforming differential constitutive models into an equation where the main variable is

the logarithm of the conformation tensor. The research may have important consequences

1



2 Chapter 1. introduction

for the simulation of fluid behavior in modern industrial processes like plastics, polymers,

paints, foods, oils, etc., in blood flow simulation and many other situations where complex

fluids are present. The C++ toolbox SPECULOOS [66] has been used and adapted to

handle this simulation and analysis.

1.1 The state-of-the-art of numerical simulation for viscoelas-

tic flows

Let us bias this state-of-the-art review toward high order methods. Finite element and

finite volume methods are extensively described and covered in the monograph of Owens

and Phillips [173]. The leading practioners of spectral element methods for viscoelastic

fluids are quite identified: Mark Gerritsma, George Karniadakis, Vincent Legat, Robert

Owens, Tim Phillips, and their co-author(s). A non exhaustive list of references is given in

the bibliography [100, 41, 136, 170, 218, 219, 221, 220, 227, 226]. Most of these numericists

have faced the same problem, i.e. the loss of convergence of the numerical simulations for

high We number values. However, there has been indeed an obvious trend of building up

more robust and more efficient algorithms and solvers over the last five years. One can

expect that, with a reasonable choice of a proper rheological constitutive equation, the

solution of all other particular problems is a subject of computational art. However, this

conclusion is invalid because, in this case, two principal problems arise, and these problems

are beyond the scope of the continuum dynamics but are directly related to rheology: the

problem of stability and the problem of boundary conditions [143]. As was shown in

[122], the solutions to various forms of numerous rheological constitutive equations appear

to be mathematically unstable; therefore, the use of numerical methods does not always

yield reliable results. This formal but crucial aspect of the choice and formulation of the

rheological constitutive equation requires strict limitations on possible various approaches

to solving applied problems. As far as stability analysis is concerned, most of the published

studies deal with physical instabilities observed experimentally e.g. [148, 195, 124, 149] or

intrinsic instabilities of a given constitutive equation at the continuous level [186, 190, 198,

215, 236]. In this project, we would rather concentrate our research efforts towards the

nature of the mathematical models and the associated sources of instabilities generated

by those models [74, 73]. Understanding the origin of the spurious instabilities related to

the numerical method and of intrinsic instabilities of constitutive models is a necessary
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step before being able to simulate steady viscoelastic flows at high Weissenberg numbers

and unsteady flows where physical instabilities observed experimentally would occur.

1.2 The state-of-the-art of the matrix logarithmic confor-

mation tensor

Since the high Weissenberg number problem (HWNP) is due to the inadequacy of poly-

nomial interpolation in finite difference, finite volume, finite element, etc. to approximate

exponential profiles, two possible remedies come to mind: either to use an exponential

basis function for the stress variables, or to make a change of variables into new variables

that scale logarithmically with the stress. In either case, this requires the stress field, to

remain strictly positive, which can not be guaranteed. A physical quantity, directly re-

lated to the stress that preserves positivity is the conformation tensor which is symmetric

positive definite (SPD) by definition. As such the conformation tensor has a well defined

matrix logarithm.

In this context, Fattal and Kupferman [69] suggested to resort to a variable transfor-

mation in such a way that the new variable is the matrix logarithm of the conformation

tensor. This transformation removes part of the stiffness associated with the hyperbolic

nature of the constitutive equations. Fattal and Kupferman [70] tackled the lid-driven cav-

ity with a MAC type algorithm. The reported computations were obtained till We = 5.

They claim they have elucidated the high Weissenberg instability. Nonetheless, in the

conclusions of their paper, they write ”this change of variables does not guarantee that

accurate computations can be performed at arbitrarily high We”.

In [102], Hulsen, Fattal and Kupferman have implemented a finite element method (FEM)

with the DEV SS/DG formulation. The viscoelastic flow past a cylinder is investigated

with the log-conformation approach for the Oldroyd-B and Giesekus models. They reach

the value of We = 100 for the Giesekus case while for the Oldroyd-B fluid, the compu-

tations do not show converged results for the stress in the wake beyond We = O(1). In

their conclusions, the use of high order methods to obtain convergence in localized regions

is evoked.
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Similarly, Kwon [120] and Coronado et al. [51] have used successfully the log-conformation

formulation in slightly different forms to simulate efficiently the flow of viscoelastic fluids.

Within the same type of approach, Vaithianathan et al. [213, 214] have suggested the use

of different change of variables in the constitutive equation to enforce boundedness of the

trace of the conformation tensor and remove numerical instabilities occurring during the

simulations of viscoelastic fluids with a finite difference method.

1.3 Physical phenomena in viscoelastic fluids

Some phenomena in viscoelastic materials are: (i) if the stress is held constant, the strain

increases with time (creep); (ii) if the strain is held constant, the stress decreases with

time (relaxation); (iii) the effective stiffness depends on the rate of application of the load;

(iv) if cyclic loading is applied, hysteresis (a phase lag) occurs, leading to a dissipation of

mechanical energy; (v) acoustic waves experience attenuation; (vi) rebound of an object

following an impact is less than 100%; (vii) during rolling, frictional resistance occurs

[151]. In this section principal viscoelastic features of fluids of interest are presented.

Fuller description of non-Newtonian phenomena are given by Bird et al. [26, 29] and Bird

and Wiest [25] and Tanner [207, 206]. We select here the items of greatest concern for the

understanding of visco-elastic effects.

1.3.1 Viscoelasticity

Viscoelasticity is the property of materials that exhibit both viscous and elastic character-

istics when undergoing deformation. Viscous materials, like honey, resist shear flow and

strain linearly with time when a stress is applied. Elastic materials strain instantaneously

when stretched and just as quickly return to their original state once the stress is removed.

Viscoelastic materials have elements of both of these properties and, as such, exhibit time

dependent strain. Whereas elasticity is usually the result of bond stretching along crys-

tallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or

molecules inside an amorphous material [152, 151].

All materials exhibit some viscoelastic response. In common metals such as steel or alu-

minum, as well as in quartz, at room temperature and at small strain, the behavior does
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not deviate much from linear elasticity. Synthetic polymers, wood, and human tissue as

well as metals at high temperature display significant viscoelastic effects. In some applica-

tions, even a small viscoelastic response can be significant. To be complete, an analysis or

design involving such materials must incorporate their viscoelastic behavior. Knowledge

of the viscoelastic response of a material is based on measurement. Some examples of vis-

coelastic materials include amorphous polymers, semicrystalline polymers, biopolymers,

metals at very high temperatures, and bitumen materials.

Unlike purely elastic substances, a viscoelastic substance has an elastic component and a

viscous component. The viscosity of a viscoelastic substance gives the substance a strain

rate dependent on time. Purely elastic materials do not dissipate energy (heat) when a

load is applied, then removed. However, a viscoelastic substance loses energy when a load

is applied, then removed. Hysteresis is observed in the stress-strain curve, with the area

of the loop being equal to the energy lost during the loading cycle. Since viscosity is the

resistance to thermally activated plastic deformation, a viscous material will lose energy

through a loading cycle. Plastic deformation results in lost energy, which is uncharacter-

istic of a purely elastic material’s reaction to a loading cycle. Specifically, viscoelasticity

is a molecular rearrangement. When a stress is applied to a viscoelastic material such as

a polymer, parts of the long polymer chain change position. This movement or rearrange-

ment is called creep. Polymers remain a solid material even when these parts of their

chains are rearranging in order to accompany the stress, and as this occurs, it creates a

back stress in the material. When the back stress is the same magnitude as the applied

stress, the material no longer creeps. When the original stress is taken away, the accu-

mulated back stresses will cause the polymer to return to its original form. The material

creeps, which gives the prefix visco-, and the material fully recovers, which gives the suffix

-elasticity.

1.3.2 Shear rheology of non-Newtonian fluids

Probably the single most important characteristic of polymeric liquids is the fact that they

have ”shear-rate dependent” or ”non-Newtonian” viscosity. In a non-Newtonian fluid, the

relation between the shear stress and the strain rate is non-linear, and can even be time-

dependent. Therefore a constant coefficient of viscosity cannot be defined. Depending

on the change of strain rate versus stress inside a material (Fig. 1.1)the viscosity can be
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Fig. 1.1: Different types of responses (stress) to a change in strain rate γ̇

categorized as having a linear, non-linear, or plastic response. When a material exhibits

a linear response it is categorized as a Newtonian material [1]. In this case the stress

is linearly proportional to the strain rate. If the material exhibits a non-linear response

to the strain rate, it is categorized as Non-Newtonian fluid. There is also an interesting

case where the viscosity decreases as the shear/strain rate remains constant. A material

which exhibits this type of behavior is known as thixotropic [151]. In addition, when the

stress is independent of this strain rate, the material exhibits plastic deformation [151].

Many viscoelastic materials exhibit rubber like behavior explained by the thermodynamic

theory of polymer elasticity. In reality all materials deviate from Hooke’s law in various

ways, for example by exhibiting viscous-like as well as elastic characteristics. Viscoelastic

materials are those for which the relationship between stress and strain depends on time.

In steady simple shear, having a velocity vector u = (γ̇y, 0, 0), it may be shown that

any incompressible simple fluid will have a stress tensor with, in general, four nonzero

components:








σ22 + N1 σ12 0

σ12 σ22 0

0 0 σ22 − N2









(1.1)

As a result of the incompressibility, the stress is undetermined to within addition of an

isotropic pressure term. For a Newtonian fluid, N1 = N2 = 0 and σ12/γ̇ = µ. In a

viscoelastic fluid, however, these three quantities may vary with γ̇.
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Other important characteristics of viscoelastic fluids are normal stress effects, secondary

flows, elastic effects such as extrudate or die swell, tubeless siphon, contraction flow, elas-

tic recoil, cavity flows. Many other examples with comprehensive explanations could be

found in Ref. [26, 29, 25]

1.4 Organization of the dissertation

1.4.1 Description

The present dissertation is organized into eight different chapters including the present

introduction which is the first chapter.

Chapter 2 reports a brief overview of the constitutive models for viscoelastic fluids in-

cluding differential and integral constitutive models and justify the reason for selecting

FENE family model for this project.

Chapter 3 is devoted to high-order numerical methods. Finite element, finite difference

and finite volume methods are extensively described and covered in the monograph of

Owens and Phillips [173]. Necessary details associated with the Legendre spectral element

method are recalled.

Chapter 4 comprises three different sections. The first part corresponds to the classi-

cal matrix logarithm formulation (CMLF). In this part, we show that although the use of

log conformation tensor can be helpful to preserve symmetric positive definiteness of the

conformation tensor, it is also mandatory for FENE family to satisfy the boundness of the

conformation tensor. Thus, we show that applying classical matrix logarithm formulation

for the FENE family is not enough to enforce stability. The second part of this discussion

deals with a new extension matrix logarithm formulation (EMLF) algorithm developed by

us in order to remove instabilities in computational viscoelastic flows. This work has been

reported in a published paper [104]. In the last part of this chapter a possible mathemat-

ical formulation that enforces stability as much as possible is discussed. This formulation

is an enhanced format of hyperbolic tangent of the conformation tensor.
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Chapter 5 is devoted to apply this new extended matrix logarithm formulation for com-

plex geometries such as: 4:1 contraction and contraction-expansion flow. This work is

submitted to the journal of non-Newtonian fluid mechanics in November 2010.

Chapter 6 deals with the concept of linear instability analysis to determine the sensi-

tivity of the flow to the infinitesimal perturbations. The result of which are submitted to

the Computers and Fluids in August 2010.

Chapter 7 focuses on applying filter-based stabilization method originally proposed by

Boyd [32]. It also presents a novel methodology to implement the so-called mesh transfer

technique.

Finally chapter 8 summarizes the conclusions of the different aspects of the work reported

in the dissertation. Outlook and perspectives are finally proposed.



Chapter 2

Constitutive models for viscoelastic flows

The usefulness of a constitutive equation lies in its ability to predict viscoelastic flows ac-

curately in a wide range of deformation histories for as many polymer systems with as few

adjustable parameters as possible. To simulate viscoelastic flows processing realistically,

this equation must be able to describe material behavior from the linear to the nonlinear

regime. Further, since the nonlinear behavior of melts in shear and in the extensional

deformations-uniaxial, biaxial and planar, can strongly differ from each other, it is partic-

ularly important that the constitutive equation be capable of simultaneous description of

these types of deformations.

2.1 Introduction

In order to simulate the flow of incompressible viscous Newtonian fluids, the Navier-Stokes

equations are solved. More information is needed to deal with the flows of non-Newtonian

fluids for which the expression for the extra-stress tensor cannot be reduced to a simple

linear relationship with the rate-of-deformation tensor. Constitutive models consist of

a set of hypotheses and simplifications about the sources of stress like the molecular or

structural forces and motions. Constitutive equations are the mathematical expression of

the theoretical models.

A fluid dynamicist analyzing the flow of a non-Newtonian fluid is faced with a formidable

task. Before the numerical analysis can begin, a constitutive equation must be selected to

describe the properties of the fluid. Constitutive equations fall into two general categories:

(i) integral constitutive equations and (ii) differential constitutive equations. Integral con-

stitutive equations involve time integrals over the kinematic history of fluid elements, and

they have the associated disadvantage that their use requires tracking the trajectories of

those fluid elements. Nonetheless, they are capable of describing many material proper-

9



10 Chapter 2. constitutive models for viscoelastic flows

ties. Differential constitutive equations do not, in general, require the tracking of fluid

elements, so that they are easier to solve numerically. However, many modes of a differen-

tial constitutive equation are usually required to describe material properties accurately

(i.e., the stress is given as a sum of tensors, each of which is governed by a replicate of

the differential constitutive equation with different values for the parameters, and each

replicate is called a ”mode” [233, 147]). This compounds the difficulty of the numerical

analysis of a flow by dramatically increasing the number of unknowns.

Like Newtonian fluids, the flow of complex fluids is governed by the conservation of mass

and momentum equations. The momentum equation is modified with respect to the New-

tonian case in order to account for the additional contribution due to the non-Newtonian

stress tensor. The Cauchy stress is split in a Newtonian and a polymeric part. The Cauchy

stress tensor is given by the following equation:

σ = τ − pI + 2RµD (2.1)

The symbols σ, I and D are respectively the Cauchy stress, identity and rate of defor-

mation tensors. τ is the non-Newtonian stress and −pI + 2RµD is the Newtonian stress.

The rate of deformation tensor is defined by:

D =
1

2
(∇u + (∇u)T ) (2.2)

u is the velocity field with the superscript T indicating the transpose. The parameters Rµ

is the ratio of Newtonian solvent viscosity, µN , to the total viscosity, Rµ = µN/µt, where

µt = µN + µp. The symbol µp represents the polymeric viscosity.

2.2 Differential constitutive models

Ideally, one wants a simple differential constitutive equation that can describe a large

number of material properties with a small number of modes. If that constitutive equation

can be derived from some type of molecular theory, then the situation is even better

because it may be possible to assign some physical significance to the parameters that

appear in the equation. In this section the most commonly used differential constitutive

equations, namely, the dumbbell models are presented.
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2.2.1 Dumbbell models

The most simple kinetic theory model for a dilute solution of linear flexible polymers

consists of a Hookean dumbbell, that is two beads connected by a Hookean spring, (Fig.

2.1) suspended in an incompressible Newtonian fluid [26]. The beads represent molecular

segments of several monomers and the spring describe the entropic effects to which the

end-to-end vector, R, of the polymer is subject. The linear (Hookean) spring force is real-

istic only for small deformations from the equilibrium (Gaussian distribution) and puts no

limit to the extent to which the dumbbell can be stretched. An approach which corrects

this unphysical behaviour and seems to play an important role in non-linear rheological

phenomena is the idea of finite extensibility [26]. Dumbbell models with finitely extensible

non-linear elastic (FENE) spring forces are now widely used in numerical flow calculations,

both in the classical approach via a closed constitutive equation, and in a new approach in

which the polymeric stress tensor is computed via Brownian dynamics (BD) simulations

[126, 25].

Dumbbell models are very crude representations of polymer molecules. Too crude to

be of much interest to a polymer chemist, since it, in no way, accounts for the details of

the molecular architecture. It certainly does not have enough internal degrees of freedom

to describe the very rapid motions that contribute, for example, to the complex viscosity

at high frequencies. On the other hand, the elastic dumbbell is orientable and stretchable,

and these two properties are essential for the qualitative description of steady-state rheo-

logical properties and those involving slow changes with time. For dumbbell models one

can go through the entire program of endeavor from molecular model to fluid dynamics for

illustrative purposes, in order to point the way towards the task that has ultimately to be

performed for more realistic models. Dumbbell models must, to some extent then, be re-

garded as mechanical playthings, somewhat disconnected from the real world of polymers.

When used intelligently, however, they can be useful pedagocically and very helpful in

developing a qualitative understanding of rheological phenomena [119]. Dumbbell models,

on the other hand, are relatively straightforward for application to the numerical solution

of flow problems, and have the virtue of being the simplest molecularly inspired model that

retains the generic viscoelastic features of flow-induced anisotropy through re-orientation

and stretch, coupled with a diffusion-based relaxation to an isotropic equilibrium state

[160].
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Fig. 2.1: The polymers are modelled by dumbbells connected by spring

2.2.2 Linear elastic dumbbell models

In this section two practical linear elastic dumbbell models, Oldroyd-B and Upper Con-

vected Maxwell model will be introduced. Even though these two models can predict

qualitatively some features of a class of dilute polymer solution called Boger fluids carac-

terized by an almost constant shear viscosity, they present drawback such as the prediction

of an infinite value of the elongational viscosity at a finite value of the extension rate. An-

other shortcoming in describing correctly the behavior of more general dilute solutions

is the inability to produce shear thinnning effects. Several mechanisms not embedded in

the linear dumbbell model are responsible for shear thinning: finite extensibility, hydro-

dynamic interaction, configuration dependent friction coefficient, excluded volume effects

and internal viscosity.

2.2.2.1 Oldroyd-B model

The simplest constitutive equations suitable for modeling the behavior of dilute polymeric

solution under general flow conditions are those of the Oldroyd type. In particular, the

Oldroyd-B model, derived by Oldroyd [163] in 1950, is an empirical expression generalizing

the linear viscoelastic equation by writting the stress/strain relation in tensorial form and

satisfying certain admissibility criteria [163, 162, 55, 25, 26]. The Oldroyd-B model is

also derivable from a molecular model consisting of a suspension of Hooken dumbbells

in a Newtonian solvent, and this is the approach we choose to present the model in

this section. The Oldroyd-B model [163] may be derived by considering a suspension of



2.2. differential constitutive models 13

Hookean dumbbells, in which the spring force F is directly proportional to the extension

of the spring:

F = GR (2.3)

The beads, which define the dumbbell ends, move under the action of: a Stokes drag

from the solvent, Brownian motion and the spring force. Because of the stochastic nature

of Brownian motion, the macroscopic properties of the fluid are derived from ensemble

averages (denoted by < · · · >). The polymeric stress is given by:

τ p =< RF >= G < RR >≡ GC (2.4)

where C is called the conformation tensor. Instead of solving an equation for extra stress

tensor we solve for the conformation tensor and afterwards from the value of which we

obtain the viscoelastic stress. Its evolution is governed by the equation:

C + λ
∇
C = I (2.5)

with a relaxation time defined as λ = ζ/G, where ζ is the drag coefficient (6πµNa) acting

on an isolated bead, the diameter of bead is 2a (see Fig. 2.1). The cases λ = 0 (C = I)

and G = 0 (τ p = 0) correspond to a Newtonian fluid, and the case ηs = 0 (λ = 0) is the

Upper-Convected Maxwell model (section 2.2.2.2). The time derivative in Eq. (2.5) is the

upper-convected derivative, defined as:

∇
C =

∂

∂t
C + u · ∇C −∇u·C − C · (∇u)T (2.6)

It is the failure of the molecules to deform with fluid elements that generates elastic stress

in the fluid. The Oldroyd-B model is, in shear flows, a quantitatively good model for

Boger fluids. Nevertheless, its simplicity means that in general it cannot capture the full

nature of a polymeric fluid. For example, it has only one relaxation time (whereas real

fluids have a relaxation spectrum), and does not contain shear-thinning effects. More

seriously, in extensional flows it can produce an unbounded extensional viscosity because

of the linear spring behaviour of the dumbbells. In a real fluid, the molecules become fully

extended and the viscosity saturates.
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2.2.2.2 Upper-Convected Maxwell model

The Upper-Convected Maxwell fluid (UCM) [168, 125, 26] is the high-concentration limit

of an Oldroyd-B fluid. As such, it is used as a model for polymer melts. It is given by:

τ = −pI + τ p (2.7)

τ p + λ
∇

τ p = I (2.8)

The relation between τ p and C is given by Eq. (2.4). It has all the disadvantages of the

Oldroyd-B fluid: unbounded extensional viscosity, single relaxation time, zero N2 (Eq.

(1.1)) and constant shear viscosity. However, because it has one less parameter, it is

mathematically even more simpler than the Oldroyd-B fluid.

2.2.2.3 Other modification of the Oldroyd-B model

Several other modifications of the Oldroyd-B model have been proposed. We add an

extra term to (Eq. 2.5) to produce any or all of shear-thinning, or a bounded extensional

viscosity. The Oldroyd-B model may be expressed as:

τ p + λ
∇

τ p = 2(1 − Rµ)D (2.9)

Without violating any of fluid assumptions we may add an extra term:

τ p + λ
∇

τ p + f(τ p,D) = 2(1 − Rµ)D (2.10)

Some of the popular choices for f are:

Johnson-Segalman [106, 114]

f(τ p,D) = αλ(D.τ p + τ p · D) (2.11)

α is a adjustable parameter. When α is set to zero the Johnson-Segalman model reverts

to the upper-Convected Maxwell model (UCM). As α increases, stresses decrease from the

UCM predictions. We define that strain softening occurs whenever stress levels fall below

the UCM predicted values.
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Phan-Thien Tanner [178, 153]

Phan-Thien Tanner (PTT) model is derived from the evolution equation of the configu-

ration distribution function. The stress tensor is related to the second moment of this

function. For the PTT model the destruction probability depends on the instantaneous

stress. This leads to the following equation:

f(τ p,D) = ξλ(D.τ p + τ p · D) + [ǫ(tr(τ p)) − 1]τ p (2.12)

where ξ and ǫ are adjustable parameters for Phan-Thien Tanner model.

Giesekus [87, 86]

Giesekus has introduced a slight modification to the Oldroyd-B equation by adding a

quadratic term in stress in order to allow for the extensional viscosity to grow with the

extension rate while remaining finite. This is a generalisation of the UCM fluid (using an

anisotropic drag force), so we set ηs = 0 and use:

f(τ p,D) = αλτ p · τ p (2.13)

where 0 ≤ α ≤ 1 The detailed expressions are given in [125].

2.2.3 Nonlinear elastic dumbbell model

For strong deformations of the macromolecule the pure Hookean law of Eq. (2.3) for

the internal force is no longer valid. In order to introduce a finite extensibility of the

dumbbell the FENE (finitely extendable nonlinear elastic) model [26] has been developed.

The problem of infinite extensional viscosity for finite extension rate in the Oldroyd-B

fluid is caused by unbounded extension of the dumbbells. Thus, a sensible modification of

the model is to use a nonlinear force law and limit the maximum extension of the springs.

The original empirical FENE spring force is given by:

F =
H

1 − R2

b2

R (2.14)

and was first proposed for dumbbells by Warner [228]. In Eq. (2.14) H is the spring

constant, R is the three-dimensional connector vector of the beads, R2 = R · R and b is

the maximum possible spring length. It exhibits, for small extensions the expected linear
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behaviour and a finite length b in the limit of an infinite force. The price to pay for the

non-linearity of the spring force is that no closed constitutive equation for the polymeric

stress tensor exists and no simple analytical solutions are possible [26]. Because of the

nonlinearity in F, a closed evolution equation for < RR > (and hence for the stresses) is

not available; a closure approximation is needed.

2.2.3.1 FENE-P model

If the average length of all dumbbells is taken to define R, the force law f(R) is replaced

by f(< R >), giving a pre-averaging approximation:

F = HRf(< R >) (2.15)

which leads (Peterlin [177]) to the FENE-P model:

τ p =< RF >= H < RR > f(< R >) (2.16)

and therefore:

τ = −pI + 2ηsD + Hf(R)C (2.17)

C +
λ

f(R)

∇
C =

λ

f(R)
I (2.18)

where, in this case:

R2 = tr(C) (2.19)

f(R) =
1

1 − R2

b2

(2.20)

The FENE-P model improves the behaviour of the model in extension, and gives a shear-

thinning viscosity. It is therefore worse at describing shear flows of Boger fluids.

2.2.3.2 FENE-CR

In this model, the extension behaviour remains of FENE type, but the evolution of the

quantity C is altered from the FENE-P equation 2.18 to give a constant shear viscosity.

It becomes (Chilcott and Rallison[46]):

C +
λ

f(R)

∇
C = I (2.21)

where f(R) is given by Eq. (2.20).
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2.2.4 Retarded motion expansions

If the motion is weak and slow enough (or, correspondingly, the longest relaxation time is

relatively short), any simple fluid may be expanded as a perturbation to the Newtonian

limit (Rivlin and Ericksen [187]). The dimensionless parameter for viscoelastic fluids is the

Weissenberg number, which is the ratio of the material relaxation time, λ, of viscoelastic

fluids to the inertial time, L/U ,

We =
λU

L
(2.22)

If these characteristic times are both small, then the retarded motion expansion will be

valid, and the form of the result is independent of the specific constitutive equation used.

These equations are known as nth-order fluids according to how many powers of the small

quantity are retained. In particular, the second-order fluid is given in Section 2.2.5.4.

2.2.5 Generalized Newtonian and quasi-Newtonian models

Two very important features of polymer solutions are that the steady shear viscosity

decreases with increasing shear rate, shear-thinning, and that the elongational viscosity

grows with the strain rate, shear-thickening, A Generalized Newtonian fluid is an idealized

fluid for which the shear stress, τ , is a function of shear rate, γ̇, at the particular time,

but not dependent upon the history of deformation

τ = f(γ̇) (2.23)

The class of Generalized Newtonian fluids to be considered is characterized by the consti-

tutive relarion:

η = η(γ̇) (2.24)

and the requirement that the viscosity, η, and the derivative of η(γ̇) are uniformly bounded

from above and below [48]:

0 < m0 ≤ η(γ̇) ≤ M0 < ∞ (2.25)

0 < m1 ≤ (η(γ̇)
′

γ̇) ≤ M1 < ∞ (2.26)

Typically, the viscosity is also a decreasing function. Generelized Newtonian fluids do not

exhibit memory-effects. So this type of fluids are not viscoelastic. The most commonly

used types of Generalized Newtonian fluids are:
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2.2.5.1 Carreau-Yasuda

Carreau-Yasuda [26] fluid is a type of Generalized Newtonian fluid where the viscosity, η,

depends upon the shear rate, γ̇, by the following equation:

η − η∞
η0 − η∞

= [1 + (λγ̇)a]
n−1

n (2.27)

where λ is a time constant and n the power law exponent. The parameter a is dimensionless

and describes the transition between the constant viscosity region and the shear thinning

one. This model describes pseudoplastic flow with asymptotic viscosities at zero (η0) and

infinite η∞ shear rates, and with no yield stress. The case n = 1 corresponds to the

Newtonian fluid.

2.2.5.2 Power Law

A Power law [26, 97] fluid is a type of Generalized Newtonian fluid for which the viscosity

is given by:

η = mγ̇n−1 (2.28)

where m and n are two parameters. This mathematical relationship is useful because of

its simplicity, but only approximately describes the behaviour of a real non-Newtonian

fluid. For example, if n were less than one, the power law predicts that the effective vis-

cosity would decrease with increasing shear rate indefinitely, requiring a fluid with infinite

viscosity at rest and zero viscosity as the shear rate approaches infinity, but a real fluid

has both a minimum and a maximum effective viscosity that depend on the chemistry at

the molecular level. Therefore, the power law is only a good description of fluid behaviour

across the range of shear rates to which the coefficients were fitted. Power-law fluids can

be subdivided into three different types of fluids based on the value of their flow behaviour

index:

If n < 1, the fluid is shear-thinning or pseudo-plastic. If n = 1 and m = µ, the fluid is

Newtonian. If n > 1 the fluid is shear-thickening or dilatant.

Pseudoplastic, or shear-thinning fluids have a lower apparent viscosity at higher shear

rates, and are usually solutions of large, polymeric molecules in a solvent with smaller

molecules. It is generally supposed that the large molecular chains tumble at random and

affect large volumes of fluid under low shear, but that they gradually align themselves in



2.2. differential constitutive models 19

the direction of increasing shear and produce less resistance. A common household ex-

ample of a strongly shear-thinning fluid is styling gel, which primarily composed of water

and a fixative such as a vinyl acetate/vinylpyrrolidone copolymer (PVP/PA).

A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear

stress is directly proportional to the shear rate:

τ = µγ̇ (2.29)

These fluids have a constant viscosity, µ, across all shear rates and include many of the

most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine,

air and other gases.

Dilatant, or shear-thickening fluids increase in apparent viscosity at higher shear rates.

They are rarely encountered, but one common example is an uncooked paste of cornstarch

and water. Under high shear the water is squeezed out from between the starch molecules,

which are able to interact more strongly. While not strictly a dilatant fluid, Silly Putty is

an example of a material that shares these viscosity characteristics.

2.2.5.3 Cross fluid

A Cross fluid [56] is a type of Generalized Newtonian fluid whose viscosity depends upon

shear rate according to the following equation:

η − η∞
η0 − η∞

=
1

1 + (λγ̇)1−n
(2.30)

At low shear rate ( λγ̇ ≪ 1 ), Cross fluids behave as Newtonian fluids and at high shear

rate ( λγ̇ ≫ 1) as power law fluids.

2.2.5.4 Second-order fluid

The second-order fluid (Coleman and Noll [50]) is given by:

τ = −pI + 2ηD + 4Ψ2D · D − Ψ1

∇
D (2.31)

If all three material properties η, Ψ1 and Ψ2 are allowed to be functions of γ̇ this becomes

the CEF equation (Criminale, Ericksen and Filbey [54, 56]). This is the simplest model
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to allow exact correspondence with all the observed viscometric functions.

