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Abstract

In the absence of a full analytical treatment of nonlinear structure forma-
tion in the universe, numerical simulations provide the critical link between
the properties of the underlying model and the features of the observed struc-
tures. Currently N-body simulations are the main tool to study structure
growth. We explore an alternative framework for numerical simulations of
structure formation. The underlying idea is to replace the long-range grav-
itational force in the Vlasov-Poisson system by a purely local interaction.
To this end we trade the classical phase space distribution for its quantum
mechanical counterpart, the Wigner distribution function. Its dynamical
equation is equivalent to the Schrödinger equation and reduces to the Vlasov
equation in the formal semi-classical limit. The proposed framework allows
in principle to simulate systems with arbitrary phase space distributions and
could for instance be beneficial for simulations of warm dark matter, where
the velocity dispersion is important.

We discuss several methods to obtain a set of wavefunctions whose
Wigner distribution is close to a given initial phase space distribution func-
tion. An auxiliary gauge field is introduced to mediate the gravitational
interaction, thereby obtaining a local Schrödinger-Maxwell system. We also
use the ideas of lattice gauge theories to obtain a fully gauge-invariant dis-
cretization of the equations of motion. Their iterative solution was imple-
mented in a three-dimensional simulation code. We discuss its computa-
tional complexity and memory requirements. Several testbed simulations
were performed with this method. We compared the gravitational collapse
of a Gaussian wavefunction with an independent numerical solution of the
spherically symmetric Schrödinger-Newton system. The results were found
to be in good agreement. Finally, a simple example of the growth of cos-
mic perturbations is investigated within our framework. We conclude by
outlining various possible directions to optimize and develop our method.

Keywords: Structure formation, N-body simulations, Wigner distribu-
tion function, Lattice gauge theory





Résumé

En l’absence d’une traitement analytique complet de la formation non-
linéaire de structures dans l’univers, les simulations numériques fournissent
le lien critique entre le modèle sous-jacent et les propriétés des structures
observées. Actuellement les simulations à N corps sont le moyen principal
pour étudier la croissance des structures. Nous explorons un cadre alternatif
pour effectuer des simulations numériques de la formation de structures.
L’idée de base est de remplacer la force gravitationnelle à longue portée
dans le système de Vlasov-Poisson par une interaction purement locale. A
cette fin, nous échangeons la fonction de distribution dans l’espace de phase
classique contre son équivalent en mécanique quantique ; la distribution de
Wigner. Son équation dynamique est équivalente à l’équation de Schrödinger
et se réduit à l’équation de Vlasov dans la limite semi-classique formelle. Le
cadre proposé permet, en principe, de faire des simulations de systèmes avec
une distribution arbitraire dans l’espace de phase. Ceci pourrait par exemple
être bénéfique pour des simulations de matière noire tiède, où la dispersion
des vitesses est importante.

Nous discutons plusieurs méthodes pour obtenir un ensemble de fonc-
tions d’onde ayant une distribution de Wigner proche d’une distribution
initiale donnée. Nous introduisons un champ de jauge auxiliaire comme
médiateur le l’interaction gravitationnelle et obtenons ainsi les équations lo-
cales de Schrödinger-Maxwell. Nous faisons aussi usage des idées de la théorie
de jauge sur réseau pour obtenir une version discrétisée et entièrement in-
variante de jauge des équations du mouvement. Leur solution itérative a été
implémentée dans un code de simulation tridimensionnel. Nous discutons sa
complexité algorithmique et ses exigences en mémoire. Plusieurs simulations
ont été faites pour prouver la validité de notre méthode. Nous avons com-
paré l’effondrement gravitationnel d’une fonction d’onde gaussienne avec une
résolution numérique indépendante des équations de Schrödinger-Newton à
symétrie sphérique. Les résultats obtenus sont en bon accord. Pour finir,
nous examinons un cas simple de croissance de perturbations cosmiques. En
conclusion, nous esquissons différentes directions pour optimiser et développer
notre méthode.

Mots-clés : Formation de structures, Simulations N-corps, Distribution
de Wigner, Théorie de jauge sur réseau
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1. Introduction

Standard Cosmology

Cosmology studies the properties and evolution of the universe as a
whole. Physicists seek to investigate the characteristics of the universe
from its earliest stage until now, and even its future fate. Modern cos-
mology started to develop at the beginning of the twentieth century. The
equations governing the time evolution of the universe are derived within
the framework of Einstein’s