The second-order fluid is a second-order asymptotic approximation about the state of

the rest of a viscoelastic fluid. Hence, the applicability of the second-order fluid is re-

stricted to slow and slowly varying flow fields. In other flow situations the second-order

fluid fails completely. There are even some situations in which the ”second-order fluid”

indicates its inapplicability [26, 108, 6, 34, 88].

2.3 Integral constitutive models

2.3.1 Doi-Edwards model

Understanding of the rheological behavior of entangled polymers is based on the theory of

Doi and Edwards [61, 62, 63, 64, 65] which is now widely accepted as fundamental. Suc-

cesses of the theory include the prediction of the plateau modulus of linear viscoelasticity,

and the so-called ‘damping function’ for the nonlinear response to a step strain. Another

positive aspect of the theory is the ‘natural’ occurrence of a nonzero second normal stress

difference in shear. For a long time, a negative feature of the basic theory has been the

prediction of excessive shear thinning. In fact the theory predicts an intrinsic instability

for moderately fast shear flows, which is not in agreement with the observed obedience

of the Cox-Merz rule, and which has long prevented use of the Doi-Edwards constitutive

equation in numerical simulation of complex flows. That feature, however, has recently

been improved upon by accounting for the fact that flow sweeps chains one past the other,

thus effectively removing topological constraints (Marrucci [146]).

The Doi-Edwards model is a specific example of a K-BKZ fluid (Kaye [111], Bernstein

et al. [24]), for which:

τ =

∫ t

−∞
[

∂

∂I1
X(I1, I2, t − t

′

)C−1(t, t
′

) − ∂

∂I2
X(I1, I2, t − t

′

)C(t, t
′

)] dt
′

(2.32)

C(t, t
′

) is the strain tensor accumulated between past time t
′

and current time t, and I1 and

I2 are its two invariants: I1 ≡ tr(C) and I2 ≡ tr(C−1) X; is a general damping function,

which defines a specific model within the class. The Doi-Edwards model describes melts
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in which individual molecules move by reptating along their length. This is given by:

X(I1, I2, s) = χ(I1, I2)m(s) (2.33)

m(s) = G
∞

∑

p odd

8

π2

1

p2

1

λp
exp(−s/λp) λp = λ1/p2 (2.34)

and an approximate form for χ (Currie [57]) by:

χ =
5

2
ln(J − 1) − 4.87, J = I1 + 2(I2 +

13

4
)1/2 (2.35)

This model predicts a very high level of shear-thinning, even higher than that observed in

real polymer melts.

2.3.2 K-BKZ

Another class of equations derived from continuum mechanics considerations is the so-

called K-BKZ (after Kaye [111], Bernstein , Kearsley and Zapas [24]) family for polymer

melts and concentrated solutions. It has been obtained from concepts of rubber elasticity

theory [125]:

τ =

∫ t

−∞
[2

∂w

∂I1
C−1(t, t′) − 2

∂w

∂I2
C(t, t′)]dt′ (2.36)

where I1 = tr(C−1) and I2 = 1
2 [(tr(C−1))2 − tr(C−2)] are the first and second invariants

of C−1. A particular constitutive equation is obtained by selecting a given expression for

w(I1, I2, t− t′) with a few nonlinear parameters. The kernel w comes from the hypothesis

that the elastic free energy We, which is a function of the elastic strain imposed on the fluid,

is a history integral over a function of I1 and I2 and t − t′: We =
∫ t
−∞ w(I1, I2, t − t′)dt′.

A simpler version called the separable or factorized K-BKZ equation is obtained when τ

is expressed in the form:

τ e =

∫ t

−∞
m(t − t′)[2

∂W (I1, I2)

∂I1
C−1(t, t′) − 2

∂W (I1, I2)

∂I2
C]dt′ (2.37)

The coefficients of the two tensors C−1 and C in the previous integrals are functions of

time and invariants of C−1 are determined from a series of step-strain experiments. This

type of equation enables effects like stress growth and relaxation to be reproduced quali-

tatively but is inaccurate for processes involving reversing double-step strains and elastic

recovery.
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Deriving more complex constitutive equations enables more understanding of the fluid

behavior to be obtained. But, such equations may be tedious to implement and time-

consuming for the numerical simulation of complex viscoelastic flows. It is sometimes

preferable to resort to simpler models in differential or integral form adapted to the rhe-

ological data available for a given fluid by incorporating additional empirical parameters.

For other integral differential equations such as Rivlin Sawyer, Wagner’s equation, readers

are referred to Ref. [173, 58].

2.4 Selecting a constitutive equation

In this chapter a brief overview of the constitutive models for viscoelastic fluids including

differential and integral constitutive models is reported. The most commonly used models

for numerical simulation of non-Newtonian fluids are presented here and a non exhaustive

list of references is given in the bibliography [26, 29, 125, 108, 65, 58] The selection of a

constitutive equation must be carried out according to four main criteria: the type of flow

(mostly shearing or extensional or combination of both, steady or transient, with strain

reversal), the type of material (dilute or concentrated solution or melt, linear or branched

polymers) and the numerical method to be used which may impose constraints on the

equation form (differential or integral) or require that no singularities or that double val-

ues of stress or deformation are present for convergence. The number of relaxation modes

that can be handled is also of importance in the choice of the equation since it has a direct

impact on computer requirements. The last criterion concerns the type of phenomenon

that one is expecting to describe and the quantitative aspect of the prediction. It is not

easy to estimate a priori what should be the equation of choice for a complex flow like e.g.

the flow through an abrupt contraction, but one may determine what essential features

observed in simple flows should be present in the chosen model.

From numerical point of view for calculation of complex fluids, differential constitutive

equations for the stress tensor are generally preferred over those of the integral type.

Among differential constitutive models FENE-P due to its features is chosen for this study.

FENE-P is one of few polymer models that can be used in fluid dynamics simulations since

it removes the need of statistical averaging at each grid point at any instant in time. It is

demonstrated to be able to capture some of the most important polymeric flow behaviors
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such as polymer turbulence drag reduction and shear thinning. It is the most commonly

used polymer model that can be used in a turbulence simulation since turbulence DNS

is already extremely expensive. Disadvantage of this model is due to its simplifications,

FENE-P is not able to show the hysteresis effects that polymers have, which to the contrast

the FENE model is capable of. Moreover, Oldroyd-B is also considered as a particular

case of the FENE-P model when b −→ ∞.
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Chapter 3

Numerical methods for simulating

viscoelastic flows

The numerical solution to a system of partial differential equations involves two stages. In

the first stage the governing equations are discretized in a consistent fashion on some mesh

using a convergent discrete representation of the solution, i.e. the discrete approximation

converges to the exact solution of the problem as the mesh is refined. Note that, for the

system of equations governing the flow of viscoelastic materials, it is not known a priori

whether this property is satisfied by a given discretization. In the second stage the discrete

problem, which may be nonlinear, needs to be solved accurately and efficiently [173].

3.1 Introduction

In order to obtain a solution of the typical set of partial differential equations presented in

Chapter 2, they must be discretized in space and in time. In this chapter we present first

a brief review of some of the methods that have been used in the field of computational

viscoelastic fluid dynamics for the discretization in space. Relevant references are the

books by Crochet, Davies and Walters [55], Owens and Phillips [173] and Chapter 7 of

Ref. [101]. Special emphasis will be made on the spectral element method that has been

used to carry out all the simulations that are reported in the following chapters.

3.2 Space discretization methods

The objective of this section is to provide the reader with a rapid overview of the main

groups of discretization methods at hand to simulate the viscoelastic flows of interest

in this dissertation. This overview aims at highlighting the advantages and drawbacks

25
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associated with each group of methods, in order to justify a priori the choice of a spectral

element method in relation with the physical problems to be investigated.

3.2.1 Finite difference methods

The finite difference method (FDM) was among the first numerical methods applied to

the numerical solution of differential equations. It was first utilized by Euler, probably

in 1768. It is also the easiest method to use for simple geometries. The FDM is directly

applied to the differential form of the governing equations. The principle is to employ a

Taylor series expansion for the discretization of the derivatives of the flow variables. Local

expansions with truncated Taylor series are used to transform the original set of PDEs

into a set of algebraic equations. Discretization by FDM leads to systems with banded

matrices that are usually solved by iterative techniques. Important advantage of the FDM

is its simplicity but, because the method requires a structured grid, the range of applica-

tion is clearly restricted. Another disadvantage of the FDM is that the conservation is not

enforced unless special care is taken. Moreover most of FDM converge as second order

method on structured mesh.

FDM has been used for viscoelastic flow simulations by some authors like Olsson [167, 166],

Woods [238], Webster [232], Sun et al. [201], Zhao et al. [245]. Demir et al. [59], As-

vadurov [18], Saegner et al. [191], Kristek et al. [118], Tomé et al. [210], Ariel [17] and

Habetle et al. [95]. Other examples are given in the books of Crochet, Davies and Walters

[55, 173] and Owens and Phillips [173].

3.2.2 Finite volume methods

The finite volume method (FVM) directly utilizes of the conservation laws-the integral

formulation of the mass/momentum and constitutive equations. As pointed out by Hirsch

[99] finite volume schemes were introduced by Godunov in 1959 [92]. The FVM discretizes

the governing equations by first dividing the physical space into a number of arbitrary

polyhedral control volumes. The surface integral appearing in the integral formulation

of the conservation equations is then approximated by the sum of the fluxes crossing the

individual faces of the control volume. The accuracy of the spatial discretization depends

on the particular scheme with which the fluxes are evaluated: cell-centered scheme, cell-
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vertex scheme, etc. The main advantages of the FVM are that the spatial discretization is

carried out directly in the physical space and that it can be implemented on unstructured

grids. This latter property renders the FVM particularly suitable for the treatment of

flows in complex geometries. Because of its attractive properties, the FVM is very popu-

lar amongst CFD practitioners and in wide use.

In the domain of viscoelastic flows, it has been extensively used during the past decade.

Most of them resort to either a pseudo-transient formulation to obtain the steady-state

solution as an asymptotic one while an artificial compressibility condition is introduced

to satisfy the continuity equation (Chorin-type of FVMs) or are based on the SIMPLER

algorithm devised by Patankar [174] or some variants. FVMs are related on the idea of

conservative discretization [101]. Up to now, it is probably the method that has enabled

the most difficult problems to be tackled, specially if time-dependent phenomena are to be

observed. The most recent ones have been carried out by numerous research groups e.g.

Mompean et al. [155, 156], Xue et al. [241], Oliveria et al. [164], Fu et al. [80], Sahin et

al. [193, 192], Muniz et al. [158], Aguayo et al. [5], Webster et al. [231], Aboubacar et al.

[2, 3], Chandio et al. [38], Edussuriya et al. [67], Wachs et al. [225, 224], Al Moatassime

et al. [8, 9] and Alves et al. [13].

3.2.3 Finite element methods

The finite element method (FEM) is more popular than FVM. It was originally employed

for structural analysis only. It was first introduced by Turner et al. in 1956 [212]. About

ten years later, researchers started to use the FEM also for the numerical simulation of

field equations in continuous media. However, only in the early eighties, did the FEM gain

popularity in the solution of the Navier-Stokes equations. The domain is broken into a

set of discrete volumes or finite elements that are generally unstructured; in 3D tetrahe-

dral or hexahedral are most often used. Finite elements are such a choice of considerable

practical importance, because they enable the implementation of Galerkin approximation

with great programming and computational efficiency. The distinguishing feature of FEM

is that equations are formulated in a weak form by multiplying a test function before they

are integrated over the entire domain. The solution is approximated on each element by a

piecewise varying function (usually polynomial) on each element and the result is a set of

nonlinear algebraic equations. An important advantage of the FEM is the ability to deal
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with arbitrary geometries. The grids are easily refined; each element is simply subdivided.

The principal drawback of the FEM, which is shared by any method relying on unstruc-

tured grids, is that the matrices of the linearized equations are not as well structured as

those for methods based on regular grids, making it more difficult to find efficient solution

methods.

FEM is also the most widely used discretization method in the context of viscoelastic

flows [55], [22], [144]. Unlike FVMs, they are not restricted to relatively simple geometries

and are able to deal with more complex (e.g. no traction or natural) boundary condi-

tions than those of the Dirichlet and Neumann types. FEMs have been mostly applied

to two-dimensional (steady and unsteady) problems. Only a few attempts to solve three-

dimensional problems have been reported in the literature [157]. Both low-order [133, 115]

and high-order [226] approximation polynomials have been used in the literature. Like the

two previous methods, low-order FEMs induce numerical dissipation and dispersion that

might be detrimental to the observation of physical phenomena. A non exhausted list of

references is given in the bibliography. The most recent ones are Baaijens [22], Marchal

et al. [144], Chen et al. [44], Mu et al. [157], Choi et al. [47], Carneiro et al. [37], Zang

et al. [244], Hao et al. [98], Ganvir et al. [82], Nadau et al. [159], Sandri [194], Lee et al.

[127] Machmoum et al. [137], Lu et al. [135], Sun et al. [202].

There are two important issues that need to be addressed in the finite element approxima-

tion of viscoelastic flow problems. The first is concerned with the choice of approximation

spaces for velocity, pressure and extra-stress. The second issue is concerned with the

treatment of the convection term, u ·∇τ , particularly for large values of the Weissenberg

number. Readers can find very interesting discussion about these topics in the fifth chapter

of the monograph of Owens and Phillips [173].

3.2.4 Lattice Boltzmann method

Nowadays the lattice Boltzmann method (LBM) has established itself as a powerful tool

for the simulation of a wide range of physical phenomena. One of its main applications

is the field of computational fluid dynamics where it has proved successful to solve the

weakly compressible Navier-Stokes equations (see Wolf-Gladrow [237], Succi [200]). This

method is not solving directly the macroscopic conservation equations, but rather models
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the statistics of collision of particles and offers more modelling freedom. Therefore the

LBM is a very good alternative to classical solvers like finite differences, finite volumes,

finite elements, or spectral element methods (see respectively Smith [197], Versteeg and

Malalasekera [223], Zienkiewicz et al. [246], Deville et al. [60] for example).

One of the great advantages of this method is that it is unconditionally stable. How-

ever, it suffers from the statistical noise due to the discreteness of the particles. This

method is used by a few authors like Frank et al. [79], Onishi et al. [169], Li et al. [132],

Lallemand et al. [123], Ispolatov et al. [103], Malevanets et al. [142], Giraud et al. [89],

Malaspinas et al. [140, 141]. The readers are referred to the thesis of Malaspinas [141] for

a comprehensive study of the lattice Boltzmann method for the simulation of viscoelastic

fluid flows.

3.2.5 Spectral methods

Spectral methods which are based on high-order approximations (usually Chebyshev) poly-

nomials is usually restricted to the study of problems with simple geometries [23, 20].

Their use for complex geometries is not an easy task unless decomposition techniques are

introduced, often leading to an arduous implementation of the complete numerical method.

Very few studies of viscoelastic simulation using the spectral method are reported in the

literature. We can mention to the works of Pilitsis et al. [182, 181] and Sureshkumar et

al. [203]. Sureshkumar and Beris [203] stabilized their spectral method by introducing a

stress diffusion term into the constitutive equation. However, in doing so the constitutive

equation was effectively modified.

3.2.6 Spectral element methods

Spectral element methods combine the ability to treat complicated geometries like the

classical (low-order) finite element methods with the accuracy of high-order approxima-

tion polynomials encountered in spectral methods. For smooth problems, exponential

convergence to the exact solution with mesh refinement is observed. Their relatively

difficult implementation is balanced by the appealing ability to resolve correctly high

gradient regions. They have been used in the context of viscoelastic flow only recently
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[216, 172, 40]. Much effort is presently dedicated in the spectral element community to

the critical issue of stabilizing these methods for viscoelastic flows. Successful techniques

have been reported very recently for steady-state computations [171, 39]. Stabilizing time-

dependent simulations without introducing side effects is still a major source of concern,

specially if the constitutive model is embodied in a partial differential equation. The

leading practitioners of spectral element methods for viscoelastic fluids are quite identi-

fied: Mark Gerritsma, George Karniadakis, Vincent Legat, Robert Owens, Tim Phillips,

and their co-author(s). A non exhaustive list of references is given in the bibliography

[100, 218, 41, 136, 219, 221, 220, 227, 226, 94, 83, 150, 72, 134, 217].

Spectral element methods are presented in more detail in the following section since it

is the method that has been employed for the simulations reported in this thesis.

3.3 Legendre spectral element method

In this section, the spectral element method (SEM) based on the Galerkin formulation

is presented. It was first proposed by Patera in 1984 [175] in the Chebyshev framework.

The SEM is a high-order method which has a very low numerical dissipation and disper-

sion. As high-order finite element techniques, they can deal with arbitrary geometrical

complexity, and are capable of local mesh adaption by either increasing the number of el-

ements (h-refinement) or increasing the polynomial order within elements (p-refinement).

For smooth solution spaces, the method provides asymptotically exponential rates of spa-

tial convergence with p- refinement, although in the present work it is the low numerical

diffusion and dispersion exhibited by the discretization that is potentially more significant.

After having reviewed the main groups of space discretization methods in Sec. 3.2, we

are now in a position to rationalize the choice of the Legendre spectral element method

to elucidate the physics associated with the flows studied in the following chapters. Our

main requirement is to ensure low numerical dissipation and dispersion which excludes

low-order methods such as the FVM and low-order FEM. The complexity introduced by

the presence of a free surface and the treatment of the stress-free boundary condition on

it, is the second most important choice criterion. In the high-order subgroup of methods,

spectral methods are automatically ruled out because of their severe limitations in terms
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of capabilities to handle complex geometries. Hence, one is left with spectral element

methods or high-order FEM which are both capable of treating the stress-free boundary

condition on the free surface as a natural boundary condition embodied into the weak

formulation of the problem. In this study we chose spectral element method.

3.3.1 Governing equations

In this section we summarize the equations that govern the flow of a uniform dilute polymer

solution. The corresponding viscoelastic stress time evolution is described by the FENE-P

model. Like Newtonian fluids, the flow of complex fluids is governed by the conservation of

mass and momentum equations. The momentum equation is modified with respect to the

Newtonian case in order to account for the additional contribution due to the viscoelastic

stress tensor. The dimensionless equations are given by the following equations:

∇ · u = 0 (3.1)

∂u

∂t
+ Re(u · ∇)u = ∇ · σ (3.2)

with:

σ = τ − pI + 2RµD (3.3)

The symbols σ, I and D are respectively the Cauchy stress, identity and rate of deforma-

tion tensors. τ is the viscoelastic stress, u is the velocity field and p is the pressure. The

rate of deformation tensor is defined by Eq. (2.2)

The parameter Re is the Reynolds number (Re = ρUL/µt), where µt = µN + µp, U

and L are the reference velocity and length, respectively. The polymer stress for FENE-P

model is defined as:

τ =
1 − Rµ

We

1

1 − (tr(C)/b2)
(C −

(1 − tr(C)
b2

)

K
I) (3.4)

where C is the conformation tensor, which satisfies the following differential equation:

We(1 − tr(C)

b2
)(

DC

Dt
− C · (∇u)T −∇u · C) + C =

(1 − tr(C)
b2

)

K
I (3.5)

and K is defined as:

K = 1 − 3

b2
(3.6)
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The symbol tr denotes the trace. The parameter b measures the extensibility of the

dumbbells. When b → ∞ the FENE-P model is equivalent to the Oldroyd-B model.

Finite extensibility of the polymer implies that [213]:

tr(C) < b2 (3.7)

3.3.2 Boundary conditions

So far we have met two types of homogeneous boundary conditions: Dirichlet conditions

for velocity , specifying values of the velocity function, and natural or free conditions,

specifying velocity and viscoelastic stress tensor are not imposed on the outflow boundary.

There is no explicit boundary condition for pressure while no pressure grid point lies on

the boundary of computational domain.

3.3.3 Weak formulation of the problem

The problem consisting of solving the continuity, momentum and constitutive equations

Eqs. (3.1),(3.2) and (3.5) if a FENE-P fluid is considered, on a flow domain Ω ⊂ R
d, where

d is the problem dimension, in order to determine the three variables (pressure, velocity

and conformation tensor) can be expressed with a general weak (Galerkin) formulation,

which is also used in the finite element context.

With this aim, it is necessary to define first a set of functional spaces Xp, Xu and XC

to which the functions representing respectively the pressure, p, velocity, u and confor-

mation tensor, C, will belong. These spaces are respectively subspaces of L2(Ω), H1(Ω)d

and L2(Ω)d×d, where L2(Ω) and H1(Ω) represent the space of measurable functions that

are square-integrable on Ω and the space of differentiable functions of which first-order

partial derivatives are measurable and square-integrable on Ω. Their definition includes

the specification of boundary conditions.

Second, multilinear forms A, B and C involving the three variables can be defined based

on integral inner products with test functions belonging to the functional spaces. The ini-

tial problem is then expressed in the weak formulation as: Find (p,u,C)∈ Xp × Xu × XC

such that:
A(u, Ψp) =

∫

Ω
(∇ · u)Ψp dΩ = 0, ∀Ψp ∈ Xp ⊂ L2(Ω) (3.8)
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B(p,u, C,Ψu) =

∫

Ω

∂u

∂t
· Ψu dΩ +

∫

Ω
−p(I : ∇Ψu) dΩ

+ Rµ

∫

Ω
(∇u) : ∇Ψu dΩ + Re

∫

Ω
[(u · ∇)u] · Ψu dΩ

+

∫

Ω
τ · ∇Ψu dΩ −

∫

∂Ω
(σ · n) · Ψu dΓ

= 0, ∀Ψu ∈ Xu ⊂ H1(Ω)d

(3.9)

The FENE-P constitutive equation in weak form reads:

C(u, C,ΨC) =We

∫

Ω

∂C

∂t
: ΨC dΩ +

∫

Ω

1

(1 − tr(C)
b2

)
C : ΨC dΩ

− We

{∫

Ω
[∇u · C] : ΨC dΩ +

∫

Ω
[C · (∇u)T ] : ΨC dΩ

}

− 1

K

∫

Ω
I : ΨC dΩ + We

∫

Ω
[(u · ∇)C] : ΨC dΩ

= 0, ∀ΨC ∈ XC ⊂ L2(Ω)d×d

(3.10)

3.3.4 Galerkin approximation

Instead of solving the previous continuous problem, an approximate projected solution is

sought in a finite dimensional subspace X
Np
p ×XNu

u ×XNC

C of Xp ×Xu ×XC , where X
Np
p ,

XNu
u and XNC

C are respectively included in the spaces spanned by polynomials of order less

than or equal to Np, Nu and NC in each spatial direction. In practice, some restrictions

occur as far as the selection of the polynomial degrees is concerned. In particular, the inf-

sup condition imposes restrictions on the pressure subspace once the velocity subspace is

prescribed, to prevent locking and spurious oscillation phenomena. In the spectral element

context, the inf-sup condition is satisfied if Np = Nu −2 as emphasized by Maday and Pa-

tera [139]. No such condition has been clearly defined for the viscoelastic stress subspace

although some relevant investigations have been carried out. A studies carried out by

Van Kemenade and Deville [216] has shown that selecting the polynomial degrees for the

velocity and viscoelastic stress approximations should be such that Nu ≤ NC ≤ Nu +2 for

optimal results in the case of a viscoelastic flow through a corrugated tube. Gerritsma and

Phillips [85] considered the mixed formulation of the Stokes problem in terms of the ve-

locity, pressure and extra-stress variables under a constrained minimization of the viscous

stress tensor. They found that the problem is well-posed as long as the stress approxi-

mation space contains polynomials of at least the same degree as the velocity. In most

computations relative to viscoelastic flows with spectral element methods, the velocity and
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viscoelastic stress grids are taken to be the same. Furthermore, it has been recommended

by the last two authors to use a discontinuous extra-stress approximation space (between

elements) in order to satisfy a compatibility condition between the discrete velocity and

stress spaces [84]. This idea can be extended to the viscoelastic stress when a viscoelastic

problem is considered.

To summarize, in order to avoid spurious pressure and satisfy a compatibility condition

between velocity and viscoelastic stress, if the velocity is represented by polynomials in PN

then the pressure and viscoelastic stress may be represented in PN−2 and PN respectively.

The system of equations (3.8)-(3.10) is discretized using the spectral element formulation

[139]. The domain is decomposed into a number of elements Ωk on which each integral is

computed. The evaluation of the integrals on each element is made easier by the use of a

mapping of the physical system e.g of coordinates (x1, x2) in two dimensions into a local

(r1, r2)-system. Physical elements are mapped onto parent elements defined on [−1, 1]d.

Thus, the derivatives appearing in the integrals can be expressed in terms of the local

coordinates by the following Jacobian transformation:

∂

∂xi
= J−1

iα

∂

∂rα
(3.11)

The Jacobian matrix J is given by:

Jiα =
∂xα

∂ri
(3.12)

Its inverse J−1 can be written in two dimensions as:

J−1 =
1

|J |

[

∂x2
∂r2

−∂x2
∂r1

−∂x1
∂r2

∂x1
∂r1

]

(3.13)

where |J | is the determinant of the Jacobian matrix:

|J | =
∂x1

∂r1

∂x2

∂r2
− ∂x1

∂r2

∂x2

∂r1
(3.14)

Therefore, the integral of an arbitrary integrable function u(x1, x2) over the domain Ωk
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can be written:

∫

Ωk

u(x1, x2) dx1 dx2 =

∫ 1

−1

∫ 1

−1
uk(r1, r2)

∣

∣

∣Jk(r1, r2)
∣

∣

∣ dr1dr2 (3.15)

In the previous set of equations derived from the weak formulation (3.8)-(3.10), the in-

tegrals involving the pressure in the momentum equation or present in the continuity

equation are approximated with the Gauss-Legendre integration rule e.g. in two dimen-

sions:
∫

Ωk

g dx1 dx2 ≃
N−2
∑

m=0

N−2
∑

n=0

γ̃mγ̃n |Jk(ξ̃m, ξ̃n)| gk(ξ̃m, ξ̃n) (3.16)

where g is a function continuous over Ωk, gk is its counterpart on [−1, 1]× [−1, 1],
(

ξ̃m, ξ̃n

)

are the coordinates of the collocation points in the reference domain [−1, 1] × [−1, 1] and

|Jk| is the Jacobian of the mapping tranformation from Ωk to [−1, 1]× [−1, 1]. The quan-

tities γ̃i are weights corresponding to the Gauss-Legendre quadrature. They are given by:

γ̃j =
2

(1 − ξ̃2
j )

1
[

dLN−2

dz (ξ̃j)
]2 , j = 0, . . . , N − 2 (3.17)

where the quantities ξ̃j (j = 0...N − 2) are the local Gauss-Legendre collocation points in

the interval [−1, 1], which are the roots of the Legendre polynomial of degree N − 1. In

the previous equation, LN−2 is the Legendre polynomial of degree N − 2.

The pressure is approximated using the Lagrangian interpolants h̃(z) in the following

tensor-product form:

pk(r1, r2) =
N−2
∑

m=0

N−2
∑

n=0

p̃k
mnh̃m(r1)h̃n(r2) (3.18)

The corresponding Lagrangian interpolants can be written as:

h̃p(z) = − LN−1(z)
dLN−1

dz (ξ̃p)(z − ξ̃p)
, p = 0, . . . , N − 2 (3.19)

In particular, the following relation holds:

h̃p(ξ̃m) = δmp (3.20)

where δmp is the usual Kronecker symbol.
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All the other integrals in the weak formulation are approximated with the Gauss-Lobatto-

Legendre integration rule e.g. in two dimensions:

∫

Ωk

f k dx1 dx2 ≃
N

∑

m=0

N
∑

n=0

γmγn |J(ξm, ξn)| fk(ξm, ξn) (3.21)

where f is a function continuous over Ωk, fk is its counterpart on [−1, 1]× [−1, 1], (ξm, ξn)

are the coordinates of the collocation points in the reference domain [−1, 1]× [−1, 1], |Jk|
is the Jacobian of the mapping tranformation from Ωk to [−1, 1]× [−1, 1]. The quantities

γj are weights corresponding to the Gauss-Lobatto-Legendre quadrature. They are given

by:.

γj =
2

N (N + 1)

1

LN (ξj)2
, j = 0, . . . , N (3.22)

where the quantities ξj (j = 0...N) are the local Gauss-Lobatto-Legendre collocation points

in the interval [−1, 1] given by:

ξ0 = −1;
dLN

dz
(ξj) = 0, 1 ≤ j ≤ N − 1; ξN = 1 (3.23)

where LN is the Legendre polynomial of degree N.

The variable components like ui or Cij are approximated using the Lagrangian interpolants

h(z) in the following tensor-product form:

uk(r1, r2) =
N

∑

m=0

N
∑

n=0

uk
mnhm(r1)hn(r2) (3.24)

The corresponding Lagrangian interpolants can be written as:

hp(z) = − (1 − z2)dLN

dz (z)

N(N + 1)LN (ξp)(z − ξp)
, p = 0, . . . , N (3.25)

with the cardinality condition:

hp(ξm) = δmp (3.26)

The introduction of the quadratures to compute the various integrals results in a dis-

cretization of the original set of equations. It is only necessary to determine the values of

the pressure, velocity and viscoelastic stress at the collocation points to know the values

anywhere in the computational domain.
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Terms involving partial derivatives of the two types of Lagrangian interpolants are present

in the integrals displayed in the set of flow equations. Therefore, nodal interpolant deriva-

tive operators Dij =
dhj(ξi)

dz appear in the corresponding discretized equations.

For instance, the convective term in the momentum equation over the element Ωk can

be approximated by:

∫

Ωk
[(u · ∇)u] · Ψu dΩ =

N
∑

m=0

N
∑

n=0

2
∑

j=1

2
∑

i=1
γmγn|J(ξm, ξn)|(Ψu)k

i (ξm, ξn)uj(ξm, ξn)∂ui

∂xj
(ξm, ξn) =

N
∑

m=0

N
∑

n=0

2
∑

j=1

2
∑

i=1
γmγn|J |kmn((Ψu)i)

k
mn(uj)mn(Gj)

k
mnpq(ui)pq

(3.27)

where:

(Gj)
k
mnpq = (J−1

j1 )k
mnDmpδnq + (J−1

j2 )k
mnδmpDnq (3.28)

The test functions are chosen so that they vanish at all but one collocation point. There-

fore, the convective term in the momentum equation is approximated by (Nel being the

total number of elements):

∫

Ω
[(u · ∇)u] · Ψu dΩ =

∑′Nel

k=1

2
∑

i=1

N
∑

p=0

N
∑

q=0

(Ψu
k
i )pq(Ci)

k
pq (3.29)

where:

(Ci)
k
pq =

2
∑

j=1

N
∑

r=0

N
∑

s=0

γpγq|J |kpq(uj)pq(Gj)
k
pqrs(ui)rs (3.30)

The symbol
∑′ indicates that direct stiffness is operated on the nodes located on the

element boundaries.

All terms can be expressed in a form similar to the one in the previous equation.

3.3.5 Semi-discrete formulation

The discretization process leads to a set of equations, which can be cast in matrix form.

Adopting the notation of Deville, Fischer and Mund [60]:
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− DkV k = 0, k = 1, .., d (3.31)

M
d V i

dt
= − ReC(V )V i + DT

i P − Rµ Kij V j

− V Ej T ij + (Mb)ij Sbj

(3.32)

The symbols P , V i and T ij correspond to the vectors relative to the degrees of freedom

for the pressure, velocity and viscoelastic stress components (1 ≤ i ≤ d, 1 ≤ j ≤ d). The

matrices M and Kij are respectively diagonal mass and stiffness matrices. The discrete

divergence operator is given by Di and its transpose DT
i yields the discrete gradient opera-

tor. The convection term is given by C(V )V i where the nonlinear operator C(V ) depends

on the velocity field.

The last two matrix operators are derived from the following integrals:
∫

Ω
τ · ∇Ψu dΩ =⇒ V Ej T ij ,

∫

∂Ω
(σ · n) · Ψu dΓ =⇒ (Mb)ij Sbj

The constitutive equation in semi-discrete form reads:

WeM
d Cij

dt
= NLij(Cmn, V l) (3.33)

where:

NLij(Tmn, V l) =We[−LCij(V l) + GCij(V l, Cmn) + (GC)T
ij(V l, Cmn)] (3.34)

QCij(Cmn) +
1

K
ICij(Cmn)

Again, these operators written in matrix form are derived from the following integrals:
∫

Ω

∂C

∂t
: ΨC dΩ =⇒ M

d Cij

dt
, (3.35)

∫

Ω
[(v · ∇)C] : ΨC dΩ =⇒ LCij(V l),

∫

Ω
[∇v · C] : ΨC dΩ =⇒ GCij(V l, Cmn)

∫

Ω
I : ΨC dΩ =⇒ ICij(Cmn)

∫

Ω
(

1

1 − tr(C)
b2

)C : ΨC dΩ =⇒ QCij(Cmn)

When Gauss-Legendre quadrature is selected, the pressure grid (of which nodes are the

quadrature collocation points) is staggered with respect to the velocity grid (of which

nodes are the Gauss-Lobatto-Legendre collocation points), which is usually the same as

the viscoelastic stress and conformation tensor grid.
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3.4 Time discretization

Once the original set of continuous equations (3.1), (3.2) and (3.5) is discretized in space,

the resulting semi-discrete set of nonlinear ordinary equations must still be approximated

in time in order to generate the time marching scheme. As high-order spatial discretization

techniques are needed in order to obtain either accurate results or to decrease the number

of grid points, high temporal accuracy is also required for the time-dependent problems

that we want to tackle.

The stability of the temporal schemes can be investigated by computing the roots of

a characteristic polynomial derived from some simple test equation

dy

dt
=

n
∑

i=1

λiy (3.36)

where λi is the ith eigenvalues [35] [52]. Absolute stability is obtained if all the moduli of

the roots are smaller than one. This enables to select a suitable scheme for a given prob-

lem. Other factors coming into play before making a decision are also the accuracy, storage

requirements and amount of implementation work. The accuracy of the time scheme can

be obtained from a truncation error analysis.

The computational cost of high-order methods does not increase drastically with respect

to first-order methods while the same level of temporal accuracy can be obtained with

larger time steps i.e. faster. Among the standard high order methods, multi-step methods

like the backward differentiation formula scheme (BDF), the Adams-Bashforth method

(including forward Euler), the predictor-corrector schemes combining usually the actions

of two multi-step methods are widely used. A popular alternative is to use Runge-Kutta

methods well-known for their high stability characteristics.

We have used in particular a backward differentiation formula for linear Stokes prob-

lem and the extrapolation scheme (EX) for the nonlinear terms [110] to discretize in time

Eqs. (3.31)-(3.33). In order to simplify the notation with respect to Eqs. (3.31)-(3.33),

we introduce a shorthand notation where V and C represent the full vectors of all velocity

and viscoelastic stress unknowns. The block diagonal matrices M and K are respectively

composed with d block matrices M and K. The matrix D corresponds to the full diver-

gence operator and DT to the full gradient operator. The following system of equations
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results:

− DV n+1 = 0 (3.37)
(

βsi

∆t

)

MV n+1 − DT Pn+1 + Rµ KV n+1 =

1

∆t

si
∑

q=1

βsi−qMV n+1−q −
se−1
∑

r=0

αrReC(V n−r)

− VETn+1 + Mb Sb
n+1

(3.38)

We

∆t
βsi

MCn+1 =
We

∆t

si
∑

q=1

βsi−qMCn+1−q +

se−1
∑

r=0

αrNL(Cn−r, V n−r) (3.39)

where an extrapolation method of order se has been used to determine the value of the

nonlinear term at time step n+1. The associated BDF scheme is of order si. The co-

efficients αi and βj are dependent on the orders of each method, e.g. for a BDF2/EX2

(si = 2, se = 2) scheme: α0 = 2, α1 = −1, β0 = −1
2 , β1 = 2, β2 = 3

2 .

Following the study of Couzy [52], one can easily show that the BDF2/EX2 scheme pro-

vides global second-order accuracy. This decoupling BDF2/EX2 has also been used in the

past by Fiétier and Deville [74] for the simulation of visco-elastic flows and by Bodard [27]

for fluid-structure interaction problems. All the simulations presented in this dissertation

use in particular BDF2/EX2.

3.5 System solving techniques

Once the set of equations (3.1), (3.2) and (3.5) is fully discretized in space and time, a

system of nonlinear equations with respect to the values of the unknown variables (veloc-

ity, pressure and viscoelastic stress) at the grid points must be solved. Two main types of

approach can be used to this effect.

The decoupled approach consists of solving separately the mass-momentum and constitu-

tive equations. More precisely, the constitutive equation is integrated at time step n+1

for the extra-stress tensor while using velocity gradient terms obtained at the previous

time step n. The extra-stress tensor is then plugged as a source term into the momentum

equation. The mass-momentum system of equations is then solved for the velocity and

pressure at the new time step n+1 using a classical technique for solving Stokes-like prob-

lems. Such iterative techniques are cheap in terms of CPU time, but they suffer from poor
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convergence properties. Depending on the way the stress and velocity fields are updated

at each iteration, such schemes approximate the solution of time-dependent problems in

a more or less loose manner, which may be a source of strong numerical instabilities.

In the coupled approach, the three partial differential equations are solved altogether from

time step n to time step n+1. Generally, coupled methods are more stable than decoupled

ones but the required computer resources (memory and CPU time) are more stringent.

The full nonlinear coupled problem is generally solved by a succession of Newton itera-

tions applied to a discretization of the entire set of equations. The computer storage to set

up and invert the Jacobian matrix for the Newton iteration is very demanding. Newton

schemes provide quadratic convergence and therefore, few iterations are needed to reach a

solution provided the initial guess is good enough. There is no explicit treatment of some

operators in these schemes, which makes them a priori less sensitive to time-dependent

numerical instabilities and avoids limitations due to CFL-type criteria on the time step.

Because three dimensional numerical simulations with a fully-coupled treatment are still

out of reach even on the most powerful supercomputers, in this dissertation we only deal

with the decoupled approach. The efficiency of this decoupled method depends critically

on the availability of an efficient and robust solver for the underlying Stokes problem at

each time step. Our approach consists of solving the mass-momentum set of Eqs. (3.37)-

(3.38) with an efficient solver as designed by Couzy [52] for Newtonian flows, which can

be easily extended to viscoelastic flows by simply adding the divergence term correspond-

ing to the viscoelastic stress tensor as a source term in the momentum equation. The

mass-momentum set of equations is treated via a generalized block LU decomposition

with pressure correction [176], which can be summarized by the following steps:

Step 1: Solve for the conformation tensor:

RCn+1 = L (3.40)

R =

(

βsi

∆t

)

M (3.41)

L =
We

∆t

si
∑

q=1

βsi−qMCn+1−q +

se−1
∑

r=0

αrNL(Cn−r, V n−r) (3.42)
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Step 2: Compute the viscoelastic stress

Tn+1 =
1 − Rµ

We

1

1 − (tr(Cn+1)/b2)
(Cn+1 −

(1 − tr(Cn+1)
b2

)

K
I) (3.43)

Step 3: Compute the tentative velocity vector V ∗ by solving the equation:

HV ∗ = F + DT Pn (3.44)

which is a short-hand notation for Eq. (3.38) where the pressure term has been shifted to

the right-hand side. The Helmholtz operator matrix H comprises both mass and Laplacian

contributions while all other terms including the convective one are in the right-hand side

vector F :

H =

(

βsi

∆t

)

M + Rµ K (3.45)

F =
1

∆t

si
∑

q=1

βsi−qMV n+1−q −
se−1
∑

r=0

αrReC(V n−r)

−VETn+1 + Mb Tb
n+1 (3.46)

Step 4: Solve for the pressure:

− DQDT ∆Pn+1 =
βsi

∆t
DV ∗ (3.47)

Pn+1 = Pn + ∆Pn+1 − Rµ DV ∗ (3.48)

The last term in Eq. (3.48) has been introduced to obtain an overall consistent scheme as

suggested by Timmermans et al. [209]. The symbol ∆Pn+1 represents some intermediate

pressure correction term.

Step 5: Compute the final velocity at step n+1 after a pressure correction:

V n+1 = V ∗ +
∆t

βsi

QDT ∆Pn+1 (3.49)

The choice of the matrix Q is critical. If one sets :

Q = H−1 (3.50)

one obtains the Uzawa algorithm [138] or if one writes an approximation of H−1 e.g. for
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a BDF2/EX2 scheme:

Q =
∆t

β2
M−1 − Rµ

(

∆t

β2

)2

(M−1K)M−1

+ (Rµ)2
(

∆t

β2

)3

(M−1K)2 M−1

(3.51)

As proposed by Couzy and Deville [53] one obtains a fourth-order approximation in time.

If accuracy in time is limited to second order, only the first term in the previous expansion

need be retained. Efficient preconditioners for the iterative solver of the pressure step Eq.

(3.47), which is by far the most expensive one in terms of CPU time, have been prescribed

by Couzy and Deville [53] and Couzy [52]. Simple diagonal preconditioners are used for

the two velocity steps.

Since the nonsymmetric (nonlinear) terms in Eqs. (3.37)-(3.39) are located in the right-

hand sides, cheap preconditioned conjugate gradient solvers can be used to solve the

resulting system for the unknowns at the grid points. Eq. (3.39) is readily solved since

there are no implicit terms with non-trivial matrix operators.

3.6 Stabilization technique

As mentioned by Fischer and Mullen [75], despite the numerous advantages of the SEM,

stability problems have been encountered in the past, which required very fine space and

time resolutions for applications at moderate Reynolds number (103). Stabilization can

easily be obtained with the Legendre-SEM by using a nodal filtering technique introduced

by Fischer and Mullen [75] or modal filtering introduced by Boyd [32]. The filter is

applied at the end of each step of the Navier-Stokes and constitutive time integration of

the problem governed by Eqs. (3.37)-(3.39) and aims at removing nascent instabilities

induced by the treatment of the nonlinear convective term. This specific technique is

mainly used in the applications presented in Chapter 6.

3.7 Summary

In this section, we have tried to provide an overview of the main computational methods

to solve flow problems of viscoelastic fluids the behavior of which may be modelled with a
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partial differential equation. It is clearly non exhaustive but is an attempt to justify the

choice of the computational method that we have employed among the numerous possibil-

ities. A spectral element method with a second-order time discretization scheme has been

selected since time-dependent accurate solutions are expected. In addition, non-dissipative

and non-dispersive properties are required if one expects to observe transient or periodic

phenomena like physical instabilities.

The semi-discretized problem based on the SEM is decoupled into an unsteady Stokes

problem treated implicitly and the nonlinear advective term into its convective form,

treated explicitly. The constitutive equation which acts as a source term in momentum

equation is treated explicity. The time-integration schemes used to treat the previous two

subproblems is BDF2/EX2 respectively. No time-splitting error is induced by this choice

which leads to a global second-order time accuracy for the method. The details of the

velocity-pressure decoupling using a generalized block LU decomposition with pressure

correction have been discussed. Finally, the iterative solution of the discretized problem

using the preconditioned conjugate gradient method has been briefly introduced.



Chapter 4

Mathematical improvement of

constitutive equation to treat high

Weissenberg number problem

This chapter comprises three different sections. The first part corresponds to the classical

matrix logarithm formulation (CMLF). In this part, we show that although the use of

log conformation tensor can be helpful to preserve symmetric positive definiteness of the

conformation tensor, it is also mandatory for FENE family to satisfy the boundness of the

conformation tensor. We then show that applying classical matrix logarithm formulation

for the FENE family is not enough to enforce stability.

The second part of this discussion presents an extended matrix logarithm formulation

(EMLF) in order to remove instabilities observed in the simulation of unsteady viscoelas-

tic fluid flows in the framework of the spectral element method. In this study, we consider a

particular model of the finite extensible nonlinear elastic family, FENE-P, but the method

could be applied to other differential constitutive equations. Two distinct constraints for

the FENE-P equation are imposed: (i) the square of the corresponding finite extensibility

parameter of the polymer must be an upper limit for the trace of the conformation tensor

and (ii) the eigenvalues of the conformation tensor should remain positive at all steps of

the simulation. Negative eigenvalues cause the unbounded growth of instabilities in the

flow. The proposed transformation is an extension of the matrix logarithm formulation

originally presented by Fattal and Kupferman [69, 70]. With this new method one can

tackle high Weissenberg number flow at values of practical interest. A neat improvement

of the computational algorithm with stable convergence has been demonstrated in this

study. This work has been reported in the international literature [104].

45



46 Mathematical improvement of constitutive equation

In the last part of this chapter a possible mathematical formulation that enforces stability

as much as possible is discussed. This formulation is an enhanced format of hyperbolic

tangent of the conformation tensor.

4.1 Introduction

The challenge for computational rheologists is to develop efficient and stable numerical

schemes in order to obtain accurate numerical solutions for the governing equations at

values of practical interest of the Weissenberg number, We, within the range [0-150]. The

Weissenberg number is the ratio of the relaxation time of viscoelastic fluids to the inertial

time.

In the past two decades, considerable efforts have been devoted to the development of

robust and stable numerical methods for simulating non-trivial flows of complex fluids.

Without any exception, the standard viscoelastic models like Oldroyd-B, Maxwell, Phan-

Thien-Tanner, FENE-P, etc. have failed in the simulation of high Weissenberg number

flows in any available numerical techniques such as: finite difference, finite volume, finite

elements, spectral elements etc. Nowadays one has come to the conclusion that selection

of an appropriate constitutive equation constitutes a very crucial step although imple-

menting a suitable numerical technique is still important for successful discrete modeling

of non-Newtonian flows [129].

Recently a logarithm representation of the conformation tensor was proposed by Fattal

and Kupferman [69, 70]. The essential idea is based on the fact that the high Weissenberg

number problem (HWNP) may be caused by the failure of polynomial-based approxi-

mations to properly represent exponential profiles developed by the conformation tensor.

Under this transformation, the extensional components of the deformation field act addi-

tively, rather than multiplicatively. This representation grants the positive definiteness of

the conformation tensor, which is a compulsory condition to obtain positive eigenvalues

which represent the local strain and orientation of the micro constituents.

Hulsen et al. [102] first implemented the log conformation in a finite element context, using

the DEVSS/DG formulation for the flow around a cylinder for Oldroyd-B and Giesekus
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models. With the log conformation representation, they obtained solutions beyond a value

of Weissenberg number, We = 100. However, even though in large parts of the flow the

solution converges, they have not been able to obtain convergence near the cylinder of the

flow for Oldroyd-B model.

Kwon [120] presented an alternative procedure to derive the tensor logarithmic repre-

sentation of the differential constitutive equation and provided a numerical example with

the Leonov model in 4:1 planar contraction flow using SUPG and SU stabilization tech-

niques. Dramatic improvement of the computational algorithm with the stable conver-

gence has been demonstrated. The author could achieve De = 132 with a coarse mesh

and De = 193 for a refined mesh. This new formulation works only for a few differential

constitutive equations proven Hadamard stable. Hadamard stability means well-posedness

of constitutive equations under low and high frequency wave disturbance [130].

A simple alternate form of the log conformation formulation is presented by Coronado

et al. [51]. The flows of Oldroyd-B and Larson-type fluids are tested in the benchmark

problems of flow past a cylinder in a channel with the DEVSSS-TG/SUPG methods. For

the Oldroyd-B fluids, the maximum Weissenberg number was extended to 1.05 as com-

pared to 0.75 obtained with the original DEVS-TG/SUPG method. For the Larson-1

model the maximum Weissenberg number was extended from 4.49 to 12.3 and for the

Larson-2 model from 1.13 to 1.41.

In the context of spectral methods, Chauvière and Owens [41], and Van Kemenade and

Deville [216] applied the Legendre spectral element method with success to simulate steady

viscoelastic flows. They combined the versatility of the classical (low-order) finite element

methods with the accuracy of high-oder approximation polynomials encountered in spec-

tral method in order to investigate the potential of spectral element method in the field

of viscoelastic flows.

Van Os and Phillips [221] applied spectral element methods for solving steady and tran-

sient flows of viscoelastic fluids for a plane Poiseuille flow. The fluids are modeled using the

upper-convected Maxwell and Oldroyd-B constitutive relationships. They found that any

type of refinement in streamwise direction decreases the maximum attainable Weissenberg

number whereas this number is insensitive to refinement in the cross channel direction.
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Fiétier and Deville [74] presented a method based on the spectral element formulation

for the simulation of time dependent flows of viscoelastic fluids for various type of con-

stitutive equations. They tested simple steady and unsteady Poiseuille flows as well as a

more complex flow in an abrupt contraction as opposed to simulation of Poiseuille flows

with models of the FENE type with low values of the extensibility parameter, which have

been found stable for various discretizations. The stability of the results obtained with

the Oldroyd-B model has been shown to be strongly dependent on the computational grid.

The aim of this part is to introduce and study the capability of a new extended algorithm

for the matrix logarithm formulation. First, we investigate the ability of time dependent

simulation originally proposed by Fattal and Kupferman [69] without considering the ex-

tended algorithm on a simple unsteady FENE-P Poiseuille flow in the spectral element

framework. We study the effect of each differential term in the constitutive equation for

both classical and log representation. Moreover, the influence of the boundary conditions

on attainable Weissenberg number and accuracy of the results is considered. We have

observed that applying the log formulation for at least FENE-P fluids is not sufficient for

curing the instability problem observed in the numerical simulation. Then, according to

the observation in the previous simulations we introduce a new extended algorithm for

the log matrix conformation. The study of this new algorithm is performed based on the

linear stability analysis as developed in Ref. [73, 204] which will be presented in the next

chapter. The aim of the last part of this chapter is to introduce a mathematical model to

preserve both SPD of the conformation tensor and also bound magnitude of the eigenval-

ues. A possible remedy in this context is to use an enhanced format of hyperbolic tangent

of the conformation tensor. Because this new formulation of equations involves with some

complexity, we did not find time to completely test the capability of this new formula-

tion for numerical simulation, but we expect that this variable transformation within the

spectral element method will bring some breakthrough(s) in the high Weissenberg number

problem as it removes some of the stiffness related to the usual model forms.
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4.2 Classical matrix logarithm formulation (CMLF)

Since the HWNP may be related to the inadequacy of polynomial interpolation to ap-

proximate exponential profiles, one possible remedy that was proposed by Fattal and

Kupferman [69] is to reformulate the constitutive equations using new variables that scale

logarithmically. This transformation enforces the eigenvalues of the conformation tensor

to remain positive for all steps of the simulation. They transform the classical constitutive

equation based on the conformation tensor, C, to a new one based on the tensor H defined

as:

H = ln(C) (4.1)

In this study attention is drawn to the approach followed by Kwon [120] for deriving the

evolution equations. In the case of 2D planar flow, adopting the notations of Kwon, the

eigenvalue problem for the H conformation tensor in the continuous domain yields the

eigenvalues:

h1 =
1

2
[h11 + h22 +

√

(h11 − h22)2 + 4h2
12] (4.2)

h2 =
1

2
[h11 + h22 −

√

(h11 − h22)2 + 4h2
12] (4.3)

The eigenvectors of the matrix are defined as:

n1 =

[

n1

n2

]

and n2 =

[

−n2

n1

]

(4.4)

with n2
1 + n2

2 = 1. The components of the eigenvectors can be determined by:

n2
1 =

h2
12

(h1 − h11)2 + h2
12

(4.5)

n2
2 =

(h1 − h11)
2

(h1 − h11)2 + h2
12

(4.6)

n1n2 =
h12(h1 − h11)

(h1 − h11)2 + h2
12

(4.7)

The characteristic relation for C is written as:



50 Mathematical improvement of constitutive equation

C · ni = cini (4.8)

Differentiation of the above equation with respect to time yields:

Ċ · ni + C · ṅi = ċini + ciṅi (4.9)

Then scalar product with another eigenvector yields the following result:

nj · Ċ · ni = nj(ċini) + nj(ciṅi) − nj · (C · ṅi)

= ċiδij + (ci − cj)ṅi · nj

(4.10)

In the other form:

{

i) ċi = ni · Ċ · ni when i = j

ii) ṅi · nj = 1
ci−cj

nj · Ċ · ni when i 6= j

}

(4.11)

Due to the isotropic function relation, C and H have the same set of eigenvectors.

For the H-tensor, an equivalent relation is readily obtained as:

nj · Ḣ · ni = ḣiδij + (hi − hj)ṅi · nj (4.12)

by introducing ci = ehi and thus ḣi = ċi

ci
, Combining Eqs. (4.11) and (4.12), one

obtains:

{

i) ni · Ḣ · ni = ċi
ci

= 1
ci
ni · Ċ · ni when i = j

ii) ni · Ḣ · nj = (hj − hi)ṅj · ni =
hi−hj

ci−cj
ni · Ċ · nj when i 6= j

}

(4.13)

In the 2D case Eq. (4.13) yields:

A









Ḣ11

Ḣ12

Ḣ22









= B (4.14)
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where A is defined as:

A =









n2
1 2n1n2 n2

2

n2
2 −2n1n2 n2

1

−n1n2 (n2
1 − n2

2) n1n2









(4.15)

and B:

B =









1
c1

(n2
1

˙C11 + 2n1n2
˙C12 + n2

2
˙C22)

1
c2

(n2
2

˙C11 − 2n1n2
˙C12 + n2

1
˙C22

h1−h2
c1−c2

(−n1n2
˙C11 + (n2

1 − n2
2)

˙C12 + n1n2
˙C22)









(4.16)

By multiplying both sides of the Eq. (4.14) by A−1 one obtains the evolution of the

components H tensor as:

Ḣ11 =(n4
1e

−h1 + n4
2e

−h2 + 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙C11+

(2n3
1n2e

−h1 − 2n1n
3
2e

−h2 − 2n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙C12+

(n2
1n

2
2e

−h1 + n2
1n

2
2e

−h2 − 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙C22 = G11

˙C11 + G12
˙C12 + G13

˙C22

(4.17)

Ḣ12 =(n3
1n2e

−h1 − n1n
3
2e

−h2 − n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙C11+

(2n2
1n

2
2e

−h1 + 2n2
1n

2
2e

−h2 + (n2
1 − n2

2)
2 h1 − h2

eh1 − eh2
) ˙C12+

(n1n
3
2e

−h1 − n3
1n2e

−h2 + n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙C22 = G21

˙C11 + G22
˙C12 + G23

˙C22

(4.18)

Ḣ22 =(n2
1n

2
2e

−h1 + n2
1n

2
2e

−h2 − 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙C11+

(2n1n
3
2e

−h1 − 2n3
1n2e

−h2 + 2n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙C12+

(n4
2e

−h1 + n4
1e

−h2 + 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙C22 = G31

˙C11 + G32
˙C12 + G33

˙C22

(4.19)

where Ḣij and Ċij are the components of the material time derivative of the coresponding

matrices which can be expressed by:
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Ḣ =
∂H

∂t
+ (u · ∇)H (4.20)

Ċ =
∂C

∂t
+ (u · ∇)C (4.21)

The approach to derive Ċ as a function of Ḣ is explained in appendix A.

The above system of equations (4.17)-(4.19) can be summarized as:









Ḣ11

Ḣ12

Ḣ22









=









G11 G12 G13

G21 G22 G23

G31 G32 G33

















˙C11

˙C12

˙C22









(4.22)

If we substitute Eq. (4.20) and (4.21) in Eq. (4.22), we get the following equation:

∂H

∂t
+ (u · ∇)H =









G11 G12 G13

G21 G22 G23

G31 G32 G33









(

∂C

∂t
+ (u · ∇)C

)

(4.23)

i.e. Ḣ = GĊ

4.3 The extended matrix logarithm formulation (EMLF)

The proposed transformation by Fattal and Kupferman enforces the eigenvalues of the

conformation tensor to remain positive for all steps of the simulation. However, satisfying

the symmetric positive definiteness (SPD) of the conformation tensor during the simulation

is the necessary condition to achieve stability, but, for the FENE family, one has to consider

that the square of the corresponding finite extensibility parameter of the polymer should

be an upper limit for the trace of the conformation tensor which can be also written as
∑

i

ci < b2 where ci is the ith eigenvalue of the conformation tensor. To mathematically

satisfy these two conditions, we introduce a new method based on the transformation of the

classical constitutive equation. In the first stage, we transform the classical constitutive

equation based on the conformation tensor, C, to a new one based on the tensor J defined

hereafter, which satisfies the condition of Eq. (3.7) at each time step

J =
K

1 − tr(C)
b2

C (4.24)
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where K is a constant.

In the second stage, we transform the tensor J to a so-called matrix logarithm confor-

mation tensor H, following the lead of Fattal and Kupferman in order to obtain positive

eigenvalues for the J and C conformation tensors.

H = ln(J) (4.25)

Substituting Eq. (4.24) into Eq. (3.5) leads to the following evolution equation for the J

conformation tensor:

∂J

∂t
+ (u · ∇)J =J · (∇u)T + ∇u · J − f(J)

[

J-I

KWe

]

+

J

[

tr(J · (∇u)T + ∇u · J)

Kb2
− f(J)

Kb2

(tr(J) − tr(I)

KWe

] (4.26)

where f(J) is a transformation function between C and J conformation tensors, defined

as:

f(J) =
Kb2 + tr(J)

b2
(4.27)

Note that in Eq. (4.26), tr(I) = d for a d-dimensional problem. To finalize our transfor-

mation we need an evolution equation for H = ln(J). The eigenvalues and eigenvectors

of the H conformation tensor are exactly those ones reported in Eq. (4.2)-(4.4)

Evolution of the components of the H tensor is:

Ḣ11 =(n4
1e

−h1 + n4
2e

−h2 + 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙J11+

(2n3
1n2e

−h1 − 2n1n
3
2e

−h2 − 2n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙J12+

(n2
1n

2
2e

−h1 + n2
1n

2
2e

−h2 − 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙J22 = G11

˙J11 + G12
˙J12 + G13

˙J22

(4.28)

Ḣ12 =(n3
1n2e

−h1 − n1n
3
2e

−h2 − n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙J11+

(2n2
1n

2
2e

−h1 + 2n2
1n

2
2e

−h2 + (n2
1 − n2

2)
2 h1 − h2

eh1 − eh2
) ˙J12+

(n1n
3
2e

−h1 − n3
1n2e

−h2 + n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙J22 = G21

˙J11 + G22
˙J12 + G23

˙J22

(4.29)
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Ḣ22 =(n2
1n

2
2e

−h1 + n2
1n

2
2e

−h2 − 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙J11+

(2n1n
3
2e

−h1 − 2n3
1n2e

−h2 + 2n1n2(n
2
1 − n2

2)
h1 − h2

eh1 − eh2
) ˙J12+

(n4
2e

−h1 + n4
1e

−h2 + 2n2
1n

2
2

h1 − h2

eh1 − eh2
) ˙J22 = G31

˙J11 + G32
˙J12 + G33

˙J22

(4.30)

where Ḣij and J̇ij are the components of the material time derivative of the coresponding

matrices which can be expressed by:

Ḣ =
∂H

∂t
+ (u · ∇)H (4.31)

J̇ =
∂J

∂t
+ (u · ∇)J (4.32)

The above system of equations (4.28)-(4.30) can be summarized as:









Ḣ11

Ḣ12

Ḣ22









=









G11 G12 G13

G21 G22 G23

G31 G32 G33

















˙J11

˙J12

˙J22









(4.33)

If we substitute Eq. (4.31) and (4.32) in Eq. (4.33), we get the following equation:

∂H

∂t
+ (u · ∇)H =









G11 G12 G13

G21 G22 G23

G31 G32 G33









(

∂J

∂t
+ (u · ∇)J

)

(4.34)

Along the centerline in the fully developed Poiseuille flow h1 tends to h2. Therefore the

quantity (h1−h2)

eh1−eh2
in Eqs. (4.28)-(4.30) is undetermined. To alleviate this problem, the

limit, e−h1 value has been used instead of the above equations in the centerline.

4.4 The hyperbolic tangent conformation tensor

As we explained in section (4.2), Fattal and Kupferman [69] proposed to reformulate the

classical constitutive equation using a new variable namely logarithmic formulation. This

transformation enforces the eigenvalues of the conformation tensor to remain positive for

all steps of the simulation. However, satisfying the symmetric positive definiteness (SPD)
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of the conformation tensor during the simulation is the necessary condition for stability, but

definitely, it is not the sufficient condition to reach meaningful results. Actually, solving

the constitutive equation in the new formulation, logarithmically, lets the eigenvalues of the

new conformation tensor, H, change from infinite positive to infinite negative, [−∞, +∞],

which enforces the eigenvalues of the classical conformation tensor, C, change from zero

to infinite positive, [0, +∞], (Fig. 4.1a). Reconstructing the classical conformation and

0
h

i

c i

c
i
=eh

i

−∞ +∞

+∞

(a)

−1

0

1

h
i

c i

c
i
=tanh(h

i
)

−∞ +∞

(b)

Fig. 4.1: Typical variation of ci versus hi for a) logarithm formulation, b) hyperbolic

tangent formulation.

viscoelastic stress tensor from infinite positive eigenvalues does not have any physical

meaning. A possible remedy to bound magnitude of the eigenvalues of C tensor is to use

the hyperbolic tangent of the H conformation tensor (Fig. 4.1b). As it is obvious in this

figure, however the variation of eigenvalues of H tensor is in the interval [−∞, +∞], the

eigenvalues of C conformation is totally bounded and contained in the interval [−1, +1]. To

preserve the symmetric positive definiteness of the conformation tensor, it is mandatory to

avoid the negative eigenvalues of C conformation tensor. To do so, we use the enhanced
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format of hyperbolic tangent of the conformation tensor. We transform the classical

constitutive equation based on the conformation tensor, C, to a new one based on the

tensor H defined as:

C =
b2

4
tanh(H) +

b2

4
I (4.35)

or:

C =
b2

4

eH

eH + e-H
(4.36)

This new formulation preserves both SPD of the conformation tensor and also bounds the

magnitute of the eigenvalues of C formulation.

Again the eigenvalues and eigenvectors of the H conformation tensor are exactly those

ones reported in Eq. (4.2)-(4.3) and (4.5)-(4.7) Evolution of the components of the H

tensor is:

Ḣ11 =(
b2

2c1(b2 − c1)
n4

1 +
b2

2c2(b2 − c2)
n4

2 + 2n2
1n

2
2

h1 − h2

c1 − c2
) ˙C11+

(
b2

2c1(b2 − c1)
2n3

1n2 −
b2

2c2(b2 − c2)
2n1n

3
2 − 2n1n2(n

2
1 − n2

2)
h1 − h2

c1 − c2
) ˙C12+

(
b2

2c1(b2 − c1)
n2

1n
2
2 +

b2

2c2(b2 − c2)
n2

1n
2
2 − 2n2

1n
2
2

h1 − h2

c1 − c2
) ˙C22 = G11

˙C11 + G12
˙C12 + G13

˙C22

(4.37)

Ḣ12 =(
b2

2c1(b2 − c1)
n3

1n2 −
b2

2c2(b2 − c2)
n1n

3
2 − n1n2(n

2
1 − n2

2)
h1 − h2

c1 − c2
) ˙C11+

(
b2

2c1(b2 − c1)
2n2

1n
2
2 +

b2

2c2(b2 − c2)
2n2

1n
2
2 + (n2

1 − n2
2)

2 h1 − h2

c1 − c2
) ˙C12+

(
b2

2c1(b2 − c1)
n1n

3
2 −

b2

2c2(b2 − c2)
n3

1n2 + n1n2(n
2
1 − n2

2)
h1 − h2

c1 − c2
) ˙C22

= G21
˙C11 + G22

˙C12 + G23
˙C22

(4.38)
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Ḣ22 =(
b2

2c1(b2 − c1)
n2

1n
2
2 +

b2

2c2(b2 − c2)
n2

1n
2
2 − 2n2

1n
2
2

h1 − h2

c1 − c2
) ˙C11+

(
b2

2c1(b2 − c1)
2n1n

3
2 −

b2

2c2(b2 − c2)
2n3

1n2 + 2n1n2(n
2
1 − n2

2)
h1 − h2

c1 − c2
) ˙C12+

(
b2

2c1(b2 − c1)
n4

2 +
b2

2c2(b2 − c2)
n4

1 + 2n2
1n

2
2

h1 − h2

c1 − c2
) ˙C22 = G31

˙C11 + G32
˙C12 + G33

˙C22

(4.39)

where c1 and c2 are the eigenvalues of the conformation tensor C.

ci =
b2

2

ehi

ehi + e−hi
(4.40)

and hi is the eigenvalues of the conformation tensor H which obtains according to Eq.

(4.2) and (4.3). Ḣij and Ċij are the components of the material time derivative of the

corresponding matrices which can be expressed by Eqs (4.20) and (4.21).

The above system of equations (4.37)-(4.39) can be summarized as:









Ḣ11

Ḣ12

Ḣ22









=









G11 G12 G13

G21 G22 G23

G31 G32 G33

















˙C11

˙C12

˙C22









(4.41)

If we substitute Eq. (4.20) and (4.21) in Eq. (4.41), we get the following equation:

∂H

∂t
+ (u · ∇)H =









G11 G12 G13

G21 G22 G23

G31 G32 G33









(

∂C

∂t
+ (u · ∇)C

)

(4.42)

This topic is an open door for future works in the area of viscoelastic fluids and because

of the lack of time, we only focus on introducing the mathematical formulation for this

promising method and the numerical simulation will be postponed for the future works.

4.5 Problem description

Here, we first investigate the ability of time dependent simulation originally proposed by

Fattal and Kupferman [69] without considering the extended algorithm on a simple un-

steady FENE-P Poiseuille flow in the spectral element framework. Then we study the
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effect of each differential terms in the constitutive equation for both classical formulation

(CF) and log representation (CMLF). Moreover, the influence of boundary condition on

attainable Weissenberg number and accuracy of the results has been considered. We will

observe that applying the log formulation for at least FENE-P fluids is not sufficient for

curing the instability problem observed in numerical simulation in the spectral element

context as opposed to what is observed in the context of low-order finite elements for

Oldroyd-B, Giesekus [102] and Leonov models [130]. Then in the second part the ability

of extended matrix logarithm formulation is compared with CF and CMLF.

The 2-D dependent Poiseuille flow shown in figure 4.2 has been considered in this approach.

The computational domain consists of two parallel fixed walls. A constant nonzero pres-

sure gradient is imposed on the flow. The magnitude of the applied pressure gradient is

selected such that the channel flow rate is equal to one. All data plots shown correspond

to ∆t = 0.002, Re = 1, H = 1, (channel height), L = 4, (channel length), Rµ = 1/9,

b =
√

6. Dirichlet boundary conditions for velocity and viscoelastic stress, imposed at

the inflow boundary, are obtained by computing a steady Poiseuille flow. At the outflow,

natural and velocity Dirichlet boundary conditions are applied. Free or natural boundary

condition means here that velocity and viscoelastic stress tensor are not imposed on the

outflow boundary. Only and only to compare the effect of outflow boundary on the re-

sults in term of convergence, Dirichlet condition for velocity and viscoelastic stress is also

considered. No explicit boundary condition is imposed on the pressure since no pressure

grid point lies on the boundary of the computational domain.

The full analytical prescription of the steady flow has been chosen as the initial condition.

For fluids of the FENE family in spite of the fact no simple expression for H conformation

can be derived analytically, the constitutive equation becomes a set of nonlinear algebraic

equations where for fully developed Poiseuille flow the transverse component of the veloc-

ity is equal to zero and all quantities except the pressure are dependent on y only. The
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set of Eqs. (4.28)-(4.30) become:

0 =(n4
1e

−h1 + n4
2e

−h2 + 2n2
1n

2
2

h1 − h2

eh1 − eh2
)×

(2n1n2(e
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2e
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2
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(4.43)
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We
ψ22)

(4.44)
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∂x1
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We
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(4.45)

where ψ is a symmetric tensor defined as:

ψ = −f(J)
(J-I)

K
− f(J)

Kb2

tr(J) − tr(I)

K
J (4.46)
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and f(J) is given by Eq. (4.27).

The solution of this nonlinear system of equations is obtained numerically by the Levenberg-

Marquardt or Powell’s Dog Leg method with 10−4 initial guess for the H conformation

tensor [131, 145, 7]. Readers are referred to Chapter 3 for comprehensive explanation of

numerical methods.

Fig. 4.2: Poiseuille flow in a planar channel.

4.6 Results and discussion

Results and figures shown in this section are presented in two parts. The first part cor-

responds to the classical matrix logarithm configuration for a time dependent Poiseuille

FENE-P fluid simulation without considering the proposed extended algorithm. In this

part, we show that although the use of log conformation tensor can be helpful to preserve

symmetric positive definiteness of the conformation tensor, it is also mandatory for FENE

family to satisfy the boundness of the conformation tensor. We show that applying the

classical matrix logarithm formulation for the FENE family is not enough to enforce sta-

bility. The second part of this discussion deals with the new extension matrix logarithm

conformation algorithm for a time dependent Poiseuille FENE-P fluid. The influence of

this method on the resulting eigenvalue spectra can also be observed.

4.6.1 Classical Matrix logarithm conformation (CMLF)

To check the ability of the classical matrix logarithm formulation to describe correctly

transient flow such as the generation (constant non zero pressure gradient) and decay of

Poiseuille flow (zero pressure gradient starting from steady Poiseuille flows) at low Weis-
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senberg number, We = 0.5, 4×2 equally sized elements discretization and 4×5 polynomial

degrees in the stream-wise and cross-stream directions have been considered respectively.

Only Dirichlet boundary condition for velocity is imposed at outflow and no boundary

for viscoelastic stress are employed at outlet. The global variations of the nonzero ve-

locity and viscoelastic components with zero initial condition for all flow variables are

shown in Figure 4.3. Since the difference between the log and classical conformation is

indistinguishable only the result of log conformation is represented. The validity of the

classical conformation algorithm to simulate the transient flows has been shown by Fiétier

and Deville [74]. The numerical solution of the classical and log conformation formulation

coincide to 6 significant figures so this guarantees the validity of this algorithm to simulate

the transient flow of viscoelastic fluids.

Fig. 4.3: Generation and decay of planar Poiseuille flow of a FENE-P fluids at We = 0.5

4.6.1.1 Influence of differential terms in the constitutive equation

Most differential constitutive models can be written in the following general form:

∂C

∂t
+ (u · ∇)C − C · (∇U)T −∇u · C +

1

We
Ψ = 0 (4.47)
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which Ψ for the FENE fluids is defined as:

Ψ =
C

1 − tr(C)
b2

− I

K
(4.48)

The corresponding results in this section are due to the parameters given in section 4.5.

Equation (4.47) corresponds to the classical formulation. The relative error of the velocity

field is based on the Euclidian norm computed after 14, 000 timesteps. This number of

time steps is large enough to satisfy the steady state situation at the end and also to en-

sure us that the blow up of the code is not due to the time marching scheme. The infinity

symbol indicates that the computation breaks down during the simulation. In the first

row of Table 4.1 the maximum Weissenberg number one can reach by direct computation

is Wemax = 56. According to the fully developed Poiseuille flow assumption the convec-

tion term in the momentum equation, u · ∇u, and the constitutive equation, (u · ∇)C

should be equal to zero. By imposing directly these two conditions in the momentum and

constitutive equations, no improvement was observed.

To check the origin of the instability in the viscoelastic fluids, two simple test cases have

been done. As explained in the numerical algorithm, the constitutive equation is integrated

at time step n+1 for the configuration tensor using velocity obtained at previous time step.

Then this viscoelastic stress tensor acts as a source term into the momentum equation.

The first test case was using the analytical values for the velocity field. This means that

instead of solving a system of equations, including the mass-momentum and constitutive

equations, only the constitutive equation with prescribed fully developed values of velocity

has been computed. Even though, stable simulation can be carried out well above the pre-

vious critical value, We = 56, magnitude of the relative error for viscoelastic stress is large

for high Weissenberg numbers, O(10−2). At this situation one can reach We = 105 with

very high relative errors for computed variables. In the second test case a fully developed

expression of the viscoelastic stress tensor is prescribed in the mass-momentum equations

which are only solved. As it is obvious in the fifth row of Table 4.1 the computed variables

are obtained with very high accuracy, O(10−12). In other words, considering both the

conformation tensor and viscoelastic stress as prescribed fields leads to a stable computa-

tion. These two easy test cases reveal that the instability generation is definitely due to

the constitutive equation and the coupling between momentum and constitutive equations.

By considering the deformation term, C · (∇u)T + ∇u · C, partially or fully as an an-
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alytical term, the computation can pass the critical value of the Weissenberg number,

We = 56, while the convection term has no effect on the instability. As explained in Ref.

[69] the manifestation of the HWNP may be caused by the failure of polynomial based ap-

proximation to properly represent exponential profiles of the deformation rate developed

by the conformation tensor.

The last row of Table 4.1 corresponds to adding an extra diffusion term, ǫ∆C, to the

constitutive equation. Different values of epsilon varying from 0.01 to 0.0005 have been

considered for this test case. The effect of this extra diffusion term is only on increasing

the number of iterations before breaking down but it has no effect on improving the crit-

ical Weissenberg number. In Table 4.2 the same analysis restricted to the deformation

Different cases relative errors Wecritical

∂C

∂t
+ (u · ∇)C − C · (∇u)T

− ∇u · C + 1

W e
Ψ = 0 ∞ 56

u · ∇u = 0 ∞ 56

u · ∇C = 0 ∞ 56

uanalytical

‖τ−τanalytical‖

‖τanalytical‖
= O(10−2) 105

τanalytical and Canalytical

‖u−uanalytical‖

‖uanalytical‖
= O(10−12)

150
‖p−panalytical‖

‖panalytical‖
= O(10−12)

∂C

∂t
+ [(u · ∇)C − C · (∇u)T

− ∇u · C]analytical + 1

W e
Ψ = 0

‖u−uanalytical‖

‖uanalytical‖
= O(10−2)

110‖p−panalytical‖

‖panalytical‖
= O(10−2)

‖τ−τanalytical‖

‖τanalytical‖
= O(10−2)

∂C

∂t
+ [(u · ∇)C]analytical − C · (∇u)T

− ∇u · C + 1

W e
Ψ = 0 ∞ 56

∂C

∂t
+ (u · ∇)C + [−C · (∇u)T

− ∇u · C]analytical + 1

W e
Ψ = 0

∞

75

∂C

∂t
+ (u · ∇)C − [C · (∇u)T ]analytical − ∇u · C + 1

W e
Ψ = 0

∞

75

∂C

∂t
+ (u · ∇)C − C · (∇u)T

− [∇u · C]analytical + 1

W e
Ψ = 0

∞

75

Adding diffusion term, ǫ∆C, to the constitutive equation ∞ 56

Table 4.1: Analyzing the differential terms in the classical constitutive equations.

term in the classical constitutive equation has been represented. The gist point is that the

velocity gradient has been decomposed according to Ref. [69] in extension, ΩC−CΩ, and

rotation, 2BC, components, where Ω is an anti-symmetric matrix and B is a symmetric
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matrix. The first test case corresponds to solving the constitutive equation with the new

decomposition. The critical Weissenberg number at this situation is the same as before

i.e. equal to 56. In the first and second test cases reported in Table 4.2, the prescribed

extension and deformation terms are directly introduced to the constitutive equation. The

results indicate that there is no enhancement to achieve a higher Weissenberg number. In

the fourth test case we considered the deformation term, consisting of extension and rota-

tion, as an analytical parameter. For this test case, a stable numerical simulation can be

carried out above the critical Weissenberg number, in spite of the fact the relative error

for variables at this critical Weissenberg number is very high.

These analyses reveal that the source of instability is simultaneously inside both the ex-

tensional and rotational terms. The striking point of the log conformation is that the

rotational component operates on log(C) in the same way as it operates on C. The ex-

tensional component operates on log(C) additively. The transformation of the advection

and the source terms is relatively straightforward [69].

Let us focus on the same analysis for the log conformation tensor after transformation

Different cases relative errors Wecritical

∂C

∂t
+ (u · ∇)C − (ΩC − CΩ) − 2BC + 1

W e
Ψ = 0 ∞ 56

∂C

∂t
+ (u · ∇)C − [(ΩC − CΩ)]analytical − 2BC + 1

W e
Ψ = 0 ∞ 56

∂C

∂t
+ (u · ∇)C − (ΩC − CΩ) − [2BC]analytical + 1

W e
Ψ = 0 ∞ 56

∂C

∂t
+ (u · ∇)C − [(ΩC − CΩ) − 2BC]analytical + 1

W e
Ψ = 0

‖u−uanalytical‖

‖uanalytical‖
= O(10−2)

110‖p−panalytical‖

‖panalytical‖
= O(10−2)

‖τ−τanalytical‖

‖τanalytical‖
= O(10−2)

Table 4.2: Analyzing the deformation term of the classical FENE-P constitutive equations.

from classical constitutive equation C in Table 4.3. The general form of the classical

Matrix logarithm formulation can represent as:

∂H

∂t
+ (u · ∇)H = fnonlinear (4.49)

where fnonlinear depends on the rheological model and for FENE-P model is similar to the

right hand side of the equation (4.23). As for the classical representation, the convection

terms in both momentum and constitutive equations have no effect on the instability. The
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validity of this statement has been demonstrated by imposing directly a zero convection

term in the relevant equations. The computation collapses in both cases at We = 56 for

the same discretization as in the classical formulation.

By prescribed fully developed values for the velocity and only solving the constitutive equa-

tion, stable simulation could be obtained with Weissenberg numbers around 100 with low

accuracy for the viscoelastic stress. In contrast by solving only the momentum equation

and imposing directly the fully developed values for viscoelastic stress and conformation

tensor, no restriction to simulate flows at high Weissenberg number was observed. Sim-

ilarly to the classical formulation, the instabilities originate from the constitutive equation.

The other interesting test cases is the investigation of the effect of each nonlinear terms,

u.∇H and fanalytical, in the constitutive equation. If one replaces each term separately with

the corresponding analytical fully-developed term, the computation collapses at We = 56.

In contrast, considering an analytical prescription for the nonlinear term enables one to

reach a Weissenberg number equal to 150. Further analysis shows that the manifestation

of the instabilities is related to the rheological model, fanalytical, and the convection term,

u.∇H as opposed to the classical formulation for which the convection term does not act

on the instability generation.

Different cases relative errors Wecritical

∂H
∂t + u · ∇H = f ∞ 56

u · ∇u = 0 ∞ 56

u · ∇H = 0 ∞ 56

uanalytical
‖τ−τanalytical‖
‖τanalytical‖

= O(10−3) 100

τanalytical and Hanalytical

‖u−uanalytical‖
‖uanalytical‖

= O(10−6)
150

‖p−panalytical‖
‖panalytical‖

= O(10−6)

∂H
∂t + u · ∇H = fanalytical ∞ 56
∂H
∂t + (u · ∇H)analytical = f ∞ 56

∂H
∂t + (u · ∇H)analytical = fanalytical

‖u−uanalytical‖
‖uanalytical‖

= O(10−3)

150‖p−panalytical‖
‖panalytical‖

= O(10−3)
‖τ−τanalytical‖
‖τanalytical‖

= O(10−3)

Table 4.3: Analyzing the log matrix FENE-P constitutive equations.
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4.6.1.2 Influence of outflow boundary condition

Here, the specification of suitable boundary conditions at outflow is considered. Several

kinds of outflow boundary conditions, including natural boundary condition (NBC), veloc-

ity Dirichlet and free viscoelastic stress boundary condition (VDFVSBC) (no viscoelastic

stress is imposed at outflow in this case) and full (velocity and viscoelastic stress) Dirichlet

boundary condition (FDBC) for both velocity and viscoelastic stress are evaluated for 2D-

Poiseuille flow with 4×2 equal spectral elements in the stream and cross-stream directions

respectively. The streamwise velocity field visible in Figures (4.4)-(4.6) is exactly shown

one step before the numerical simulation breaks down at critical Weissenberg number.

Figure 4.4 corresponds to natural boundary condition (NBC) at outflow for critical Weis-

senberg number equal to 19. In both log, top, and classical representation, bottom, the

perturbation is generated at the channel exit indicating that some mismatch occurs at

outflow.

Imposing a Dirichlet boundary condition for velocity (VDFVSBC) at outflow instead of a

natural one (NBC) implies that the perturbation is generated at the end of the domain.

However, the configuration of the perturbation is completely different from the one ob-

tained with outflow natural boundary condition as this can be observed by comparing

Figures 4.4 and 4.5. It must then be emphasized, that a perturbation is generated at the

end of the domain for either outflow natural or velocity Dirichlet boundary condition. Im-

posing Dirichlet boundary condition solely postpones the instability. On the other hand,

no instability is observed at We = 19 for outflow velocity Dirichlet boundary condition.

Figure 4.6 shows the stream wise velocity field where both outflow velocity and viscoelastic

stress Dirichlet boundary condition are imposed at critical Weissenberg number,We = 56.

Imposing this condition allows to obtain the Poiseuille field at the expense of higher rel-

ative errors for other flow variables. However no enhancement is achieved concerning the

attainable maximum Weissenberg number. One can conclude that the instability might

be due to an unsuitable boundary condition at outflow.

One may therefore wonder what is the correct outflow boundary condition when the sys-

tem of equations is solved in a finite domain delimiting an internal flow.
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The constitutive equation is inherently of the hyperbolic type [173], so the time evolu-

tion of the system is governed not only by the state in the interior of the region, but

also by the information brought by incoming characteristics which enter the region. Thus

boundary conditions which describe the incoming waves are required to completely specify

the behavior of the system. The outgoing waves are described by characteristic equations,

the incoming waves may often be specified by a non-reflecting boundary condition [208],

so imposing a Dirichlet boundary condition on the viscoelastic stress at outflow is inappro-

priate, even though doing so was found slightly better in terms of convergence. A critical

value of We = 56 is observed when imposing full Dirichlet boundary condition for both

velocity and viscoelastic stress.

Last but not least, a striking point for this part is that for all three boundary condi-

tions, (NBC), (VDFVSBC), (FDBC), the accuracy of all variables decreases as the Weis-

senberg number increases. For full Dirichlet boundary condition this statement is even

much stronger.
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Fig. 4.4: The effect of boundary condition on the velocity field at We = 19 (natural

boundary condition) top: classical matrix logarithmic formulation , bottom: classical

formulation.

It can be observed in Fig. 4.7a that the maximum relative error with respect to
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Fig. 4.5: The effect of boundary condition on the velocity field at We = 56 (imposing

Dirichlet boundary condition for velocity at outflow) top: classical matrix logarithmic

formulation, bottom: classical formulation.
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Fig. 4.6: The effect of boundary condition on the velocity field at We = 56 (imposing full

Dirichlet boundary condition at outflow) top: classical matrix logarithmic formulation,

bottom: classical formulation.

the fully-developed solution increases as the Weissenberg number increases. This plot
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is obtained for the log representation and three different boundary conditions, natural

boundary condition, Dirichlet boundary condition for velocity and full Dirichlet boundary

condition for both velocity and viscoelastic stress, at outflow. It is really difficult to obtain

accurate results close to the critical values of We. Furthermore the residual norm cannot

be decreased any further by increasing the number of time steps. The same behavior,

increasing magnitude of errors for all variables near the critical Weissenberg number, has

been observed for the classical formulation ( Fig. 4.7b). Figure 4.8 shows the relative

(a) (b)

Fig. 4.7: Typical variation of the relative error on the velocity versus the Weissenberg

number, a)logarithm conformation b) classical conformation, (NEx, NEy) = (4, 2),

(Nx, Ny) = (4, 5).

errors of the stream-wise velocity versus the number of steps at semi-log plot for both log

and classical conformation with ouflow natural boundary condition. At low Weissenberg

number the relative errors are very low since the standard configuration is a little bit

more accurate than the log conformation tensor. Above a given Weissenberg number,

these errors increase with the number of steps at an exponential rate which can be easily

identified by a straight line. A striking point is that both log and classical conformation

tensor break at the same critical Weissenberg number. The effect of different parameters

such as channel length, L, the number of spectral elements in the stream wise, NEx, and

cross-stream, NEy, direction, the polynomial order, Nx and Ny has been considered in

Table 4.4. It is worth to emphasize that outflow velocity boundary condition has been

considered for this test case. The last column corresponds to the relative error of the

velocity field based on the Euclidean norm after some arbitrary number of time steps
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Fig. 4.8: Typical variation of the relative error on the velocity versus the number of time

teps with the outflow natural boundary condition

(14000). The infinity symbol indicates that the simulation broke down after some iterates.

As it is obvious in this table it is very difficult to decide which mesh is more suitable at

high value of We. The other point is that with a fixed number of elements in both stream

wise and cross-stream-wise direction, the instability occurs at low values of We when the

length of channel is reduced. The same observation has been reported by Fiétier [71].

4.6.2 Extended matrix logarithm formulation (EMLF)

According to the previous discussion by directly transforming the classical equation into

the matrix logarithm formulation, the HWNP can not be cured satisfactorily in the con-

text of spectral element. This is in agreement with the findings of Russo and Phillips

[189] when they tried to apply the CMLF to the Oldroyd-B model with this discretization

method. Once again we have to emphasize that the log formulation in the context of finite

element for Oldroyd-B and Giesekus [102] and Leonov models [120] works very well at

high Weissenberg numbers.

Let us now employ the extended matrix logarithm formulation to the classical consti-
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case L (NEx, NEy) (Nx, Ny) We
‖u−uanalytical‖
‖uanalytical‖

1 4 (1,1) (17,11) 24 1.995e-03

2 4 (4,2) (4,5) 25 ∞
3 4 (4,2) (4,5) 55 5.998e-03

4 4 (4,2) (4,5) 56 ∞
5 4 (2,2) (4,5) 66 5.600e-03

6 4 (2,2) (4,5) 67 ∞
7 4 (2,2) (4,7) 44 3.719e-03

8 4 (2,2) (4,7) 45 ∞
9 4 (2,2) (6,5) 60 4.005e-03

10 4 (2,2) (6,6) 61 ∞
11 8 (2,2) (4,5) 67 5.178e-03

12 8 (2,2) (4,5) 68 ∞
13 8 (4,2) (4,5) 65 4.210e-03

14 8 (4,2) (4,5) 66 ∞
15 8 (4,2) (6,5) 59 4.629e-03

16 8 (4,2) (6,5) 60 ∞
17 16 (2,2) (4,5) 67 4.738e-03

18 16 (2,2) (4,5) 68 ∞
19 32 (2,2) (4,5) 67 3.963e-03

20 32 (2,2) (4,5) 68 ∞
21 32 (4,2) (4,5) 67 4.906e-03

22 32 (4,2) (4,5) 68 ∞

Table 4.4: Weissenberg limitation values when the element decomposition of the domain

is fixed and the polynomial orders are varied

tutive equation. The capability of this new algorithm to tackle the high Weissenberg

number will be investigated by linear stability analysis as explained in chapter 6.

First, we considered 4 × 2 equally sized elements and 4 × 5 polynomial degrees in the

x and y directions. We have performed the corresponding time dependent simulation for

both classical and extended matrix logarithm formulation. For the classical approaches,

one could obtain a critical value of the Weissenberg number equal to 56 while for this
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new algorithm one can easily tackle Weissenberg numbers larger than 100. The maxi-

mum relative error for the velocity component in stream wise direction with respect to

the Weissenberg number is shown in Fig. 4.9 for the EMLF, CMLF and CF. This plot

is obtained while imposing only Dirichlet boundary condition for velocity at outflow. At

low values of Weissenberg number the order of the error is very low and increases with

growing We. The behavior of matrix logarithm and classical conformation is very similar

while for the new extended algorithm the accuracy of the results till We = 75 is very good

and decreases at an exponential rate. Nevertheless, the order of accuracy for the new

extended algorithm is better with logarithmic and classical one. To show the reliability of

Fig. 4.9: Typical variation of the relative error on the velocity versus the Weissenberg

number, VDFVSBC, (NEx, NEy) = (4, 2), (Nx, Ny) = (4, 5).

the solution, we investigated error convergence with respect to mesh refinement in both

stream and cross-stream direction at We = 1 and We = 10, for the new extended matrix

logarithm formulation. In Table 4.5 the simulation was performed using 4×2 equally sized

elements for different polynomial degrees. The maximum relative error of the unknown

variables, velocity, pressure and viscoelastic stress is based on the Euclidian norm com-

puted after 14, 000 time steps. At We = 1 mesh refinement experiment in cross-stream

wise direction improves the convergence and accuracy, while mesh refinement in stream

wise direction does not decrease the residual any further. At We = 10, increasing the

polynomial degree in cross-stream wise has a slight effect on decreasing the accuracy. In

contrast, increasing the mesh refinement in stream wise direction causes the computation
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to break down during the simulation. The significant point is that for the first three rows

of Table 4.5 at We = 1 exponential convergence can be observed.

(Nx, Ny)
‖τ−τanalytical‖
‖τanalytical‖

at We = 1
‖τ−τanalytical‖
‖τanalytical‖

at We = 10

4 × 5 5.433e-4 9.980e-4

4 × 7 2.872e-5 3.166e-3

4 × 9 4.429e-7 8.957e-4

4 × 11 1.507e-7 4.805e-4

6 × 5 1.576e-4 4.316e-2

6 × 7 2.814e-5 6.356e-3

8 × 7 2.960e-5 ∞
10 × 7 2.930e-5 ∞
12 × 7 2.862e-5 ∞

Table 4.5: Error convergence analysis for the new extended matrix logarithm formulation,

(NEx, NEy) = (4, 2).

4.7 Conclusion

In this study, we present three different approaches to tackle high Weissenberg number

problem. The first one, classical matrix logarithm formulation, is proposed by Fattal and

Kupferman [69]; i.e. the second, extended matrix logarithm formulation, is published

in [104] and the third one, the tangent hyperbolic, has not yet been implemented. The

capability of the first two formulations in the spectral element context has been considered.

First, the ability of time dependent simulation of the classical matrix logarithm with-

out considering the extended algorithm has been tested on a simple unsteady FENE-P

Poiseuille flow. One of the possible manifestation of HWNP is the failure of polynomial-

based approximation to properly represent the exponential profiles. In this stage, the

influence of each differential terms in the constitutive equation for both log and and clas-

sical representation has been investigated. For classical representation the manifestation

of instability is inside the deformation term, while the source of instability for the matrix

logarithm formulation is simultaneously inside the nonlinear term including convection
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and source terms. The effect of outflow boundary condition reveals that the instability is

highly sensitive to boundary condition. According to the concept of hyperbolic equation,

imposing a Dirichlet boundary condition for viscoelastic stress at outflow has no physical

meaning. However, this type of boundary condition was found slightly better in term of

convergence. For the discretization used in this study the reachable Weissenberg number

by imposing the velocity Dirichlet boundary condition at outflow is 56. Stable simulations

at higher Weissenberg number could be achieved for outflow velocity Dirichlet boundary

condition, than for natural boundary condition. In both cases, a numerical instability has

been observed near the downstream boundary when the Weissenberg number approached

the same critical value.

Another significant point is that the relative errors for the unknown variables, pressure,

velocity and viscoelastic stress fields, are very low at low values of Weissenberg number

and increase with increasing the Weissenberg number.

With the classical matrix logarithm formulation it has been observed that when the Weis-

senberg number approached the critical value the simulation stopped because the necessary

condition that the square of the corresponding finite extensibility parameter of the poly-

mer should be an upper limit for the trace of the conformation tensor was not satisfied.

According to this, we have introduced a new extended matrix logarithm formulation to

enforce this condition. Another surprising result is that using the classical matrix loga-

rithm formulation instead of the classical one in the context of spectral elements at least

for FENE-P does not help to simulate high Weissenberg number flows. This is clearly

different from what has been observed with low-order finite elements, Hulsen et al. [102],

and Kwon [120], and finite volumes, Afonso et al. [4].



Chapter 5

Simulation of abrupt contraction flow

This chapter presents the vortex structure and instability augmentation with increasing the

elasticity in inertial flows in planar contraction and contraction-expansion configuration

for FENE-P fluid. Moreover the re-entrant corner effect on corner vortices is studied. The

calculations are performed using extended matrix logarithm formulation described in the

previous chapter. In this study we are interested in the capability of this algorithm for

complex geometry. This procedure helps to reach higher values of the Weissenberg number

when compared to the classical formulation.

5.1 Introduction

The prediction of viscoelastic flows in complex geometries, such as in expansions or con-

tractions, has both scientific interest and industrial relevance. Understanding entry flow

of viscoelastic fluids is of importance in fundamental flow-property measurement and in

extrusion of polymer melts and solutions. Furthermore, the characteristics of vortices and

flow patterns are of particular interest in the design of extrusion dies.

The four to one contraction problem is one of the benchmark problems that numeri-

cists dealing with non-Newtonian fluids are used to face. This problem is such that the

fluid enters the inflow section usually with a Poiseuille profile, goes through a contraction

where the height of the exit channel is reduced by a factor four with respect to the inlet

dimension and exits the computational domain. The non-Newtonian flows are character-

ized by the presence of corner and lip vortices. Although the geometry looks very simple,

solutions for high Weissenberg (We) or Deborah (De) numbers may not be available. One

of the reasons of this failure comes from the fact that the stress components are not square

integrable at the corner and are locally singular. One of the main issue for the simulation

of contraction flows is the lack of adequate outflow boundary condition. In the past two

75



76 Chapter 5. simulation of abrupt contraction flow

decades, considerable efforts have been devoted to the development of numerical simula-

tion of abrupt contraction flows with various methods.

Kim et al. [117] performed high-resolution solutions for viscoelastic 4:1 planar contrac-

tion flow problems using a transient finite element method based on the fractional step

method (FSM) and stabilization techniques (DEVSS-G/DG) with linear equal-order in-

terpolation function. The fully developed boundary conditions for the velocity and extra

stress field are imposed along the inlet. At the outlet, the Neumann boundary condition

of velocity is imposed, that is, the gradient-free velocity is considered and the pressure

is zero at the outlet. The Oldroyd-B model was used as the constitutive equation. The

vortex intensity and the re-attachment length of corner vortex show good agreement with

the predictions of the high-resolution finite volume method of Alves et al. [11]. The con-

verged solution could be obtained up to We = 2.5 with the finest mesh used in their study.

Alves et al. [11] performed very accurate numerical results for the vortex size, the vortex

intensity and the Couette correction, in planar contraction flows of Oldroyd-B and PTT

fluids with both the linear and the exponential stress function, and with a solvent viscosity

ratio equal to 1/9. The method is utilised by them does not need a Dirichlet condition

for stresses at outlet. In fact, the boundary condition applied is of the Neumann type

(∂τij/∂x) and thus may lead to some localised distortions for the low Reynolds number.

The finest mesh employed had over 1 million degrees of freedom. Such degree of mesh

fineness is shown to be required for accurate results with the Oldroyd-B fluid, especially

at high Deborah numbers, but the shear-thinning PTT fluid in general does not require

such accuracy. No upper limit on De was found for the exponential form of the PTT

constitutive model, while an approximate limit of De ≈ 200 was found for the linear form

Al Moatssime et al. [10] employed a numerical algorithm for the steady flow of vis-

coelastic fluid. The conservative law and constitutive equations are solved using the finite

volume method (FVM) with a hybrid scheme for the velocities and first-order upwind ap-

proximation for the viscoelastic stress. A non-uniform staggered grid system is used. The

iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity

equations. The non-linear algebraic equations over the flow domain are solved iteratively

by the symmetrical coupled Gauss-Seidel (SCGS) method. The full approximation storage

multigrid algorithm is used. An Oldroyd-B fluid model was selected for the calculation.
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Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers,

1.5 ≤ We ≤ 4.5. The fully developed Poiseuille flow is imposed at the inlet and outlet

sections. The solutions are found to be stable and smooth. The solutions show that at

high Weissenberg number the domain must be long enough. The maximum Weissenberg

number which is reported in their paper is We = 4.5. The convergence of the method has

been verified with grid refinement. .

Mompean and Deville [155] performed an Oldroyd-B fluid using the finite volume tech-

nique. All inertia terms in the momentum and constitutive equations are taken into

account and are discretized in space using a quadratic upwind scheme. Case studies have

been conducted in particular for two-dimensional (2D) 4:1 and 3D 4:1:4 planar contrac-

tions. In the entry section, far from the upstream of flow disturbance and assuming there

was no perturbation in the inflow, all values of the extra-stress components vanish. In this

section (entry), a constant value for the pressure is given. In the outlet section the same

procedure is used for the pressure, setting it to zero. For the extra-stress components

homogeneous Neumann condition (zero gradient) is used, assuming that this boundary is

far from flow disturbances. The algorithm was tested up to De = 157. A steady state so-

lution was found for all cases. The size of the corner vortex for the 4:1 planar contraction,

in the 2D case, is in good agreement with previous computations.

Yul Yoo and Na [243] introduced a finite volume technique in an attempt to simulate

the planar 4:1 contraction flow of the Oldroyd B fluid on a non-uniform staggered grid

system, which incorporates the SIMPLER algorithm in discretizing the momentum equa-

tions and the deferred correction method in discretizing the constitutive equations. In the

far upstream region of the contraction, the flow can be approximated as a plane Poiseuille

flow. The full analytical prescription of the steady flow is imposed at the entry while at

the exit the Neumann boundary conditions for the flow variables are imposed. Results

are reported at 0.1 ≤ We ≤ 20. For some combinations of viscoelastic parameters, the

size and shape of the corner vortex growth are shown to be in good qualitative agreement

with those observed experimentally by others for constant viscosity viscoelastic fluids. In

general, however, they seem to be sensitive to the ratio of retardation time to relaxation

time.

Aguayo et al. [5] investigated the numerical solution of viscoelastic flows using two con-
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trasting high-order finite volume schemes. The numerical techniques employed are time-

stepping algorithms: one of hybrid finite element/volume type, the other of pure finite vol-

ume form. The momentum-continuity equations are solved by a fractional-staged Taylor-

Galerkin pressure-correction procedure and invoke a cell-vertex finite volume scheme for

the constitutive law. Fully developed boundary conditions are established at the outflow.

A comparison of the two finite volume approaches is presented, concentrating upon the

new features posed by the pom-pom class of models in this context of non-smooth flows.

Here, the dominant feature of larger shear and extension in the entry zone influences both

stress and stretch, so that larger stretch develops around the re-entrant corner zone as

Weissenberg number increases, whilst correspondingly stress levels decline.

Lee et al. [128] performed finite element modeling of planar 4:1 contraction flow (isother-

mal incompressible and creeping) around a sharp entrance corner for favored differential

constitutive equations such as the Maxwell, Leonov, Giesekus, FENE-P, Larson, White-

Metzner models and the Phan Thien-Tanner model of exponential and linear types. Fully

developed flow conditions are applied for the velocity and conforation tensor at the inlet

but only for the velocity at the outlet. They have implemented the discrete elastic viscous

stress splitting and streamline upwinding algorithms in the basic computational scheme in

order to augment stability at high flow rate. For each constitutive model, the upper limit

of the Deborah number is obtained under which numerical convergence is guaranteed. The

maximum upper limit of Deborah number is reported for Giesekus model with the value of

De = 200. All the computational results are analyzed according to consequences of math-

ematical analysis for constitutive equations from the viewpoint of stability. It is verified

that in general the constitutive equations that was proved globally stable yield convergent

numerical solutions for higher Deborah number flows. Therefore one can get solutions for

relatively high Deborah number flows when the Leonov, the Phan Thien-Tanner, or the

Giesekus constitutive equation is employed as the viscoelastic field equation. The close

relationship of numerical convergence with mathematical stability of the model equations

is also clearly demonstrated.

Alves and poole [14] investigated the upper-convected Maxwell (UCM) model of viscoelas-

tic flow through smooth planar contractions of various contraction ratios with particular

emphasis placed on the divergent flow regime. It is shown that above a critical Deborah

number, the flow becomes unsteady and they used an analysis based on the scaling laws



5.1. introduction 79

of McKinley et al. [149] for purely elastic instabilities to show that the square of this

critical Deborah number varies linearly with contraction ratio in excellent agreement with

the numerical results obtained in their study.

Kwon [120] presented an alternative procedure to derive the tensor logarithmic repre-

sentation of the differential constitutive equation and provided a numerical example with

the Leonov model in 4:1 planar contraction flow using SUPG and SU stabilization tech-

niques. Fully developed flow conditions are applied for the velocity and log-conformation

tensor at the inlet but only for the velocity at the outlet. Dramatic improvement of the

computational algorithm with the stable convergence has been demonstrated. They could

achieve De = 132 with a coarse mesh and De = 193 for a refined mesh.

Webster et al.[230] considered transient flows for planar contractions and Oldroyd-B fluids,

with increasing flow-rate boundary conditions. Velocity components are imposed at inlet

and exit stations, whilst stress is imposed at inlet only. In addition, a pressure level is

set at a boundary exit point, hence removing indeterminacy on ambient pressure. They

employ a novel hybrid finite volume/element time-dependent algorithm. This scheme is

shown to be second-order accurate. The hybrid scheme consists of a Taylor-Galerkin finite

element discretisation, and a cell-vertex fluctuation-distribution finite volume approach.

These two approaches are coupled at each time-step to solve the parabolic/hyperbolic sys-

tem of partial differential equations. The finite element section is applied to the mass and

momentum conservation equations, whilst the hyperbolic constitutive equation is treated

via finite volume discretisation. The application of this time-accurate scheme to complex

flows reveals some novel features, in contrast to time-independent (constant flow-rate)

driving boundary conditions. In particular, they highlight dynamic flow structure evolu-

tion on the field and in stress. Results in this paper are reported at 0.3 ≤ We ≤ 2

Meng et al. [150] developed a new algorithm, which combines the spectral element method

with elastic viscous splitting stress (EVSS) method, has been developed for viscoelastic

fluid flows in a planar contraction channel. The system of spectral element approximations

to the velocity, pressure, extra stress and the rate of deformation variables is solved by a

preconditioned conjugate gradient method based on the Uzawa iteration procedure. The

numerical approach is implemented on a planar four-to-one contraction channel for a fluid

governed by an Oldroyd-B constitutive equation. Fully developed velocity profiles can be
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imposed in entry and exit sections. Moreover, the extra-stress tensor based on a fully de-

veloped flow is only imposed at the entry section. The behavior of the Oldroyd-B fluids in

the contraction channel is investigated for various Weissenberg numbers (0.1 ≤ We ≤ 1.2).

The planar contraction channel flow problems, over the years, have been solved by a variety

of numerical techniques and a non exhaustive list of references is given in the bibliography

[82, 116, 211, 196, 12, 230, 49, 121, 180, 154, 1, 161, 184, 165, 179, 240, 241, 21, 242, 45, 199].

Most of these numericists encounter the same problem, namely the inadequacy of numer-

ical techniques to describe flow regimes specially close to the entrance of contraction.

The aim of this chapter is to introduce and study the capability of extended matrix

logarithm formulation [104] to predict the flow pattern in complex geometry such as 2-D

contraction and contraction-expansion geometry which is very popular in the extrusion

industry. The influence of Weissenberg number, re-entrant corner shape are examined to

investigate corner vortices and augment the instabilities during the simulation.

5.2 Test problems

In this study, first we investigate the behavior of 2-D abrupt contraction flow. The main

goal of this part is the comparison between the classical and extended matrix logarithm

formulation to simulate this singular and complex geometry. In this stage, in particular,

attention is given to the differences in vortex development for inertial flows by increasing

the values of Weissenberg number.

In the second part of this study, we consider an abrupt contraction-extension geometry

in order to predict the flow pattern, The same as before natural boundary condition for

both velocity and viscoelastic stress has been imposed for outflow boundary. Considering

this geometry is one step forward for our future goal for employing periodic boundary

condition. Adopting periodic boundary conditions in stream-wise direction and resorting

to spectral element-Fourier discretization will be considered in our future work.

The 2-D time dependent 4:1 contraction flow is shown in Fig. 5.1. time dependent

simulation means that we start from a specified initial condition to reach the steady state
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of the the flow. Planar contraction consists of two rectangular channels connected by a

plate as shown in Fig. 5.1. Here we consider that the contraction occurs only in one

transverse direction, say y. The contraction can be considered as almost two-dimensional

except in the vicinity of the side walls if the channel extension in the other transverse

direction is large compared to the channel dimension in y-direction. A particular diffi-

culty associated with simulations of viscoelastic flows through abrupt contraction is the

presence of a strong stress singularity at the sharp re-entrant corner. In order to relax the

corresponding numerical constraints, a round edge corner with the radius of R = 0.009D is

employed. This value is selected such that the radius of round corner is very small. Center

line, Y1 = 0.6125D, Y2 = 0.625D and upper wall are those positions which in cross-wise

direction which have been used for comparison between different cases. In this study we

considered D = 1

Fig. 5.2 shows the schematic diagram of a 2-D 4:1 contraction-expansion flow which

is used for the second part of this study. The diameter of round edge is d = 0.125D. For

this test case Y1 = 0.5625D, Y2 = 0.625 and D = 1. For both cases the length of each

channel is considered long enough to ensure the fully developed condition at the end of

the domain. The magnitude of applied pressure gradient is taken to be −0.5 for upstream

channel. The magnitude of the applied pressure gradient is selected such that the channel

flow rate is very small (≈ 0.04). All data plots shown correspond to Re = 1, Rµ = 1/9 and

b =
√

6. The rest state is used as the initial condition for all variables (velocity, pressure

and viscoelastic stress are set to zero). It is worth to say that if we apply exactly zero

initial condition for extended H-conformation tensor the inverse algorithm to transfer H

to C fails. So far, a small value such as 0.0001 is adjusted for H conformation tensor as a

rest value.

Dirichlet boundary conditions for velocity and viscoelastic stress, imposed at the inflow

boundary, are obtained by computing a steady Poiseuille flow. At the outflow boundary,

free boundary conditions are applied. Free or natural boundary condition means here that

velocity and viscoelastic stress tensor are not imposed on the outflow boundary. Here, the

simulations are based on 20000 and 10000 time step with ∆t = 0.0005 for the first and sec-

ond geometry respectively. However for some cases because of instability problems, it was

impossible to end the simulation successfully. “EMLF ′′ and “CF ′′ are the abbreviation of

extended matrix logarithm formulation and classical formulation which have occasionally
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been used in the context.
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Fig. 5.1: Geometry of 4:1 planar contraction flow with different position of height.
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Fig. 5.2: Geometry of 4:1 plannar contraction-expansion flow with different position of

height.
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5.3 Results and discussion

5.3.1 2-D 4:1 planar contraction flow

Two different mesh characteristics are listed in Table 5.1, in which there are 58 elements

for both ones. A uniform polynomial order equal to 7 has been used for Mesh I over the

most of the elements except in the vicinity of the re-entrant corner where it has been

decreased to 4 in order to improve numerical stability. For the second mesh, Mesh II, the

polynomial order increases in each element for both directions. The polynomial order of

10 is employed instead of 7 and 7 instead of 4. We arranged elements in a way that there

is interface matching and no mortar element method is used for this study.

First, we investigate the reliability of the solution for Newtonian, EMLF and CF for these

two different meshes. To do so, we validate the error convergence analysis with respect

to mesh refinement for a Newtonian fluid, EMLF and CF FENE-P model in Table 5.2.

The relative error of velocity is based on the Euclidian norm, ‖vn+1−vn‖
‖vn+1‖

, computed after

20000 time steps and reported in Table 5.2. For Newtonian fluid, EMLF and CF at low

value of the Weissenberg number (We = 0.1) mesh refinement experiment improves the

convergence and accuracy. At higher value of Weissemberg (We = 8) mesh refinement for

EMLF does not improve the accuracy. Whereas for CF, it causes the simulation to break

down during the simulation. The same observation has been reported for other unknown

variables such as viscoelastic stress.

Degree of freedom Mesh I Mesh II

Velocity 5228 10976

Viscoelastic stress 7842 16464

Pressure 1278 3456

number of elements 58 58

Table 5.1: Spectral element mesh characteristic data for contraction geometry

To better understand the convergence rate for both classical and logarithm formulation,

Fig. 5.3 and 5.4 represent the relative error of velocity with respect to iteration number

at different Weissenberg numbers for Mesh I and Mesh II respectively. For both log and
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Mesh Newtonian fluid EMLF

(We = 0.1)

EMLF

(We=10)

CF

(We=0.1)

CF (We=8)

Mesh I 1.002e-12 5.769e-12 2.100e-5 6.144e-13 1.253e-5

Mesh II 6.387e-15 1.511e-12 7.721e-5 1.538e-15 ∞

Table 5.2: Error convergence analysis of the relative error on the velocity, ‖un+1−un‖
‖un+1‖

, for

Newtonian, EMLF and CF FENE-P fluids, Re = 1.

classical formulation we have observed immediate convergence after some iterations at low

values of the Weissenberg numbers. At a critical value of the Weissenberg number,suddenly

the relative error increases exponentially which prevents the successful numerical approx-

imation. For the classical formulation, with the fine mesh at critical value of Weissenberg

number, We = 5, however the rate of convergence is very good but the simulation stops

because Eq. (3.7) is violated.
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Fig. 5.3: Typical variation of the relative error on the velocity versus the iteration number

using Mesh I, left) logarithm formulation, right) classical formulation.

To check the ability of EMLF algorithm to describe correctly transient flow through con-

traction geometry, stream-wise velocity, ux, and first normal viscoelastic stress, τxx, of

both classical and logarithmic conformations are compared at low Weissenberg number,
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Fig. 5.4: Typical variation of the relative error on the velocity versus the iteration number

using Mesh II, left) logarithm formulation, right) classical formulation.

We = 0.1, with Mesh I after 20000 iterations. As shown in Fig. 5.5, the difference between

the log and classical conformation is not distinguishable. The validity of the classical al-

gorithm to simulate complex geometry has been shown by Fiétier [71].

In Fig. 5.6 the stream-wise velocity is plotted along the x axis at different position of Y

for We = 0, We = 0.1, We = 1, and We = 10. The simulations are performed with Mesh

I and the extended matrix logarithm formulation. As shown in this figure, the velocity

overshoots downstream of the corner increase with increasing values of We. This figure

also shows how the velocity overshoots settles down to its fully developed value along the

downstream wall. At We = 10, which is the maximum attainable Weissenberg for this

test case, longer downstream length is required. At low value of Weissenberg number,

We = 0.1, no significant difference is reported between the viscoelastic and Newtonian

fluids.

Fig. 5.7 represents the first normal viscoelastic stress, τxx, along the x-axis. We see the

overshoot and undershoot magnitude of τxx in the vicinity of downstream of re-entrant

corner. Magnitudes of overshooting increase by increasing the Weissenberg number while

the undershoot values increase by decreasing the Weissenberg number. The behavior of
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Fig. 5.5: Comparison between log and classical formulation at low Weissenberg number,

We = 0.1 using Mesh I.

flow, downstream of the re-entrant corner at We = 10 has more deviation from the fully

developed flow and it takes more time to reach the fully developed prescription.

For further investigation, the same type of plots are shown for the shear viscoelastic

stress, τxy. The difference between the values of τxy appears after the re-entrant corner.

The higher Weissenberg number produces higher values of τxy in the second channel. In

contrast, the maximum overshoot or undershoot are obtained for the lower value of the

Weissenberg number.

Fig. 5.9-5.11 indicate the effect of the geometry of the re-entrant corner at two different

Weissenberg numbers, We = 0.1 and We = 10. The values of ux, τxx and τxy in center line

are chosen for comparison between round corner with radius R = .009 and sharp edge.

These test cases have performed with Mesh I after 20000 iterations. These plots show

that stable results could be obtained even with a sharp corner. The maximum attainable

Weissenberg number for both round and sharp corner with Mesh I and EMLF is We = 10

while for the classical formulation this critical value for the same test case and MeshI is

We = 8.
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Fig. 5.6: Comparison of the plots of ux along the stream-wise direction at different values

of We, EMLF using Mesh I.

The stream function, Ψ, for We = 0, We = 1, We = 10 and We = 11 are presented

in Fig. 5.12 for round re-entrant corner. The calculation has been performed with Mesh

I after 20000 iterations with ∆t = 0.0005. For We = 11, the simulation blows up only

after 1268 iterations. At We = 10 negative stream function, dashed line, appears close

to the corner while this is not the case for Newtonian and We = 1. By increasing the

Weissenberg number the maximum value of stream function increases. The same plot is

shown for sharp corner re-entrant in Fig. 5.13. The maximum value of stream function at

We = 10 for sharp corner is higher than that for the round corner. The vortex intensity
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Fig. 5.7: Comparison of the plots of τxx along the stream-wise direction at different values

of We, EMLF using Mesh I.

based on the maximum value of stream function for two meshes, Mesh I and Mesh II,

classical and logarithmic conformation are summarized in Table 5.3. At low values of the

Weissenberg the vortex intensity is constant while by increasing the Weissenberg number

this value increases. The infinity symbol in this table means that the computation breaks

down during the simulation and this symbol “NA′′ means no simulation has been carried

out at this Weissenberg number. This table also reveals that critical Weissenberg for clas-

sical conformation tensor with Mesh I and II is 8 and 5 respectively, while for logarithm

conformation is 10 and 8 respectively.
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Fig. 5.8: Comparison of the plots of τxy along the stream-wise direction at different values

of We, EMLF using Mesh I.

The results of transient computations obtained by extended matrix logarithm formula-

tion, and Mesh I at We = 11 are presented in Fig. 5.14 in terms of stream function. The

results are shown at 6 different times where the last one is the instant when the simulation

breaks down. Very quickly after some iterations the unstable stream functions, close to the

corner, is excited and instabilities are induced to the upper level of the stream function.

The results are represented for round re-entrant corner, meanwhile the same behavior can

be observed for the sharp corner.
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Fig. 5.9: Comparison of ux along center line between round and sharp corner using Mesh

I and EMLF algorithm, left) We = 0.1, right) We = 10
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Fig. 5.10: Comparison of τxx along center line between round and sharp corner using Mesh

I and EMLF, left) We = 0.1, right) We = 10.

It is worth to mention, that no lip vortex onset has been detected with our simulation

for the range of investigated contraction ratios (4:1). This is probably due to relatively

low values of the corresponding extensional viscosity since this parameter has a strong
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Fig. 5.11: Comparison of τxy along center line between round and sharp corner using Mesh

I and EMLF algorithm, left) We = 0.1, right) We = 10.

We MeshI Mesh II

CF (round edge) EMLF (round edge) EMLF (sharp edge) CF (round edge) EMLF (round edge)

0 0.041667 0.041667 0.041667 0.041667 0.041667

0.1 0.041667 0.041667 0.041667 0.041667 0.041667

1 0.041667 0.041667 0.041667 0.041732 0.041667

5 NA NA 0.041873 ∞ NA

8 0.042597 NA NA 0.043376

10 ∞ 0.043268 0.043384 ∞

11 ∞ ∞ ∞

Table 5.3: Vortex intensity as measured by the maximum value of the stream function,

Ψmax

influence on the appearance or not of lip vortices as indicated by Boger [28]. In addition,

the contraction ratio has very strong influence on the vortex growth mechanism since lip

vortices are only present for certain values of this parameter for a given fluid and similar

Weissenberg numbers. The reader is referred to Ref. [12] with a view to classifying the

structure of flows through contractions. Authors have carried out an extensive simulation

program, for various contraction ratios and increasing Deborah numbers, and the resulting

steady-state flow patterns in the contraction plane region were classified as corner vortex,

lip vortex, or as a combination of lip plus corner vortex structures.
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Fig. 5.12: The stream function for EMLF at different Weissenberg number, We = 0,

We = 1, We = 10 and We = 11 using Mesh I and round re-entrant corner.

5.3.2 2-D 4:1 planar contraction-expansion flow

The geometry in this case is the 2D 4:1 planar contraction-expansion flow was shown

in Fig. 5.2. The mesh characteristics are summarized in Table 5.4 in which there are

104 elements. Here, only EMLF was employed to predict the transient flow of this com-

plex geometry. To validate the accuracy of our algorithm first, we compare the values of

stream-wise velocity in center line between Newtonian and FENE-P fluid at We = 0.1. No

distinguishable difference has been detected in this figure (Fig. 5.15). This test case was

extremely expensive in terms of CPU time. The results reported in this section performed

after 10000 iterations.

It is worth to say that the simulations done in this dissertation have been carried out
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Fig. 5.13: The stream function for EMLF at different Weissenberg number, We = 0.1,

We = 1, We = 5 and We = 10 using Mesh I and sharp re-entrant corner.

on single processor. However, SPECULOOS is written in parallel fashion but there are

still some problems in parallelization of viscoelastic part which restricted us to use single

processor. The computer architectures used in our case has summarized in Table 5.5.

For example, 5s simulation of contraction-expansion geometry takes approximately 3 days

running. Fig. 5.16 represents stream function and velocity contour at We = 10 and

stream-wise velocity in center line and Y1 for We = 0.1, We = 5 and We = 10. As for

the previous geometry the overshoot velocity occurs downstream of the first entry and

increases by increasing the Weissenberg number. At We = 10 after obstacle, very small

undershoot appears. The less the fluid elasticity, the fastest the full steady statement.

The stream function plot indicates that the vortex zone of the first entry is larger than

the second entry. The maximum attainable Weissenberg number is 10 < Wecritical < 20.
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t=5.0e10-4 s

We=11

t=0.15 s

t=0.25s

t=0.35 s

t=0.45 s

t= 0.55 s

Fig. 5.14: Predicted stream function of instantaneous flow field, 5 different times using

EMLF, Mesh I and sharp re-entrant corner.

Because of the expense of simulation we did not find the exact value.
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Degree of freedom Mesh III

Velocity 16848

Viscoelastic stress 25272

Pressure 5096

number of element 104

Table 5.4: Spectral element mesh characteristic data for contraction-expansion geometry

pleiades2

Processor Xeon(mono proc)

Nprocs 1

R∞[GFlops/s] 5.6

Memory addressing 64-bit

Memory size 4 GB

Table 5.5: The computer architectures used
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Fig. 5.15: Comparison of stream-wise velocity between Newtonian and FENE-P at We =

0.1.
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Fig. 5.16: Comparison of stream-wise velocity at different Weissenberg number, a) stream

function, b)contour of ux, c) ux in center line d) ux in Y1.

The last two figures 5.17-5.18 show the behavior of first normal viscoelastic stress, τxx,

and shear viscoelastic stress, τxy, along the center line, at Y1 and on the upper wall. In

Fig. 5.17, in center line the maximum value is due to maximum Weissenberg number

while the smallest value corresponds to the minimum Weissenberg number. On the wall

the overshoot value is obtained at We = 5 and this result was not expected. The gist

point in this geometry is that the fully developed condition is reached very quickly after

the second entry even for We = 10 which probably one of the reason why simulation of
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this geometry is more stable than the previous one. We observe the same trend for τxy on

the upper wall and at Y1 in Fig. 5.18.
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Fig. 5.17: Comparison of plots of τxx along the stream-wise direction, at different Weis-

senberg number, left) center line , b)upper wall.
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Fig. 5.18: Comparison of plots of τxy along the stream-wise direction, at different Weis-

senberg number, left) upper wall , b)Y1.
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5.4 Conclusion

In this study, the capability of extended matrix logarithm formulation to predict the flow

pattern for complex geometry such as contraction and contraction-expansion was exam-

ined. The simulation was carried out for the FENE-P fluid in the context of spectral

element method. At low values of the Weissenberg number the convergence rate of the

simulation is very fast and the accuracy of numerical simulation is very high. In contrast,

increasing the Weissenberg number makes the relative error vary exponentially which pre-

vents the successful numerical simulation. The velocity and viscoelastic-stress overshoot

downstream of the entry corner increase with the Weissenberg number. When the level of

elasticity in the flow is enhanced, the simulation takes more time step to reach the fully

developed condition. Therefore, a longer channel length after entry flow is needed. For

the 4:1 contraction geometry, the maximum attainable Weissenberg number by EMLF is

10 while this value for classical formulation is 8. Mesh refinement does not bring any

improvement on the accuracy at critical values of the Weissenberg number. Increasing the

Weissenberg number also enhances vortex intensity as measured as the maximum value

of stream function and also augments the instability close to the re-entrant corner which

propagates in the upstream direction. In this study no lip vortex was detected which is due

to the considered contraction ratio 4:1. We found that employing round or sharp corner

does not have very important improvement to tackle the high Weissenberg number prob-

lem. The maximum attainable Weissenberg number for both round and sharp re-entrant

corner are the same and equal to We = 10. The flow patterns in contraction-extension

geometry are similar to those obtained by contraction flow. The significant difference is

that the corner vortex in the second channel is smaller than the first corner.

One of the key problems in viscoelastic flows is the influence of the outflow boundary

conditions, which may induce numerical instabilities if not well suited. According to our

previous study about the effect of outflow boundary condition for Poiseuille flow, we found

that imposing natural boundary condition introduces instability first in elements which

are close to the outflow region and then propagates in the upstream direction. Adopting

periodic boundary conditions in stream-wise direction and resorting to spectral element-

Fourier discretization might be helpful and this will be considered in our future work.



Chapter 6

Linear Stability analysis

The understanding of viscoelastic flows in many situations requires not only the steady

state solution of the governing equations, but also its sensitivity to small perturbations.

Linear stability analysis leads to a generalized eigenvalue problem (GEVP), whose numer-

ical analysis may be challenging, even for Newtonian fluids, because the incompressibility

constraint creates singularities that lead to non-physical eigenvalues at infinity. For vis-

coelastic flows, the difficulties increase due to the presence of continuous spectrum, related

to the constitutive equations [215].

To evaluate the capability of the extended matrix logarithm formulation (EMLF) in-

troduced in chapter 4 with the classical conformation tensor, comprehensive studies have

been done based on the linear stability analysis to show the influence of this method on the

resulting eigenvalue spectra and explain its success to tackle high Weissenberg numbers.

With this new method one can treat high Weissenberg number flows at values of practical

interest. A neat improvement of the computational algorithm with stable convergence has

been demonstrated in this study.

6.1 Introduction

As presented before, the basic set of flow equations considered in this thesis consists of a

continuity equation stating the incompressibility of the flow, a momentum equation and

a constitutive equation in differential form. Carrying out a linear stability analysis of

steady flows consists of studying the sensitivity of the base flows to infinitesimal pertur-

bations. The equations are linearized as shown in Section 6.2 by decomposition of the

flow variables into their base counterparts and some additional very small perturbations.

In the particular cases of two dimensional planar flows (like e.g. Couette and Poiseuille

flows) of viscoelastic fluids, most authors resort to the introduction of the stream function

99
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instead of the velocity e.g. [235, 234] (and sometimes also pressure e.g. [91], [113]) in

the flow equations. The perturbation is usually introduced in the form of the product

of a function of a transverse coordinate y times a periodic sine or cosine function of the

coordinate x (and possibly z) in the other direction(s) and an exponential function of time

X(y)eikxx+νt (or X(y)eikxx+ikzz+νt). Symmetric boundary conditions in the streamwise

direction are imposed at each inflow and outflow sections. Particular reference cases are

obtained for the Couette and Poiseuille flow of UCM and Oldroyd-B fluids for which a

generalized equation of the Orr-Sommerfeld type involving solely the stream function can

be derived e.g. [90], [186], [113]. The linearized equations may be discretized in the trans-

verse direction y using a Chebyshev-tau spectral method e.g. [236]. After discretization,

a generalized eigenvalue problem of the type: νBX = AX is obtained, where Z is the

vector of unknown coefficients of the variable expansions.

Sureshkumar et al. [204] employed an algorithm to compute the extremal eigenvalues of

a non-Hermitian matrix, based on Arnoldi-orthogonalization in the linear stability anal-

ysis of the viscoelastic Poiseuille flow at high Reynolds numbers. It is shown that this

algorithm is both computationally efficient and accurate in reproducing the most unstable

modes in the pseudo-spectrally discretized eigenspectrum of the original problem. The

Upper Convected Maxwell (UCM), Oldroyd-B and Chilcott-Rallison models are consid-

ered for the linear stability analysis of the high Reynolds number viscoelastic Poiseuille

flow. Results for the UCM model show a large destabilization of the flow compared to

the Newtonian limit, even for low values of flow elasticity, ǫ = We/Re, of the order 10−3,

realized at high Reynolds numbers for We = O(1). Furthermore, it is shown that the

number of spectral modes necessary to obtain converged results increases substantially as

the flow elasticity is increased. A comparison of the linear stability characteristics of the

Oldroyd-B and the UCM models has revealed that the presence of a non-zero solvent vis-

cosity has a pronounced stabilizing effect on the flow. Further stabilization occurs through

the introduction of a finite molecular extensibility in the Chilcott-Rallison model.

Anturkar et al. [16] performed a linear stability analysis of n-layer plane Poiseuille flow.

Asymptotic solutions are constructed at very small and very large wavenumbers. A nu-

merical analysis is carried out by means of a compound matrix method to identify linearly

unstable conditions for wavenumbers of O(1). The governing equations and the boundary

conditions are conveniently formulated for n-layer flow. The investigated parameters in-
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clude the viscosity ratios, the flow rate ratios, the density ratios, the interfacial tensions,

and the Stokes and Reynolds numbers.

Grillet et al. [91] investigated the stability of Phan-Thien-Tanner (PTT) model and the

Giesekus model in planar shear flows. For the PTT equation, instabilities are predicted

for both plane Couette and Poiseuille flows using transient finite-element calculations. A

Chebyshev-τ spectral method is used to confirm that these instabilities are not spurious

or an artefact of the finite element formulation. Mechanisms are proposed based on an

energy analysis of the most unstable mode for each flow. The stability of plane Couette

flow of a Giesekus model is also probed using spectral method and found to be stable

for the range of parameters investigated. However, in pressure driven flow, the Giesekus

model is unstable over a critical local Weissenberg number based on the shear rate at the

channel wall. Grillet et al. [91] presented the complete eigenspectrum for this model in

both Couette and Poiseuille flows.

Keiller [112] performed an investigation of artificial, numerical instabilities occurring

in time-dependent simulation of planar Couette flow for the upper-convected Maxwell,

Oldroyd-B and FENE equations. For creeping flow it is shown that the poor resolution

of a continuous spectrum of singular eigenfunctions may lead to an instability criterion

Wecrit = O(∆x/∆y) where ∆x and ∆y are the resolution scales of the computational

grid in the streamwise and cross-stream directions respectively. Thus the limiting Weis-

senberg number is determined not by the absolute refinement of the grid but the relative

refinement in the cross-stream to streamwise directions. This instability is less severe for

the FENE equation and this is attributed to the lower normal stresses for this equation.

In the presence of inertia there is a further artificial numerical instability for the upper-

convected Maxwell equation (found also by Renardy and Renardy [186]). It is shown that

the presence of an exceedingly small viscous stress component can remove this instability.

An application of eigenfunction analysis of perturbations to study the influence of down-

stream boundary conditions for entry-flow calculations has been proposed by Keiller [113].

It has been shown that the length scale over which the downstream boundary conditions

modify the upstream flow is much smaller than the relaxation length scale of the vis-

coelastic stress towards its fully developed state for large Weissenberg numbers. Steady

entry flows can therefore be computed without extremely long downstream channels since
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the flow characteristic features are not significantly altered by the downstream boundary

conditions.

Wilson et al. [236] provided a mathematical analysis of the spectrum of the linear stabil-

ity problem for one and two layer channel flows of the upper-convected Maxwell (UCM)

and Oldroyd-B fluids at zero Reynolds number. In their study, they investigated how

this structure of the spectrum changes when the flow is changed to include a Poiseuille

component, and as the model is changed from the UCM to the more general Oldroyd-B.

Sureshkumar et al. [205] performed the finite element analysis of linear stability of the

two-dimensional flow past a linear, periodic array of cylinders in a channel, where the

steady-state motion itself is known only from numerical calculations. For a single cylinder

or widely separated cylinders, the flow is stable for the range of Deborah number (De)

accessible in the calculations. The unstable eigenfunction appears as a family of two-

dimensional vortices close to the channel wall which travel downstream. This instability

is possibly caused by the interaction between a shear mode which approaches neutral sta-

bility for De ≫ 1 and the periodic modulation caused by the presence of the cylinders.

Fiétier et al. [73] in contrast to the most published work where the equations have only

been discretized in the cross-stream direction using a formulation with the stream func-

tion, have used the full spatial discretization with spectral elements. They computed the

eigenvalue spectra generated by the spatial and temporal discretizations than the ones in-

herent in the partial differential equations. They investigated the influence of the spatial

discretization, the time schemes, the various operators present in the conservation and

constitutive equations and boundary conditions on the linear stability of the constitutive

models. Fiétier also derives the equations predicting the continuous spectrum of the LPTT

and FENE-P fluids [71].

Recently, Atalik and Keunings [19] have carried out a nonlinear analysis of the temporal

evolution of finite, two dimensional disturbances for Couette and Poiseuille flows of UCM,

Oldroyd-B and Giesekus fluids in both inertial and elastic (i.e. inertialess) regimes. In

order to prevent long-time divergence of the numerical solution, a small amount of stress

diffusivity in the form of the Laplacian of the viscoelastic stress tensor was added in the

constitutive equation. Finite-amplitude quasi-periodic solutions are obtained in the elas-
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tic regime for the Poiseuille flow of Oldroyd-B and Giesekus fluids if the viscosity ratio

Rµ is lower than 0.01. Oscillatory decay of finite perturbations has been observed for all

parameter ranges in the corresponding Couette flows.

6.2 Linear stability analysis

Linear stability analysis is used to determine the sensitivity of the flow to the infinitesimal

perturbations. In order to perform it, the set of governing equations, (3.1), (3.2) and

(4.33), is linearized by looking for a solution composed of perturbation (φ1) added to the

known solution of the steady state base flow (φ0) that satisfies Eqs. (3.1), (3.2), and

(4.33):

φ = φ0 + φ1 (6.1)

where φ represents the unknown variables such as velocity, pressure and conformation

tensor which leads to the following set of relations if only first-order perturbation terms

are retained:

∇ · u1 = 0 (6.2)

∂u1

∂t
= −Re[(u0 · ∇)u1 + (u1 · ∇)u0] + Rµ∇2u1 −∇p1 + ∇ · τ1 (6.3)

τ1 =
1 − Rµ

KWe
J1 (6.4)

∂H1

∂t
= − (u0 · ∇)H1 − (u1 · ∇)H0 + M0{J0 · ∇uT

1 + J1 · ∇uT
0 + ∇u0 · J1 + ∇u1 · J0−

Kb2 + tr(J0)

b2

J1

KWe
− tr(J1)

b2

J0 − I

KWe
− J0

Kb2

Kb2 + tr(J0)

b2

tr(J1)

KWe

J0
tr(J0 · ∇uT

1 + J1 · ∇uT
0 + ∇u0 · J1 + ∇u1 · J0)

Kb2
+ J1

tr(J0 · ∇uT
0 + ∇u0 · J0)

Kb2

− J0

Kb2

tr(J1)

b2

tr(J0) − tr(I)

KWe
− J1

Kb2

Kb2 + tr(J0)

b2

tr(J0) − tr(I)

KWe
}+

M1{J0 · ∇uT
0 + ∇u0 · J0 −

Kb2 + tr(J0)

b2

J0 − I

KWe
+

J0
tr(J0 · ∇uT

0 + ∇u0 · J0)

Kb2
− J0

Kb2

Kb2 + tr(J0)

b2

tr(J0) − tr(I)

KWe
}

(6.5)

To linearize the matrix M in Eq. (4.33), a first order Taylor development has been applied

to each component of this matrix, which leads to Eq. (6.5). At this stage we introduced
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a perturbation to the full semi discrete problem (the discretization will solely be applied

to space coordinates) of the type:

φ = Φeνt (6.6)

This leads to the following set of equations:

∇ · U1 = 0 (6.7)

νU1 = C(U0,U1) + Rµ∇2U1 −∇P1 + ∇ · T1 (6.8)

T1 =
1 − Rµ

KWe
J1 (6.9)

νH1 = NLU + NLH (6.10)

where

C(U0,U1) = −Re((U0 · ∇)U1 + (U1 · ∇)U0) (6.11)

NLU = −U1 · ∇H0 + M0

[

J0 · ∇UT
1 + ∇U1 · J0 + J0

tr(J0 · ∇UT
1 + ∇U1 · J0)

Kb2

]

(6.12)

NLH = − (U0 · ∇)H1 + M0{J1 · ∇UT
0 + ∇U0 · J1 −

Kb2 + tr(J0)

b2

J1

KWe
−

tr(J1)

b2

J0 − I

KWe
+ J0

tr(J1 · ∇UT
0 + ∇U0 · J1)

Kb2
+

J1
tr(J0 · ∇UT

0 + ∇U0 · J0)

Kb2
− J0

Kb2

Kb2 + tr(J0)

b2
−

J0

Kb2

tr(J1)

b2

tr(J0) − tr(I)

KWe
− J1

Kb2

Kb2 + tr(J0)

b2

tr(J0) − tr(I)

KWe
}+

M1{J0 · ∇UT
0 + ∇U0 · J0 −

Kb2 + tr(J0)

b2

J0 − I

KWe
+

J0
tr(J0 · ∇UT

0 + ∇U0 · J0)

Kb2
− J0

Kb2

Kb2 + tr(J0)

b2

tr(J0) − tr(I)

KWe
}

(6.13)

U0, U1, P1, H0, H1, M0, M1 represent the variables in linear discretized equations.

Adopting the notation of Fiétier and Deville [73], the above equations can be written in

operator matrix form:

νBx = Ax (6.14)

where xT = [P1,U1,H1] and

B =









0 0 0

0 I 0

0 0 I









(6.15)
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and

A =









0 ∇ · (I) 0

−∇(I) C(U0, I) + Rµ∇2(I) ∇ · (I)
0 NLU NLH









(6.16)

Applying this equation leads to a generalized eigenvalue problem whose unknown eigen-

values ν, are obtained by using the dgegv routine of the LAPACK library [15].

6.3 Problem description

In this chapter, a comprehensive study of the capability of the extended matrix logarithm

formulation (EMLF) is performed based on the linear stability analysis. This stability

analysis has been used to study the effect of spatial discretization. In this approach

we study the effect of mesh refinement on the resulting eigenvalue spectra. However the

problem description has been explained in chapter 4, here we mention the main points once

again. The 2-D time dependent Poiseuille flow as shown in previous chapter (figure (4.1))

has been considered in this approach. A constant nonzero pressure gradient is imposed on

the flow. The magnitude of the applied pressure gradient is selected such that the channel

flow rate is equal to one. All data plots shown correspond to ∆t = 0.002, Re = 1, H = 1,

(channel height), L = 4, (channel length), Rµ = 1/9, b =
√

6. Natural boundary condition

is applied at outflow boundary. No explicit boundary condition is imposed on the pressure

since no pressure grid point lies on the boundary of the computational domain. The full

analytical prescription of the steady flow has been chosen as the initial condition. The

numerical methods are exactly the same as those explained in section 4.6.

6.4 Results and discussion

The results of this chapter deal with the extended matrix logarithm formulation algorithm

for a time dependent FENE-P fluid. The influence of this method on the resulting eigen-

value spectra can be observed. Here we apply the extended matrix logarithm formulation

(EMLF) to the classical constitutive equation.

The numerical eigenspectrum consists of three sets of eigenvalues (a) a continuous spec-

trum related to the constitutive equation (b) a discrete spectrum that represents the
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physical stability characteristics of the flow (c) a spurious eigenspectrum that comes from

an artifact of the spatial discretization of the differential eigenvalue problem [215].

The linear stability analysis for viscoelastic fluids flow is really challenging. All the results

in the sequel are obtained with natural boundary condition at the outflow section. It is

worth to mention that the methodology to obtain the spectra is similar to that used by

Fiétier and Deville [73]. In their paper, these authors have shown that a good approxima-

tion of whole continuous part of the spectrum for PTT and FENE-P equations has been

obtained with this approach.

6.4.1 Influence of Weissenberg number

First, we considered a single element with polynomial order 16 by 10 in stream-wise and

cross-wise direction. The selection of these polynomial degrees in stream and cross-wise

directions is due to the fact that the simulation was performed using 4 × 2 equally sized

elements and 4× 5 polynomial degrees in the x and y directions. In this case the number

of degrees of freedom for the linear stability analysis is exactly the same as the num-

ber of unknowns for both velocity and viscoelastic stress in the simulation. Figure 6.1

shows the influence of Weissenberg number on the eigenspectrum of this new algorithm

at Weissenberg 10−4, 10, 50 and 100. At We = 10−4 all eigenvalues are located in the

half negative real eigenspectrum. Overall, the Poiseuille flow of a FENE-P model with

one spectral element at We = 10−4 is found unconditionally stable and no dangerous

eigenmodes were observed for algorithms. This figure shows that increasing the Weis-

senberg number expands the eigenvalues along the imaginary axis and also distributes the

eigenvalues along the x-axis. On the other hand, the eigenspectrum obtained by linear

stability analysis is sensitive to the Weissenberg number and increasing the Weissenberg

number can generate dangerous eigenvalues, which are located in the right-hand half plane.

To investigate the effect of spectral element decomposition on the results we considered

4 × 2 equal space elements with polynomial degrees 4 × 5 in stream and cross-stream di-

rection respectively, at four different Weissenberg numbers equal 10−4, 10, 50, 100, Figure

(6.2). In this test case, dangerous eigenvalues can be observed in the right-hand half plane.

This plot reveals that element decomposition could be a source of instability for the nu-

merical simulation of viscoelastic fluids. The visible effects of increasing the Weissenberg
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real part of eigenvalues
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Fig. 6.1: Eigenspectrum of the Poiseuille flow of a FENE-P fluid, single element,

(Nx, Ny) = (16, 10) at We = 10−4, We = 10, We = 50, and We = 100, NBC.

number from 10−4 to 100 are the expansion of the eigenspectrum along the imaginary axis

and the distribution of dangerous and spurious modes along the positive x-axis. We would

real part of eigenvalues
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Fig. 6.2: Eigenspectrum of the Poiseuille flow of a FENE-P fluid, (NEx, NEy) = (4, 2),

(Nx, Ny) = (4, 5) at We = 10−4, We = 10, We = 50, and We = 100, NBC.

like to emphasize that we have performed the corresponding time dependent simulation



108 Chapter 6. linear stability analysis

for both classical (CF) and extended matrix logarithm formulation (EMLF) for the condi-

tions mentioned above while imposing Dirichlet boundary condition for velocity at ouflow.

For the classical approaches, one could obtain a critical value of the Weissenberg number

equal to 56 while for this new algorithm one can easily tackle Weissenberg numbers larger

than 100.

6.4.2 Influence of mesh refinement

Let us now inspect the effect of mesh refinement on the eigenspectrum of the new ex-

tended formulation. Figure 6.3 represents the effect of mesh refinement in x-direction for

a single element at We = 10 and three different polynomial degrees, (Nx, Ny) = (16, 10),

(24, 10), and (40, 10). The effect of mesh refinement in the x-direction on eigenspectrum

is more visible in the imaginary axis direction than in the real axis direction. Furthermore

refining the mesh in the x-direction extends the distribution of eigenspectrum in the imag-

inary axis direction. The larger real parts of dangerous eigenvalues are produced with the

coarsest mesh. In contrast, mesh refinement in the cross-stream direction distributes the

real part of eigenvalues
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Fig. 6.3: The effect of mesh refinement in the stream wise direction for a Poiseuille flow

of a FENE-P fluid at We = 10, single element, NBC.

eigenspectrum more along the negative real axis direction as it is shown in figure 6.4.

To better understand the effect of mesh refinement in both stream and cross-stream direc-

tions the mesh was modified with another procedure, by considering constant polynomial
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Fig. 6.4: The effect of mesh refinement in the cross-stream direction for the Poiseuille flow

of a FENE-P fluid at We = 10, single element, NBC.

degree and increasing the number of elements in both directions. From the numerical

point of view, the elemental decomposition has an important influence on numerical in-

stability observed for simulation of viscoelastic flows with spectral element. Fig. 6.5a and

b shows the effect of mesh refinement by increasing the number of elements in stream and

cross-wise direction respectively at We = 10 and polynomial degrees 5 × 8 and 10 × 4 for

Fig. 6.5a and b respectively. By increasing the number of elements in the stream wise

direction, the eigenspectrum is shifted to the right hand side of the real axis. Even, one

could achieve positive real eigenvalues by refining the mesh in this direction. On the other

hand, increasing the mesh refinement in the stream wise direction increases the number of

stream wise wave numbers that can be taken into account but also contributes to expand

the eigenvalues spectrum towards the right-hand half plane which may be detrimental to

the stability. This means that mesh refinement in x-direction by increasing the number of

elements could be one of the source of numerical instability. It is worth mentioning that

coarse mesh in spectral element method automatically acts like a filtering to eliminate the

spurious modes at the expense of less accurate solutions. The effect of mesh refinement in

the cross-stream direction by increasing the number of elements in this direction shifts the

whole spectrum to the left hand side. Moreover, when increasing the number of elements

in cross-wise direction the spectrum tends to pack along the imaginary axis.
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Fig. 6.5: The effect of mesh refinement in the a) stream wise, (Nx, Ny) = (5, 8) and b)

cross-wise direction, (Nx, Ny) = (10, 4) for a Poiseuille flow of a FENE-P fluid at We = 10,

NBC.

6.4.3 Influence of finite extensibility

Figure 6.6 shows the influence of the extensibility parameter, b, for (NEx, NEy) = (4, 2)

and (Nx, Ny) = (4, 5) at We = 1 in the stream and cross-wise direction respectively. The

Oldroyd-B model can be considered as a particular case of the FENE-P model when b →
∞. In this analysis the more dangerous eigenvalues correspond to the smaller extensibility

parameter. In contrast to the numerical results obtained for classical FENE-P model by

Fiétier and Deville [73] for the similar test case, the extensibility parameter does not have

any stabilizing effect on this new algorithm. Therefore the proposed algorithm can also

deal well with the Oldroyd-B model.

6.5 Influence of outflow boundary condition

The influence of outflow boundary conditions at We=100 can be observed in figures 6.7

and 6.8. Here, only natural (NBC) and periodic (PBC) boundary conditions have been

considered. Periodic boundary condition means that the unknown variables at inflow
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Fig. 6.6: The effect of finite extensibility parameter for the Poiseuille flow of a FENE-P

fluid at We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (4, 5), NBC.
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Fig. 6.7: Influence of the boundary conditions on the spectrum, single element, (Nx, Ny) =

(16, 10) at We = 100.

and outflow grid points are exactly the same. Figure 6.7 corresponds to 1 element and

16 × 10 polynomial degrees in stream wise and cross-wise direction. In figure 6.8, we

considered (NEx, NEy) = (4, 2) and (Nx, Ny) = (4, 5). For periodic boundary condition

more positive eigenmodes are observed in the right-hand half plane. Moreover, using
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natural boundary condition expands the eigenspectrum along the imaginary axis while for

periodic boundary condition the eigenspectrum is more compressed along the y-axis. The

instability generation might be due to an unsuitable boundary condition at outflow. The

same results were observed for We = 1, 10 and 50.
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Fig. 6.8: Influence of the boundary conditions on the spectrum, (NEx, NEy) = (4, 2),

(Nx, Ny) = (4, 5) at We = 100.

6.6 Conclusion

In this study the capability of the proposed extended matrix logarithm formulation (EMLF)

of the conformation tensor in the spectral element context has been considered. With

the classical matrix logarithm formulation (CMLF) it has been observed that when the

Weissenberg number approached the critical value the simulation stopped because the

necessary condition that the square of the corresponding finite extensibility parameter of

the polymer should be an upper limit for the trace of the conformation tensor was not

satisfied. According to this, we have introduced a new extended matrix logarithm formu-

lation (EMLF) to enforce this condition. We comprehensively studied the improvement

of this new algorithm on the eigenspectrum with linear stability analysis. It shows that

element decomposition is one of the main source of instability in the spectral element con-

text. On the other hand, the comparison of results obtained with the single element and
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multi-element configuration shows that the more dangerous eigenmodes are related to the

multi-element composition. This means that, the positive real eigenvalues for the single

element decomposition have smaller magnitude than for the multi-element decomposition.

Moreover, increasing the Weissenberg number distributes the eigenvalues in the right-hand

half plane with large magnitude of positive real parts. This can be one of the reason of

instability of numerical simulation. In spite of this, the new extended algorithm enables

one to obtain stable simulation of viscoelastic flows at Weissenberg number with values of

practical interest i.e. larger than 100 for this specific mesh. There are still some associated

problems that must be considered and investigated in the future as the accuracy of the

results when approaching the critical values is very low and refining the mesh proved to be

not very helpful. In particular, it is compulsory to understand more deeply the mechanism

of instability generation. A comprehensive study about the growth of spurious modes with

time evolution, mesh refinement and boundary condition or any other affected parameters

is necessary. This would help in defining an appropriate filtering technique to stabilize

simulations. This investigation will be presented in Chapter 7.
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Chapter 7

Filter-based stabilization technique

The challenge for computational rheologists is to develop efficient and stable numerical

schemes in order to obtain accurate numerical solutions for the governing equations at

values of practical interest of the Weissenberg number, We, i.e. within the range [0-150].

One of the associated problems for numerical simulation of viscoelastic fluids is that the

accuracy of the results when approaching critical values at which numerical instabilities

occur is very low and refining the mesh proved to be not very helpful. In this study, to

understand more deeply the mechanism of instability generation a comprehensive study

about the growth of spurious modes with time evolution, mesh refinement, boundary con-

ditions and Weissenberg number or any other affected parameters has been performed.

Then to get rid of these spurious modes the filter based stabilization of spectral element

methods proposed by Boyd [32] in modal basis and Fischer and Mullen in nodal basis

[75] was applied. This filter technique is very useful to eliminate spurious modes for one

element decomposition, while in the case of multi-element configuration, the performance

of this technique is not ideal. Since the performance of filter-based stabilization of spec-

tral element acts very well for one element decomposition, one possible remedy to solve

the associated problem of multi-element decomposition is mesh-transfer technique which

means: first mapping the multi-element configuration to one element configuration, ap-

plying filter-based stabilization technique to this new topology and hereafter transfering

the filtered variables to the original configuration. This way of implementing filtering is

very useful for the Oldroyd-B fluids when a moderate number of grid points is used.

7.1 Introduction

One of the worst obstacle for numerical simulation of viscoelastic fluids is the presence

of spurious modes during the simulation. At high Weissenberg number, many schemes

suffer from instabilities and numerical convergence may not be attainable. This is often

115
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attributed to the presence of solution singularities due to the geometry, the dominant

non-linear terms in the constitutive equations, or the change of type of the underlying

mixed-form differential system [109, 107]. In the past two decades, considerable efforts

have been devoted to the development of robust and stable numerical methods for simulat-

ing non-trivial flows of complex fluids. Without any exception, the standard viscoelastic

models like Oldroyd-B, Maxwell, Phan-Thien-Tanner, FENE-P, etc. have failed in the

simulation of high Weissenberg number flows in any available numerical techniques such

as: finite difference, finite volume, finite elements, spectral elements, etc. [173].

In the framework of the spectral element method [60] for simulation of fluid flows, severe

stability problems have also been encountered, especially when facing problems having

weak physical diffusion. Actually, spectral approximations are much less numerically dif-

fusive than low-order ones and according to this drawback, even minor errors can make the

simulation unstable. To remove nascent instabilities induced by numerical techniques or

infirmity of constitutive equation, applying stabilization methods or filtering is compulsory.

Upwind techniques are introduced to ensure stability and prevent unphysical upstream

propagation of disturbances. An example is provided by Marchal and Crochet [144]. They

applied the so-called streamline upwind (SU) method to the constitutive equation, which

consists of adding an artificial, first-order, stream-wise diffusion term to the classical weak

form of the constitutive equation. In the context of finite element methods, it was shown

by Rosenberg and Keuning [188] that global upwinding techniques may produce inaccurate

results in regions of steep velocity gradients. The streamline integration scheme, which

in essence is a method of characteristics applied to the purely hyperbolic constitutive

model, leads to stable and accurate stress predictions even close to singularities. The key

advantage in using streamline integration is that it does not produce cross-stream diffu-

sion, which can distort in a non-negligible way, the stress field near boundary layer regions.

The SUPG formulation [33] induces numerical damping in the constitutive equation which

has the well-known effect of stabilizing the solution. This formulation has been used suc-

cessfully by Chauvière and Owens for the benchmark problems relative to the steady

flows of a sphere falling in a tube and past a cylinder in a channel, using spectral elements

[43, 42]. In these papers, additional stabilization has been obtained by using an element

by element (EE) solver technique. This technique benefits from the hyperbolic character
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of the constitutive equation. First, the elements, are ordered according to their location

along the streamline, then the constitutive equation is solved on each element, which

makes possible the use of a direct solver. The inflow boundary conditions are obtained

from the upstream elements determined by following the streamlines or the problem inflow

boundary conditions.

Another alternative classical upwind method for finite element is the discontinuous Galerkin

or Lesaint-Raviart method, which has been applied to viscoelastic flows by Fortin et al.

[77]. The viscoelastic stress is approximated discontinuously from one element to the next.

The continuous Galerkin approach has been shown to present stability and convergence

properties similar to those of the SU method [105].

Gerritsma and Phillips [85, 84] have recommended the use of discontinuous approximation

of the extra-stress between spectral elements for non-smooth problems i.e. problems with

singularities or stress boundary layers. They have claimed that a continuous extra-stress

approximation can not reproduce jumps in the velocity gradient approximation without

generation of spurious oscillations in the whole computational domain. They have also

suggested that the extra-stress approximation be at least the same as that of the velocity

approximation within one spectral element on a non-staggered grid, so that a well-posed

problem is obtained. Although they brought proofs of their statements only for Stokes

flows, it is likely that such a formulation can be also applied to the viscoelastic stress tensor.

Another stabilization method is called the elastic-viscous stress-splitting (EVSS) method

[222, 183, 185] which is based on adding an elliptic contribution in the weak form of the

momentum equation. There are two principal features associated with this method, stress-

splitting and recovery of velocity gradients. For smooth viscoelastic flows, Khomami et

al. [115] have demonstrated that for steady state problems, the EVSS formulation cou-

pled with upwinding for the constitutive equation (and likewise hp schemes), provides a

more stable discretisation than a standard formulation (either Galerkin or EVSS/Galerkin)

without upwinding. Marginal stability improvements are noted for EVSS above conven-

tional stress equation treatments. In the same context, Rajagopalan et al. [185] have

shown, for a wide range of solvent viscosities, that the EVSS scheme is more accurate

and stable than two alternative choices, namely the viscous and explicit elliptic momen-

tum equation (EEME) schemes. Another modification so called DEVSS (D stands for
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discrete) of the initial EVSS method has been proposed by Guénette and Fortin [93]. The

formulation is based on the introduction of the rate of deformation tensor as an additional

unknown. Contrary to the popular EVSS method, no change of variable is performed into

the constitutive equation. The main advantage of this method relies on the fact that it

extends to more complicated rheological models where it is difficult or impossible to per-

form a change of variable into the constitutive equation. Moreover, this method is easier

to implement since the constitutive equation remains unaltered. Recently, Fan, et al. [68]

have proposed an alternative to the EVSS-based formulations related to the concept of

Galerkin/least square perturbations proposed by Franca et al. [78]. The Galerkin/least-

square method consists of adding to the usual Galerkin method terms that are functions

of the residual of the Euler-Lagrange equations evaluated element wise. The added per-

turbation terms are designed to enhance stability of the original Galerkin method; since

the Euler-Lagrange equations are satisfied by the exact solutions consistency is preserved

in this method.

Other stabilization methods have been recently proposed in the spectral element con-

text like the so-called bubble stabilization technique by Canuto et al. [36] or collocation

techniques with modified grid by Funaro [81]. According to our knowledge, until recently

their use has been applied only to Newtonian flows.

Boyd [32] proposed a simple filter which satisfies the same boundary condition. The

key idea is to rewrite variables in term of new basis functions, modal basis, which indi-

vidually satisfy homogeneous boundary conditions and then apply the filter to modify the

coefficient of these basis functions without disturbing the boundary conditions. The filter

sum can then be converted back into the original Chebyshev or Legendre basis.

Mullen and Fischer [75] have proposed the same filter as Boyd but in nodal basis for

spectral element methods to remove instabilities induced by the nonlinear convection term

in the momentum equation. The filter is applied after each time step on an element by

element basis to both velocity and stress fields.

Fischer et al. [76] employ the filter-based stabilization technique for development and

implementation of an efficient spectral element code for simulating transitional flows in

complex three-dimensional domains. Critical to this effort is the use of geometrically non-
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conforming elements that allow localized refinement in regions of interest, coupled with a

stabilized high-order time-split formulation of the semi-discrete Navier Stokes equations.

Till now this filtering has been applied to Newtonian flow.

The aim of this chapter is to apply the filter-based stabilization technique for the simulation

of viscoelastic flows. To understand more deeply the mechanism of instability generation,

a comprehensive study about the growth of spurious modes with time evolution, bound-

ary condition, mesh refinement, finite extensibility parameter and Weissenberg number

has been done. Then to get rid of these nascent instabilities, the filter-based stabilization

technique is applied. At the end of our discussion we more focus on the mathematical

property of the constitutive equation and we investigate the effect of different parameters.

The C++ toolbox SPECULOOS [66] has been used and adapted to handle this simulation

and analysis.

7.2 Filter-based stabilization technique

Despite the success of the spectral element methods (SEM) in the applications of among

many examples, incompressible flows, severe stability problems have also been encoun-

tered, especially when facing problems having weak physical diffusion. These problems

result from the fact that spectral approximations are much less numerically diffusive than

low-order ones, even minor errors and under resolution can make the calculation unstable

[239]. For a long time, numerous filtering techniques have been proposed to overcome the

stability problem. In the frame of spectral element approximations it is however, essential

to preserve the inter-element continuity, as discussed in [32]. One of the most recent and

successful filtering technique in the framework of spectral element method for Newtonian

fluid specifically for large eddy simulation is that one has been proposed by Boyd [32] in

modal basis. It is based on interpolations in physical space: Given the variable υ on a

Gauss-Lobatto-Legendre (GLL) mesh with (N + 1)d nodes per element (where d is the

space dimension and N is the degree of the polynomial approximation in each direction),

in each element one uses the polynomial interpolate to compute υ at the Nd nodes-GLL

mesh, so that one obtains a new polynomial approximation, the degree of which in each

direction is then N − 1. Using this polynomial one interpolates back on the initial grid.

This filter of the highest frequencies is applied at each time step. An important advantage
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of the technique is that inter element continuity and boundary conditions are preserved.

In this study to get rid of instabilities of viscoelastic fluids which are induced by ei-

ther numerical origin or mathematical modeling of constitutive equation or coupling of

both sources, we apply the filter-based stabilization technique at the end of each time step

of mass-momentum and constitutive equations. The filtering operation is performed by

applying a given transfer function to a modal basis.

7.2.1 Description of the filter

In this section we adopt the notation of section 5.4 of Roland Bouffanais’s thesis [30]. The

modal basis introduced in the p-version of finite elements and first used by Boyd [32] as

filtering technique is presented in its one-dimensional version, the extension to two and

three dimensions being straightforward by the use of tensor products. It is built up on

the reference parent element Ω̂ = [−1; 1] of the spectral element method as:

φ0 =
1 − ξ

2
φ1 =

1 + ξ

2

φj =Lj(ξ) − Lj−2(ξ) 2 ≤ j ≤ N ξ ∈ Ω̂ = [−1, 1]

(7.1)

where Lj is the Legendre polynomial of degree j. Unlike the Lagrange-Legendre nodal

basis used in our spectral element calculations, this modal basis forms a hierarchical set

of polynomials allowing to define in an explicit and straightforward manner a low-pass

filtering procedure. Any variable υ can be expressed in this basis by the relation:

υ(ξ) =
N

∑

j=0

ῠjφj(ξ) (7.2)

where ῠ is unknown variable in modal bases. In matrix notation one reads:

v = Φv̆ (7.3)

where

Φij = φj(ξi) (7.4)

The filtering operation is performed in the spectral modal space through a diagonal matrix

K whose components are chosen in order to fulfill the required properties of the filter. The

filtering process for a one-dimensional problem is expressed by:

v̄ = ΦKΦ−1v = Gv (7.5)
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7.2.2 Transfer function

C0-continuity, conservation of constants, invertibility and low-pass filtering are obtained

by properly choosing the transfer function represented by the diagonal transfer matrix K.

As the filter acts in another basis than the one used for our spectral element calculations,

C0-continuity is preserved if the boundaries of the elements are not affected by the filtering

procedure. One can notice that the only shape functions having non-zero values at the

element boundaries are φ0 and φ1, while φj , j ≥ 2 are bubble functions. The functions

φ0 and φ1 that are linear Lagrange interpolants are responsible for imposing the non-zero

values on element edges, i.e. C0-continuity. Therefore, the transfer function coefficients

must satisfy the relationship:

Kij = δij i, j ≤ 1 (7.6)

with δij the Kronecker operator. If Kij verifies Eq. (7.6), the constants are conserved

after filtering because they are expressed as a linear combination of φ0 and φ1. The modal

filter is not projective if all diagonal coefficients Kii are non-zeros. The last required

property is to perform low-pass filtering in frequency. As this modal basis forms a hierar-

chical set of polynomials, low-pass filtering is done by damping the high-degree polynomial

contributions. The transfer matrix is expressed by:

Kij = δijκ(i) (7.7)

with the continuous transfer function

κ(k) =
1

1 + (η max(0,k−n)
N )2

η ≥ 0 (7.8)

where η is a filtering rate and n is an integer constant depending on the constitutive equa-

tion. Here κ(k) = 1 for k ≤ n.

The effect of filtering rate, η, on 1-D unity spectrum for Oldroyd-B and FENE-P has

been shown in Fig. 7.1. As it is obvious in this figure, the largest value of η means the

sharpest shape of filtering for eliminating the modes. This is the reason why we chose

η = 10 for this study.

To satisfy the condition of Eq. (7.6), it is necessary to impose n ≥ 1. To perform an

appropriate low-pass filtering for viscoelastic fluids, first we computed the analytical spec-

trum of the constitutive equation in modal basis with Nx = 9 and Ny = 9. We observed
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Fig. 7.1: Filtering 1-D unit spectrum for different values of the filtering rate, η = 1.25,

η = 2.5, η = 5, η = 10, a) Oldroyd-B, b) FENE-P

that for Poiseuille Oldroyd-B and FENE-P flows one has to preserve the first three and

four physical modes, respectively. According to this observation, n = 2 for Oldroyd-B and

n = 3 for FENE-P model could be suitable values. To more clarify, in Fig. 7.2, one element

unity spectrum is filtered with three different shape functions at filtering rate, η = 10. In

this study we have used the two last ones (c) and (d) for Oldroyd-B and FENE-P models

respectively. This shape of transfer function is similar to that one classically used in Refs.

[30].

7.2.3 Problem description

In this study, to understand more deeply the mechanism of instability generation, a study

about the growth of spurious modes with time evolution, has been done. The effect of

different parameters such as mesh refinement, boundary conditions, Weissenberg number,

and finite extensibility has been investigated. To do so, first we compute the difference

between the spectrum obtained by simulation and that one obtained by analytical one

with time evolution for each variable in modal basis. The analytical spectrum of the

modal basis has been derived from the full prescription of the steady flow. For fluids of

the FENE family in spite of the fact that no simple expression for H conformation tensor

can be derived analytically, the constitutive equation becomes a set of nonlinear algebraic



7.2. filter-based stabilization technique 123

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nx

Ny

un
it 

sp
ec

tr
um

(a)

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nx

Ny

un
it 

sp
ec

tr
um

(b)

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nx

Ny

un
it 

sp
ec

tr
um

(c)

1
2

3
4

5
6

7
8

9
10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nx

Ny

un
it 

sp
ec

tr
um

(d)

Fig. 7.2: Filtering one element unit spectrum, η = 10, a) unit spectrum, b) Newtonian

fluids n=1, c)Oldroyd-B n=2, d)FENE-P n=3

equations, where for the fully developed Poiseuille flow the transverse component of the

velocity is equal to zero and all quantities except the pressure are dependent on y only

[104, 74]. Analytical solutions are available for an Oldroyd-B fluid as reported in [74, 229].

Moreover, to investigate the influence of element decomposition we consider both multi-

element and single element decompositions.

In a second stage, to get rid of these spurious modes, filter-based stabilization of spectral

element methods proposed by Boyd is applied to both FENE-P and Oldroyd-B fluids.

To verify the influence of element decomposition on this filter, we consider both single

and multi-element decomposition. This filter acts better for the single element comparing

the multi-element decomposition. According to this fact, a new technique to apply this
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filter, the so called mesh-transfer technique, is proposed. The details of this method are

explained in [30, 31]. Let us summarize the main principles of mesh-transfer technique by

following the notation of Bouffanais et al. To provide a new mesh topology, it is manda-

tory to transfer some information from the previous mesh to the new one. The main

requirement imposed to this so-called mesh-transfer operation is to conserve the spectral

accuracy of the SEM. As it has been explained in previous chapter the velocities and vis-

coelastic stress are expanded over a GLL grid and the pressure over a GL one. Therefore

the mesh-transfer technique must be capable of transferring fields defined over GL and

GLL grids.

Let us consider two meshes M1 and M2 corresponding to different mesh topology of

the same computational domain and the mesh-transfer operation from M1 to M2. In the

sequel, the following decompositions in terms of spectral elements is assumed:

Ωi ∪ ∂Ωi =

Ei
⋃

e=1

Ωe
i for i = 1, 2. (7.9)

As the computational domain remains unchanged, for each spectral element Ωe
2, of M2

we have:

Ωe
2 ⊂ (Ω1 ∪ ∂Ω1) ∀e = 1, ..., E2 (7.10)

Due to Eq. 7.10 the mesh-transfer technique only requires an interpolation procedure.

Let us note the physical location of the set of GLL grid points of a spectral element Ωe2
2 ,

(e2 = 1, ..., E2) by xe2

ij,2 with (i = 1, ..., Nx,2 + 1; j = 1, ..., Ny,2 + 1), Nx,2 (resp. Ny,2)

being the order of the polynomial interpolation in the x-direction (resp. y-direction) for

the mesh M2 (with the same notations, Nx,2 and Ny,2 can be different from Nx,1 and Ny,1

respectively). The proposed algorithm can be summarized in three steps:

• Find the spectral element Ωe1
1 of M1 containing xe2

ij,2;

• Determine the position re1

1 of xe2

ij,2 within the parent element Ω̂e1
1 of Ωe1

1 ;

• Compute the value of the field at the point xe2

ij,2 given re1

1 , the GLL Lagrangian

interpolation basis and the values of the field at the GLL grid points of Ωe1
1 .

xij and r1 are the physical and parent coordinates respectively.
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In the third stage, we focus on the mathematical property of the constitutive equation for

the FENE-P family. We examine the effect of Weissenberg number, mesh refinement and

time step. The 2-D time dependent Poiseuille flow shown in Fig. 7.3 has been considered

in this approach. Here, time dependent simulation means that we start from a specified

initial condition based on the full prescription of the fully-developed steady flow for all

variables by analytical (Oldroyd-B) or numerical (FENE-P) to reach the steady state of

the the flow. The computational domain consists of two parallel fixed walls. A constant

nonzero pressure gradient is imposed on the flow. Magnitude of the applied pressure gra-

dient is selected such that the channel flow rate is equal to one. All data plots shown

correspond to Re = 1, H = 1, (channel height), L = 4, (channel length), Rµ = 1/9,

b =
√

6 unless other values are specified. Dirichlet boundary conditions for velocity and

viscoelastic stress, imposed at the inflow boundary, are obtained by computing a steady

Poiseuille flow. At the outflow boundary, free boundary conditions are applied. Free or

natural boundary condition means here that velocity and viscoelastic stress tensor are

not imposed on the outflow boundary. To compare the effect of outflow boundary on the

results, Dirichlet condition for velocity is also considered. No explicit boundary condition

is imposed on the pressure since no pressure grid point lies on the boundary of the compu-

tational domain. The full analytical prescription of the steady flow has been chosen as the

initial condition. The set of equations (3.1), (3.2) and (3.6) are discretized in space and

time with numerical techniques have been explained in section 4.6 and with more details

in Chapter 3.

(a) (b)

Fig. 7.3: a)Poiseuille flow in a planar channel, b) typical mesh decomposition.

7.3 Results and discussion

The first part of results is devoted to obtain the modal spectrum of stream-wise velocity,

first normal stress and shear stress with respect to the time evolution for the FENE-P
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model. The three variables are non-zero quantities in 2-D fully developed Poiseuille flow

and the spectra in the appearance not the magnitute would be roughly the same. An

investigation of the influence of various mesh and physical parameters has been carried

out. Here, the numerical results of simulation are based on 3000, 4000 and 5000 time steps

as a maximum number of iterations with ∆t = 0.002. However for many cases because

of instability problems, the numerical simulation blows up sooner than the chosen time

step. it was impossible to finish the computation successfully. The first figure of each set

represents the spectrum of the fully analytical prescription of the steady flow. Depending

on the number of time steps which simulation successfully passes before blow up, we repre-

sent maximum norm of unknown variable, |υ∗
analytical − υ∗

simulation|, at five different times.

First and last time steps are considered for every cases, but for intermediate simulations,

we pay more attention to the instant when modes are excited. The variables in the label

of the figures and tables are named with superscript ′∗′ which means the spectrum of that

variable on the modal basis are considered.

Then in the second part of the simulation, we apply the filter-based stabilization method

for the FENE-P and Oldroyd-B models. In contrast with the previous works, which em-

ployed the filter based stabilization method element by element, we propose a new way

of filter implementation. The capability of this technique will be discussed with more

details in the following section. In the last part of this study we focus on the appearance

of numerical instabilities for the FENE-P constitutive equation during the computation.

This simulation is based on ∆t = 0.002 and ∆t = 0.0002. Because of instability problems,

the numerical simulation blows up before reaching the end of the time integration. Also,

we investigate the effect of different parameters such as Weissenberg number and mesh

refinement on the computational results.

7.4 Results without filtering

7.4.1 Influence of Weissenberg number

Table 7.1 and Fig. 7.4-7.5 represent the effect of Weissenberg number at We = 100,

We = 10 ,and We = 1 respectively. These time dependent simulations have been done

for (4× 2) elements and (6× 6) polynomial degree in stream-wise and cross-wise direction
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respectively with outflow natural boundary condition. The reason for selection (6 × 6)

polynomial order is that this is the maximum polynomial degree enabling completion of

time dependent simulation at We = 1 with natural boundary condition. These simulations

are based on 5000 time steps with ∆t = 0.002. However, for We = 100 and We = 10,

because of instability problems, the numerical simulation blows up sooner than the chosen

time step. The first figure in each set represents the spectrum of the full analytical

prescription of the steady flow of first normal viscoelastic stress component. Table 7.1

represents the maximum variation of the modal spectrum of the first normal stress with

respect to the analytical one at time step 1, 5, 7, 11 and 13. The results show how fast

the spurious modes are generated and excited during the simulation at We = 100. We

observed that the first excited modes are induced at two last elements near the outflow

region and immediately penetrate upstream and cover the whole domain. At We = 10,

Fig. 7.4, around time steps 101, spurious modes make observable deviation from the

analytical one and till time step 3180 where significant difference between simulation and

analytical values occurs, the numerical simulation continues. At We = 1, Fig. 7.5 the

simulation is done successfully and the magnitude of unphysical modes at the end of the

simulation is of the order of 10−3.

The effect of Weissenberg number for single element at (7 × 7) polynomial degree

Time step 1 5 7 11 13

|τ∗
xxanalytical − τ∗

xx| 10−3 11 12 14 25

Table 7.1: Maximum variation of modal spectrum of τxx with time evolution at b2 =

6, We = 100, (NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and Natural outflow boundary

condition.

are shown in Fig. 7.6 and Table 7.2. According to the fact that this is the maximum

polynomial degree enabling completion of time dependent simulation at We = 1 with

natural boundary condition, we chose this polynomial degree to investigate the influence of

Weissenberg number on the modal spectrum. Magnitude of spurious modes at We = 100,

Table 7.2, and We = 10, Fig. 7.6 for single element are less severe than those obtained by

the multi-element decomposition. The presence of these spurious modes causes the loss of

accuracy of the variables at the end of the simulation.
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We Time step 1 101 1001 4001 5000

100 |τ∗
xxanalytical − τ∗

xx| 0.03 1.50 1.00 3.00 2.50

10 |τ∗
xxanalytical − τ∗

xx| 0.08 0.90 0.35 0.38 0.40

Table 7.2: Maximum variation of modal spectrum of τxx with time evolution at at b2 = 6,

(NEx, NEy) = (1, 1), (Nx, Ny) = (7, 7) and Natural outflow boundary condition.

7.4.2 Influence of mesh refining

Fig. 7.7 and Table 7.3 show the effect of mesh refining at We = 1 with outflow natural

boundary condition for (4 × 2) element in stream and cross-wise direction respectively.

Three different polynomial degrees (7 × 7), (8 × 8), and (10 × 10) are chosen for this test

case with 5000 time steps and ∆t = 0.002. For each of polynomial degree, the simulation

was never successful. As it is obvious in this figure the most excited modes are concen-

trated in two last elements close to the outflow region. These unphysical modes grow very

fast and after 100 iterations the simulation blows up. As mentioned before for polynomial

degree, (6 × 6) one can carry out the simulation accurately as shown in Fig. 7.5. In fact,

increasing the polynomial degree by only one order, from 6 to 7, causes this instability

problem so it is worth enough to discuss more mathematically the effect of increasing of

polynomial degrees on results to understand the effect on the simulation. Discussion about

this fact is postponed till Section (7.5.3).

(Nx, Ny) Time step 1 2 15 25 34 35 45 56

(8, 8) |τ∗
xyanalytical

− τ∗
xy| 0.01 0.25 - 3.50 - - 4.50 3.50 × 109

(10, 10) |τ∗
xyanalytical

− τ∗
xy| 0.01 0.70 3.00 - 200.00 5 × 105

Table 7.3: Maximum variation of modal spectrum of τxy with time evolution at b2 = 6,

We = 1, (NEx, NEy) = (4, 2) and Natural outflow boundary condition.

Let us consider, the effect of mesh refining by increasing the polynomial degree is consid-

ered for single element at We = 1, and outflow natural boundary condition for (10 × 10)

and (15×15) polynomial degrees. The maximum number of time step is chosen 3000 with

time interval equals to ∆t = 0.002. On the corresponding Figures (7.8-7.9), it may be

observed again that the unphysical modes are induced and excited during the simulation.
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Magnitude of these nasty modes are O(10−1) and O(10+10) for these two polynomial de-

grees respectively. By increasing the polynomial degree the growth of spurious modes is

enhanced and this is the reason why for (15 × 15) polynomial degree after 51 time steps

the simulation breaks down, while for (10 × 10) polynomial degree the simulation can be

carried out till 3000 time steps.

7.4.3 Influence of finite extensibility parameter

Let us now inspect the effect of the extensibility parameter, b, on the modal spectrum of

stream-wise velocity. Fig. 7.10 and Table 7.4 represent the effect of finite extensibility

parameter for (4×2) elements and (6×6) polynomial degree at We = 1 in stream and cross-

wise direction respectively. The Oldroyd-B model can be considered as a particular case

of the FENE-P model when b −→ ∞. For all these three finite extensibility parameters

b2 = 60, b2 = 6×103, and b2 = 6×106, numerical simulation blows up after some iteration.

We have to emphasize that one can do time dependent simulation successfully while using

finite extensibilty equals to b2 = 6 with the same conditions, Fig. 7.5.

b2 Time step 1 11 21 41 51 81 101 121

60 |V ∗
x analytical − V ∗

x | 0.10 0.12 0.35 - 0.70 80.00

6 × 103 |V ∗
x analytical − V ∗

x | 0.12 0.14 - 1.00 - - 2.50 14.00

Table 7.4: Maximum variation of modal spectrum of Vx with time evolution at We = 1,

(NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and Natural outflow boundary condition.

The influence of the finite extensibility parameter, b, on single element at We = 1 can

be observed in Figures 7.11-7.12 and Table 7.5. Outflow natural boundary condition is

imposed with (12×12) polynomial degree. The reason for selecting this polynomial degree

for this test case is that (12× 12) is the maximum polynomial degree enabling completion

of simulation at We = 1 and b2 = 6 with natural boundary condition. So by increasing

the finite extensibility parameter we can investigate its effect on the modal spectrum.

These test cases correspond to 5000 time steps as a maximum number of iterations with

∆t = 0.002. At b2 = 6, however some spurious modes grow during the simulation but the

maximum difference of numerical spectrum and analytical one is O(10−4), which is a very

satisfactory result. Increasing the finite extensibility boosts magnitude of spurious modes
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and causes unsuccessful simulation.

b2 Time step 1 25 30 50 100 114 200 280 310

60 |V ∗

x analytical − V ∗

x | 0.16 0.50 - 0.80 1.50 350.00

6 × 103 |V ∗

x analytical − V ∗

x | 0.23 - 0.85 - - - 3.00 3.30 2 × 1013

Table 7.5: Typical variation of modal spectrum of stream-wise velocity with time evolution

at We = 1, (NEx, NEy) = (1, 1), (Nx, Ny) = (12, 12) and Natural outflow boundary

condition.

7.4.4 Influence of outflow boundary condition

The influence of outflow boundary condition at We = 1 can be observed in Figures 7.13

and 7.14. Here, only Dirichlet boundary condition for velocity (nothing imposed for the

viscoelastic stress tensor) at outflow is considered. Fig. 7.13 corresponds to (4 × 2) ele-

ments and (7 × 7) polynomial degree in stream-wise and cross-wise direction. The main

reason for selection this polynomial degree is that it is impossible to do simulation at this

order with natural boundary condition at We = 1, so we are interested in investigating

the effect of other outflow boundary condition on stabilizing results. In Fig. 7.14, we

consider single element and (15 × 15) polynomial degree at We=1, which is an unsta-

ble case with natural boundary condition. This analysis has been done with 3000 time

steps as a maximum number of iteration at ∆t = 0.002. Comparison of Fig. 7.13 and

7.7 reveals that the numerical simulation is sensitive to the outflow boundary condition.

Actually by imposing Dirichlet velocity boundary condition at outflow one can finish the

time dependent simulation successfully and get an accurate enough result. The order of

error of spurious modes at the end of simulation is O(10−3) for shear stresss, which is in

contrast with those obtained by natural outflow boundary condition. The same behavior

is observed for single element by comparison between Fig. 7.14 and 7.9.

Now it is clear that the outflow boundary condition has very important effects on the

manifestation of instabilities. Imposing natural boundary condition at outflow governs

the system not only by the state in the interior of the region, but also by the informa-

tion brought by incoming characteristics which enter the region. Furthermore, imposing

natural boundary condition introduces instability first in elements which are close to the
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outflow region and afterwards these spurious modes penetrate upstream very fast. So

imposing Dirichlet velocity boundary at outflow was found better in term of convergence

and stabilization. We would like to emphasize that imposing periodic boundary condition

for both velocity and viscoelastic stress at inflow and outflow boundary condition, induces

the same behavior in the growth of instabilities alike imposing only velocity boundary

condition at outflow.

7.5 Results with filtering

7.5.1 Influence of filter-based stabilization of spectral element method

After reporting a comprehensive study about the mechanisms of instability and investigat-

ing the effect of different parameters on the growth of instabilities, let us inspect the effect

of filter-based stabilization techniques proposed by Boyd. However, the idea behind the

filter based stabilization of Boyd in modal basis and Fischer in nodal basis is the same, in

this study, we only considered the Boyd’s stabilization technique. The results reported in

this section are obtained by multi-element configurations and those obtained by single ele-

ment are skipped. To enable one to compare the results, for different cases, only the modal

spectrum of shear stress is shown, however non-zero spectra, stream-wise velocity and first

normal stress in 2-D poiseuille flow, have the same behavior in the growth of instabilities.

For more details about the parameters of filtering and shape function refer to section 7.2.1.

Regarding the previous analysis, concerning the effect of mesh refinement at We = 1

for (4 × 2) elements in the stream and cross-wise directions, the maximum polynomial

degrees in both direction enabling completion of time dependent simulation with time

interval ∆t = 0.002 and natural outflow boundary condition successfully is (6 × 6), if no

filtering is used. To check the capability of this filter based technique we start with polyno-

mial degree (7×7). Fig. 7.15 represents the effect of applying the considered filter at each

time step during the simulation. Even though this filter is useful to eliminate spurious

modes, there are still some unphysical modes that remain till the end of the simulation

leading to an error of the order of O(10−2) and decrease the accuracy of results. Com-

paring this result with Fig. 7.7 clarifies the difference between filtered and non-filtered

cases for the same conditions. As it is obvious in Fig. 7.7, simulation without employing
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filtering for (7 × 7) polynomial degree stops after 103 time steps because of the presence

of the unstable modes, O(103).

Table 7.6 also indicates the effect of imposing of filter based stabilization technique for

(10×10) and (15×15) polynomial degrees and (4×2) element in the stream and cross-wise

directions. Applying this filter for polynomial order (10 × 10) also cures the significant

unphysical modes, but for polynomial degree (15 × 15) employing filter based technique

only postpones the fast growth of nasty modes and after 2541 iteration simulation stops.

(Nx, Ny) Time step 1 11 131 301 401 1001 1501 2541 3001

(10, 10) |τ∗

xyanalytical
− τ∗

xy| 0.01 0.14 0.50 - - 0.01 0.01

(15, 15) |τ∗

xyanalytical
− τ∗

xy| 0.01 - - 0.01 1.40 - 14.00 35.00

Table 7.6: Maximum variation of modal spectrum of τxy with time evolution after applying

filtering at b2 = 6, We = 1, (NEx, NEy) = (4, 2) and natural outflow boundary condition

The effect of filter based stabilization technique for Oldroyd-B fluids is shown in Fig. 7.17.

Oldroyd-B is considered as a particular case of the FENE-P model when b −→ ∞. This

test case corresponds to (4 × 2) elements and (6 × 6) polynomial degree in stream and

cross-wise direction at We = 1 and natural boundary condition. After 3000 iterations with

∆t = 0.002, because of appearence of spurious modes of order O(10), the simulation ends

with an unphysical numerical solution. However, without employing the filter-based tech-

nique simulation stops very soon, after 121 iterations (Fig. 7.10), but applying filtering

only postpones the time of excitation of nasty modes and their growth.

7.5.2 Influence of mesh-transfer technique

What we observed in the previous section was that applying the filter-based stabilization

technique as such on the elements for the FENE-P model could be useful to damp and

eliminate spurious modes, but at the end of the simulation some spurious modes still re-

main and increasing the polynomial degree proved to be not very helpful. Applying this

filter for Oldroyd-B model only postpones the time when the instability sets in and the

numerical simulation and the performance of this technique is not ideal for Oldroyd-B.

According to our observation, we found that the performance of this technique while using
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a one element decomposition is better than for a multi-element decomposition. Proba-

bly, decomposition of elements in the x-direction is an obstacle for this technique due to

the presence of interfaces between elements. One possible remedy to solve the associated

problem of multi-element decomposition is to employ a mesh-transfer technique. As we

explained in section 7.2.3, at each time step, one has to map the multi-element to a sin-

gle element configuration, where one employs the filter-based stabilization technique and

then transfers back to the filtered variable to the first topology. To do so, we choose

three different test cases. Fig. 7.18 represents the results for FENE-P model for (15× 15)

polynomial degree, while Fig. 7.19 and Table 7.7 correspond to the same test cases for

Oldroyd-B with (6 × 6) and (15 × 15) polynomial degrees respectively. These test cases

have been carried out for (4× 2) element in the stream and cross-wise directions and with

natural outflow boundary condition at We = 1 and ∆t = 0.002.

In Fig. 7.18, at each time step first we map a (4 × 2) and (15 × 15) element and poly-

nomial degree topology to single element with (61 × 61) polynomial order, then we apply

filter-based stabilization for this simple topology and afterwards transfer back each fil-

tered variable to the original configuration. To preserve the spectral accuracy we map

the multi-element configuration to a single one with a polynomial order at least equals to

the maximum number of nodes for multi-element configuration in each direction. In the

above configuration the number of nodes in stream and cross-wise direction are 61 and 31

respectively. So as a maximum number of nodes we chose the single element topology with

(61 × 61) polynomial degree. Inspection of Figures 7.18 and Table 7.6 reveals that ap-

plying mesh-transfer technique enhances the performance of filter-based stabilization and

also decreases the penetration of nasty waves. After 4000 time steps the order of error for

mesh-transfer technique, Figure(7.18), is O(1) while without employing the mesh-transfer

technique, the order of error after 2541 iterations in Table 7.6 is O(10).

In Fig. 7.19, first we map (4×2) and (6×6) element and polynomial degree configuration

to a new topology with one element and (25 × 25) polynomial degree (this polynomial

degree is chosen with the same reason as explained above), apply the filtering and transfer

back to the original mesh. Results clearly reveal that employing mesh-transfer technique

for Oldroyd-B is very efficient. The order of error of modal spectrum of shear viscoelastic

stress after 4000 iterations is O(10−5), which is impossible to obtain the same accuracy

while using filter-based stabilization technique, element by element, Fig. 7.17.
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The same behavior is also observed in Table 7.7. Again we transfer our configuration,(4×2)

elements with (15 × 15), to a single element by (61 × 61) polynomial degree. This time

dependent simulation has been done for 4000 time steps with ∆t = 0.002. The maximum

relative error at the end of the simulation is ordered of O(10−3), which is less accurate

than the previous test case. So far, we can conclude that way of implementing filtering

is very useful for Oldroyd-B when a moderate number of points is used for one element

intermediate grid.
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Fig. 7.4: Typical variation of modal spectrum of τxx with time evolution at b2 = 6, We =

10, (NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=101, d)time

step=1001, e)time step=3001, f)time step=3180



136 Chapter 7. filter-based stabilization technique

5

10

15

20

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

−5

0

5

10

15

20

25

Nx

Ny

τ* xx
an

al
yt

ic
al

(a)

5

10

15

20

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0

1

2

3

4

5

6

7

8
x 10

−3

Nx
Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(b)

5

10

15

20

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0

1

2

3

4

5

6

7

8
x 10

−3

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(c)

5

10

15

20

25

1
2

3
4

5
6

7
8

9
10

11
12

13
14

0

1

2

3

4

5

6

7

8
x 10

−3

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(d)

Fig. 7.5: Typical variation of modal spectrum of τxx with time evolution at b2 = 6, We = 1,

(NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and Natural outflow boundary condition, a) full

analytical prescription of the steady flow, b) time step=4501, c)time step=4801, d)time

step=5000



7.5. results with filtering 137

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

−5

0

5

10

15

20

25

Nx

Ny

τ* xx
an

al
yt

ic
al

(a)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

0.01

0.02

0.03

0.04

0.05

0.06

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(b)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

0.5

1

1.5

2

2.5

Nx
Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(c)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

1

2

3

4

5

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(d)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

1

2

3

4

5

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(e)

1
2

3
4

5
6

7
8

1
2

3
4

5
6

7
8

0

1

2

3

4

5

Nx

Ny

|τ* xx
an

al
yt

ic
al−τ

xx*
|

(f)

Fig. 7.6: Typical variation of modal spectrum of τxx with time evolution at b2 = 6, We =

10, (NEx, NEy) = (1, 1), (Nx, Ny) = (7, 7) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=101, d)time

step=4001, e)time step=4501, f)time step=5000
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Fig. 7.7: Typical variation of modal spectrum of τxy with time evolution at b2 = 6,

We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (7, 7) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=10, d)time

step=50, e)time step=100, f)time step=103
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Fig. 7.8: Typical variation of modal spectrum of τxy with time evolution at b2 = 6, We =

1, (NEx, NEy) = (1, 1), (Nx, Ny) = (10, 10) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=101, d)time

step=1001, e)time step=2001, f)time step=3000
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Fig. 7.9: Typical variation of modal spectrum of τxy with time evolution at b2 = 6, We = 1,

(NEx, NEy) = (1, 1), (Nx, Ny) = (15, 15) and Natural outflow boundary condition, a)full

analytical prescription of the steady flow, b) time step=1, c)time step=5, d)time step=20,

e)time step=50, f)time step=51
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Fig. 7.10: Typical variation of modal spectrum of Vx with time evolution at b2 = 6× 106,

We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=11, d)time

step=21, e)time step=61, f)time step=121
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Fig. 7.11: Typical variation of modal spectrum of Vx with time evolution at b2 = 6, We =

1, (NEx, NEy) = (1, 1), (Nx, Ny) = (12, 12) and Natural outflow boundary condition,

a)full analytical prescription of the steady flow, b) time step=1, c)time step=4001; d)time

step=5000
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Fig. 7.12: Typical variation of modal spectrum of Vx with time evolution at b2 = 6 ×
106, We = 1, (NEx, NEy) = (1, 1), (Nx, Ny) = (12, 12) and Natural outflow boundary

condition, a)full analytical prescription of the steady flow, b) time step=1, c)time step=30,

d)time step=100, e)time step=200, f)time step=219
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Fig. 7.13: Typical variation of modal spectrum of τxy with time evolution at b2 = 6,

We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (7, 7) and Dirichlet velocity outflow bound-

ary condition, a)full analytical prescription of the steady flow, b) time step=1, c)time

step=101, d)time step=1001, e)time step=2001, f)time step=3000
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Fig. 7.14: Typical variation of modal spectrum of τxy with time evolution at b2 = 6,

We = 1, (NEx, NEy) = (1, 1), (Nx, Ny) = (15, 15) and Dirichlet velocity outflow bound-

ary condition, a)full analytical prescription of the steady flow, b) time step=1, c)time

step=101, d)time step=1001, e)time step=2001, f)time step=3000
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Fig. 7.15: Typical variation of modal spectrum of τxy with time evolutionafter applying

filtering at b2 = 6, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (7, 7) and natural outflow

boundary condition, a)full analytical prescription of the steady flow, b) time step=1,

c)time step=181, d)time step=301, e)time step=1001, f)time step=3000
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Fig. 7.16: Typical variation of modal spectrum of τxy with time evolution after applying

filtering at b2 = 6, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (10, 10) and natural outflow

boundary condition, a)full analytical prescription of the steady flow, b) time step=1,

c)time step=11, d)time step=131, e)time step=1001, f)time step=3000
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Fig. 7.17: Typical variation of modal spectrum of τxy with time evolution after applying

filtering at b2 = 6×106, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and natural out-

flow boundary condition, a)full analytical prescription of the steady flow, b) time step=1,

c)time step=101, d)time step=1001, e)time step=2001, f)time step=3000



7.5. results with filtering 149

(a) (b)

(c) (d)

(e) (f)

Fig. 7.18: Typical variation of modal spectrum of τxy with time evolution and mesh-

transfer technique, FENE-P, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (15, 15) and

natural outflow boundary condition, a)full analytical prescription of the steady flow, b)

time step=1, c)time step=1001, d)time step=2001, e)time step=3001, f)time step=4000
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Fig. 7.19: Typical variation of modal spectrum of τxy with time evolution and mesh-

transfer technique, Oldroyd-B, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (6, 6) and

natural outflow boundary condition, a)full analytical prescription of the steady flow, b)

time step=1, c)time step=1001, d)time step=2001, e)time step=3001, f)time step=4000
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Time step 1 1001 2001 3001 4000

|τ∗

xyanalytical
− τ∗

xy| 0.03 0.01 4 × 10−3 1.10 × 10−3 10−3

Table 7.7: Maximum variation of modal spectrum of τxy with time evolution and mesh-

transfer technique, Oldroyd-B, We = 1, (NEx, NEy) = (4, 2), (Nx, Ny) = (15, 15) and

natural outflow boundary condition

7.5.3 Influence of time step

In a previous study [104], we provide a modification of the matrix logarithm formulation of

Fattal and Kupferman [70, 69], in order to preserve the positive eigenvalues of the confor-

mation tensor at each time step and also bound the trace of the conformation tensor above

by the square of the finite extensibility parameter. However, this new formulation which

conserves symmetric positive definiteness of the conformation tensor and also bounds the

maximum value of the trace of the conformation tensor, can be helpful but there are still

problems of instabilities. Regarding the mathematical model for the FENE-P family Eq.

(3.6), in the denominator of the formulation, 1 − tr(C)/b2 appears. Whenever the com-

putational value of tr(C) is very close to b2, the denominator of the equation tends to

zero. On the other hand, the viscoelastic stress tends to infinity, which does not have any

physical meaning. In this study we do not try to improve the formulation and restrict

ourselves to investigating the effect of Weissenberg number and mesh refinement on the

computational value of maximum of trace of the conformation tensor. In the following

we will show that one of the reason for instabilities in FENE-P fluids is when the trace

of the conformation tensor is very close to b2. We would emphasize that figures shown

in this section are obtained with natural boundary condition, while the same behavior is

observed for velocity Dirichlet boundary at outflow. Results reported in this section are

obtained with two different time steps, ∆t = 0.002 and ∆t = 0.0002. Because of explicit

time marching scheme for the nonlinear terms in momentum and constitutive equations,

the Courant-Friedrichs-Lewy (CFL) stability condition should be satisfied during the sim-

ulation

max
k

|λk∆t| = S · CFL (7.11)

where

CFL = max
c,∆x

c∆t

∆x
(7.12)
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λk is the eigenvalue of the problem, c is the propagation speed, and S is an order-unity

coefficient that depends on the discretization. For the spectral element method S is a

nonlinear function of N [60] (see Fig. 3.5.2 of this reference). We would emphasize that

the CFL condition in this study is always met and the presence of instability reported in

this section is observed for time steps satisfying the CFL number.

Fig. 7.20 represents the effect of Weissenberg numbers on the maximum of the trace

of the conformation tensor for time intervals, ∆t = 0.002. This test case has been done for

(4× 2) elements and (4× 5) polynomial degree in stream and cross-wise direction. As we

suppose before, the attained maximum of tr(C) increases by increasing the Weissenberg

number. At We = 100, the maximum of which is close to b2 = 6, which makes the sim-

ulation extremely difficult for this value of Weissenberg number. Indeed, by the smallest

oscillation of the trace of the conformation tensor, the value of viscoelastic stress grows

unbounded which is the worst condition of the simulation of viscoelastic fluids. Since the

difference between this time interval and smaller one, ∆t = 0.0002 is indistinguishable,

only the result of ∆t = 0.002 is shown.
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Fig. 7.20: Influence of the Weissenberg number on the maximum of tr(c), (NEx, NEy) =

(4, 2), (Nx, Ny) = (4, 5), natural outflow boundary condition, ∆t = 0.002

The next two test cases indicate the effect of mesh refinement by increasing the polynomial

degree at ∆t = 0.002 and ∆t = 0.0002. Fig. 7.21 shows the effect of mesh refinement

in stream-wise direction at We = 100 and (4 × 2) elements in stream and cross-wise
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direction. As it is clear in this figure, increasing the polynomial degree in stream-wise

direction, enhances the value of trace of the conformation tensor sharply. At polynomial

degree (10× 5) and (8× 5) the maximal values of the trace of the conformation tensor are

still less than the selected bounded value of the conformation tensor, b2 = 6, but they are

close enough to the bounded value according to the precision of computer. In this region,

unphysical values of viscoelastic stress are achieved which enforces the computation to

blow up. The significant difference between these two time intervals is that at ∆t = 0.002,

the appearance of instability occurs at low times ,t, while for the smaller time interval the

start point of instability is postponed till t = 2.
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Fig. 7.21: Influence of mesh refinement on the maximum of tr(C), (NEx, NEy) = (4, 2),

We = 100, natural outflow boundary condition, Left) ∆t = 0.002, right) ∆t = 0.0002

Figure 7.22 shows the effect of mesh refinement by increasing the polynomial degree in

cross-wise direction at We = 100 and (4 × 2) element in stream and cross-wise direc-

tion respectively . Increasing the polynomial degree in cross-wise direction produces large

oscillations during the computation at ∆t = 0.002 while at ∆t = 0.0002 increasing the

polynomial degree does not have any significant effect.

The last two test cases are devoted to the examination of mesh refinement by increasing

the the number of elements in stream and cross-wise direction at We = 100. Fig. 7.23

represents the effect of mesh refinement on trace of conformation tensor by increasing the

number of element in stream-wise direction with (4 × 10) polynomial degree respectively



154 Chapter 7. filter-based stabilization technique

time

T
ra

ce
(C

)

0 2 4 6 8

5.98

5.985

5.99

5.995

6
(Nx,Ny)=(4,11)

(4,9)
(4,7)
(4,5)

time

T
ra

ce
(C

)

0 1 2 3 4

5.98

5.985

5.99

5.995

6
(Nx,Ny)=(4,11)

(4,7)
(4,9)
(4,5)

Fig. 7.22: Influence of mesh refinement on the maximum of tr(C), (NEx, NEy) = (4, 2),

We = 100, natural outflow boundary condition, Left) ∆t = 0.002, right) ∆t = 0.0002

in the stream and cross-wise directions. In the cross-wise direction, we chose a large value

of polynomial degree to ensure acceptable refined mesh in this direction. In this test case,

as before increasing the number of element increases the maximum value of the trace of

the conformation tensor as well as magnitude of the oscillation during the simulation. At

small values of time interval, the instability appears later. Fig. 7.24 shows the effect of
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Fig. 7.23: Influence of mesh refinement on the maximum of tr(C), (Nx, Ny) = (4, 10),

We = 100, natural outflow boundary condition, Left) ∆t = 0.002, right) ∆t = 0.0002

mesh refinement by increasing the number of elements in cross-wise direction by (10 × 5)
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polynomial degree in stream and cross-wise direction. A polynomial degree equal to 10

in the stream-wise direction is selected in order to obtain an enough refined mesh in this

direction. The great difference between this figure and the previous ones is that increasing

the number of element in cross-wise direction, stabilizes the simulation and decreases the

oscillation of maximum trace of conformation tensor during time evolution. Moreover,

smaller time interval improves the behavior of the results with time evolution.

time

T
ra

ce
(C

)

0 1 2

5.98

5.985

5.99

5.995

6

(NEx,NEy)=(1,6)
(1,4)
(1,2)
(1,1)

time

T
ra

ce
(C

)

0 1 2

5.98

5.985

5.99

5.995

6

(NEx,NEy)=(1,6)
(1,4)
(1,2)
(1,1)

Fig. 7.24: Influence of mesh refinement on the maximum of tr(C), (Nx, Ny) = (10, 5),

We = 100, natural outflow boundary condition, Left) ∆t = 0.002, right) ∆t = 0.0002

7.6 Conclusion

In this study to understand more deeply the mechanism of numerical instability generation

in the simulation of flows of FENE-P family, a comprehensive study about the growth of

spurious modes with time evolution, Weissenberg number, mesh refinement, finite exten-

sibility parameter and outflow boundary condition was undertaken using a modal basis

representation. Increasing the Weissenberg number usually leads to the manifestation of

numerical instabilities in simulation of viscoelastic fluid flows. For multi-element decom-

position, the instability first appears in elements in outflow region and propagates very

fast upstream. Mesh refinement enhances the growth of spurious modes in the domain.

This is the reason why refining the mesh proved to be not helpful for computing viscoelas-

tic flows. Increasing the finite extensibility parameter enhances magnitude of dangerous
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modes and causes simulation crashes. The effect of outflow boundary condition reveals

that the instability is highly sensitive to its type. Applying velocity Dirichlet boundary

at outflow as opposed to natural boundary condition was found better in terms of con-

vergence and stabilization. Imposing condition of the latter type at outflow governs the

system not only by the state in the interior of the region, but also by the information

brought by incoming characteristics which enter the region. Probably this is the reason

why applying outflow natural boundary induces first the generation of instability in the

outflow region.

The capability of filter-based-stabilization technique proposed by Boyd [32] has been ex-

amined. However, this filter is capable to suppress the high frequency modes but there are

still some nascent instabilities which grow by mesh refinement, therefore applying a filter-

based technique can not treat the instability problem completely. We also observed that

the performance of filter-based stabilization technique is very useful to eliminate spurious

modes for one element decomposition, while in the case of multi-element configuration

the performance of this technique is not ideal. Regarding this fact, a new way of imple-

mentation, using the so called mesh-transfer technique is used. This way of implementing

filtering is very useful for Oldroyd-B when a moderate number of grid points is used.

In the last part of this study, we showed that however preserving the symmetric positive

definiteness of the conformation tensor and bounding the trace of the conformation tensor

less than the finite extensibility parameter, helps to obtain stable computation but another

problem that can easily appear is that the attained value of trace of conformation tensor

tends to the corresponding bounded value related to the finite extensibility. Due to the

presence of the term 1− tr(C)/b2 in the denominator of the viscoelastic stress formulation

of FENE-P, tends to zero, this causes unbounded growth of the viscoelastic stress, which

does not have any physical meaning. Indeed, by the smallest oscillation of the trace of the

conformation tensor, the value of viscoelastic stress grows unbounded which is the worst

condition of the simulation of viscoelastic fluids. Mesh refinement in stream-wise direction

by increasing both polynomial degree or number of element, increases the maximum value

of the trace of the conformation tensor which makes the simulation to reach the dangerous

zone and finally unbounded instability is generated. Mesh refinement in cross-wise direc-

tion by increasing the polynomial degree has the same effect, while mesh refinement in

cross-wise direction by increasing the number of element has the opposite behavior. The
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great difference is that increasing the number of elements in cross-wise direction, stabilizes

the simulation and decreases the oscillation of the maximum trace of conformation tensor

with time evolution. Moreover, smaller time interval improves the behavior of the results

with time evolution. Regarding the transformation suggested by Fattal et al. [70, 221],

symmetric positive definiteness (SPD) is preserved during the simulation but overflow and

underflow numerical errors happen when the classical conformation tensor is reconstructed

from exponential formulation with either infinite positive eigenvalue or infinite negative

eigenvalue using the logarithm formulation. So development of mathematical models to

preserve both SPD of the conformation tensor and bound magnitude of eigenvalues when

reconstructing the classical formulation is mandatory. Such an investigation is underway.

Employing this mesh transfer filtering technique for complex geometry such as 2-D con-

traction flow is our interest for future works. Moreover, according to this fact that the

main reason of instabilities in simulation of time dependent Poiseuille flow is the reflec-

tion of outcoming wave from outflow region, the 2-D spatial discretization using spectral

element in cross-wise direction coupled with Fourier expansion in periodic stream-wise

direction, seems to be a viable way of handling the test case.
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Chapter 8

Summary and conclusion

The description of the outcomes and summary of this work follow the structure of the

dissertation. The details below are gathered from the multiple conclusions presented at

the end of each chapter.

8.1 General summary

From numerical point of view for calculation of complex fluids, differential constitutive

equations for the stress tensor are generally preferred over those of the integral type.

Among differential constitutive models FENE-P due to its features is chosen for this

study. Oldroyd-B is also considered as a limit case of the FENE-P model when the finite

extensibility tends to infinity.

A spectral element method with a high-order time discretization scheme has been se-

lected since time-dependent accurate solutions are expected. In addition, non-dissipative

and non-dispersive properties are required if one expects to observe transient or periodic

phenomena like physical instabilities.

The key issue of the simulation of the viscoelastic fluids is that the eigenvalues of the

conformation tensor should remain positive at all steps of the simulation. Negative eigen-

values cause the unbounded growth of instabilities in the flow. Fattal and Kupferman [69]

proposed to reformulate the classical constitutive equation using a new variable namely

the logarithmic formulation. This transformation enforces the eigenvalues of the confor-

mation tensor to remain positive for all steps of the simulation. However, satisfying the

symmetric positive definiteness (SPD) of the conformation tensor during the simulation

is the necessary condition for stability, but definitely, it is not the sufficient condition to

reach meaningful results. Another distinct constraint for the FENE-P equation is that

159
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the square of the corresponding finite extensibility parameter of the polymer must be an

upper limit for the trace of the conformation tensor. To mathematically satisfy these two

conditions, we introduce a new method based on the transformation of the classical consti-

tutive equation. In the first stage, we transform the classical constitutive equation based

on the conformation tensor, C, to a new one based on the tensor J, which bounds the

maximum value of the trace of the conformation tensor. In the second stage, we transform

the tensor J to a so called matrix logarithm conformation tensor H, based on the idea

proposed by Fattal and Kupferman in order to obtain positive eigenvalues for the J and

C conformation tensors.

First, the ability of time dependent simulation of the classical matrix logarithm with-

out considering the extended algorithm has been tested on a simple unsteady FENE-P

Poiseuille flow. One of the possible manifestation of HWNP is the failure of polynomial-

based approximation to properly represent the exponential profiles. In this stage, the

influence of each differential terms in the constitutive equation for both log and classical

representation has been investigated. For classical representation the manifestation of

instability is inside the deformation term, while the source of instability for the matrix

logarithm formulation is simultaneously inside the nonlinear term including convection

and source terms. The effect of outflow boundary condition reveals that the instability

is highly sensitive to the boundary condition. According to the concept of hyperbolic

equation, imposing a Dirichlet boundary condition for viscoelastic stress at outflow has no

physical meaning. However, this type of boundary condition was found slightly better in

term of convergence. For the discretization used in this study the reachable Weissenberg

number by imposing the velocity Dirichlet boundary condition at outflow is 56. Stable

simulations at higher Weissenberg number could be achieved for outflow velocity Dirichlet

boundary condition, than for natural boundary condition. In both cases, a numerical in-

stability has been observed near the downstream boundary when the Weissenberg number

approached same critical value. Another surprising result is that using the classical matrix

logarithm formulation instead of the classical one in the context of spectral elements at

least for FENE-P does not help to simulate high Weissenberg number flows. This is clearly

different from what has been observed with low-order finite elements, Hulsen et al. [102],

and Kwon [120], and finite volumes, Afonso et al. [4].

The capability of extended matrix logarithm formulation to predict the flow pattern for
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complex geometries such as contraction and contraction-expansion was examined. At low

values of the Weissenberg number, the convergence rate of the simulation is very fast and

the accuracy of the numerical simulation is very high. In contrast increasing the Weis-

senberg number increases the relative error exponentially which prevents the successful

numerical simulation. The velocity and viscoelastic-stress overshoot downstream of the

entry corner increase with increasing the Weissenberg number. The highest elasticity takes

more time to reach to the fully developed condition after over or under shooting. So it ne-

cessitates a longer channel length after entry flow. The maximum attainable Weissenberg

number by EMLF is 10 while this value for classical formulation is 8. Mesh refinement

experience at critical values of the Weissenberg number does not improve nor increase the

accuracy. Increasing the Weissenberg number also increases vortex intensity as measured

based on the maximum value of stream function and also augments the instability close

to the re-entrant corner which propagates to the upstream direction. In this study no lip

vortex was detected which is due to the considered contraction ratio 4:1. We found that

employing round or sharp corner does not have very important improvement to tackle the

high Weissenberg number problem. The maximum attainable Weissenberg number for

both round and sharp re-entrant corner are the same and equal to We = 10. The flow

patterns in contraction-extension geometry are similar to those obtained by contraction

flow. The significant difference is that the corner vortex in the second entry is smaller

than the first corner.

We comprehensively studied the improvement of this new algorithm on the eigenspectrum

with linear stability analysis. It shows that element decomposition is one of the main

source of instability in the spectral element context. On the other hand, the comparison

of results obtained with the single element and multi-element configuration shows that

the more dangerous eigenmodes are related to the multi-element composition. This means

that, the positive real eigenvalues for the single element decomposition have smaller mag-

nitude than for the multi-element decomposition. Moreover, increasing the Weissenberg

number distributes the eigenvalues in the right-hand half plane with large magnitude of

positive real parts. This can be one of the reason of instability of numerical simulation.

In spite of this, the new extended algorithm enables one to obtain stable simulation of

viscoelastic flows at Weissenberg number with values of practical interest i.e. larger than

100 for this specific mesh.
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To understand more deeply the mechanisms of numerical instability generation in the

simulation of flows of FENE-P family, a comprehensive study about the growth of spuri-

ous modes with time evolution, Weissenberg number, mesh refinement, finite extensibility

parameter and outflow boundary condition was undertaken using a modal basis represen-

tation. Increasing the Weissenberg number usually leads to the manifestation of numerical

instabilities in simulation of viscoelastic fluid flows. For multi-element decomposition, the

instability first appears in elements near the outflow region and propagates very fast up-

stream. Mesh refinement enhances the growth of spurious modes in the domain. This is

the reason why refining the mesh proved to be not helpful for computing viscoelastic flows.

Increasing the finite extensibility parameter enhances magnitude of dangerous modes and

causes simulation crashes. The effect of outflow boundary condition reveals that the in-

stability is highly sensitive to its type. Applying velocity Dirichlet boundary at outflow

as opposed to natural boundary condition was found better in terms of convergence and

stabilization. Imposing condition of the latter type at outflow governs the system not only

by the state in the interior of the region, but also by the information brought by incoming

characteristics which enter the region. Probably this is the reason why applying outflow

natural boundary induces first the generation of instability in the outflow region.

The capability of filter-based-stabilization technique proposed by Boyd has been exam-

ined. However, this filter is capable to suppress the high frequency modes but there are

still some nascent instabilities which grow by mesh refinement. Therefore applying a filter-

based technique can not treat the instability problem completely. We also observed that

the performance of filter-based stabilization technique is very useful to eliminate spurious

modes for one element decomposition, while in the case of multi-element configuration

the performance of this technique is not ideal. Regarding this fact, a new way of imple-

mentation, using the so called mesh-transfer technique is used. This way of implementing

filtering is very useful for Oldroyd-B when a moderate number of grid points is used.

In the last part of this study, we showed that however preserving the symmetric posi-

tive definiteness of the conformation tensor and bounding the trace of the conformation

tensor less than the finite extensibility parameter, helps to obtain stable computation.

However, another problem that can easily appear is that the attained value of trace of

conformation tensor tends to the bounded value of finite extensibility parameters. Due to

the presence of the term 1− tr(C)/b2 in the denominator of the viscoelastic stress formu-
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lation of FENE-P, goes to zero, this causes unbounded growth of the viscoelastic stress,

which does not have any physical meaning. Indeed, by the smallest oscillation of the trace

of the conformation, the value of viscoelastic stress grows unbounded which is the worst

condition of the simulation of viscoelastic fluids. Mesh refinement in stream-wise direction

by increasing both polynomial degree or number of element, increases the maximum value

of the trace of the conformation tensor which makes the simulation to reach the dangerous

zone and finally unbounded instability is generated. Mesh refinement in cross-wise direc-

tion by increasing the polynomial degree has the same effect, while mesh refinement in

cross-wise direction by increasing the number of element has the opposite behavior. The

great difference is that increasing the number of elements in cross-wise direction, stabilizes

the simulation and decreases the oscillation of the maximum trace of conformation tensor

with time evolution.

8.2 Outlook and perspectives

The most straight forward extensions to this work would be as the following domains:

One of the key problems in viscoelastic flows is the influence of the boundary conditions,

which may induce numerical instabilities if not well suited. Adopting periodic boundary

conditions in stream-wise direction and resort to spectral elements-Fourier discretization

seems to be helpful. With periodic boundary condition in stream-wise direction, virtually,

there is no boundary at inlet and outlet section. So one does not need to worry about

the inlet and outlet interaction. It will help understanding the mechanisms of intrinsic

instability of the some viscoelastic models like the Oldroyd-B, FENE-P. The key idea,

therefore, is to employ spectral element discretization in cross-wise direction and Fourier

expansion along stream-wise direction. Spectral element-Fourier discretisations are well

suited to direct numerical simulation of flows where the geometry exhibits arbitrary com-

plexity in a sectional plane but is infinite or periodic in an orthogonal direction.

According to our knowledge and the know-how acquired during this thesis, the insta-

bility problems of viscoelastic fluids are more relevant to dissatisfaction of mathematical

characteristic of viscoelastic fluids. We heavily propose a comprehensive study of math-

ematical meaning of constitutive equations and employing methods which preserve the
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mathematical concepts of constitutive equations.

Another important issue is to extend the method for the closure of the approximation

to a general 3-dimensional basis which would enable a better modelling of the logarithm

formulation.

Along the work having done by Habisreutinger [96], employing the grid filter model for

simulation of viscoelastic fluids is our interest for future works.
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Any symmetric positive definite matrix can be diagonalized as:

C = Q









eh1 0 0

0 eh2 0

0 0 eh3









QT (A-1)

where Q is the orthogonal matrix containing the eigenvector ni as its column vectors. In

the 2D configuration C is defined as:

C =

(

C11 C12

C12 C22

)

=

(

n2
1e

h1 + n2
2e

h2 n1n2(e
h1 − eh2)

n1n2(e
h1 − eh2) n2

2e
h1 + n2

1e
h2

)

(A-2)

If one inserts Eq. (A-2) into Eq. (3.5) the following equation for Ċ can be easily obtained

in the framework of the FENE-P model.

Ċ =

(

2C11
∂u1
∂x1

+ 2C12
∂u1
∂x2

C11
∂u2
∂x1

+ C22
∂u1
∂x2

C11
∂u2
∂x1

+ C22
∂u1
∂x2

2C22
∂u2
∂x2

+ 2C12
∂u2
∂x1

)

− 1

We

1

1 − C11+C22
Le2





C11 −
1−

C11+C22
Le2

K C12

C12 C22 −
1−

C11+C22
Le2

K





(A-3)
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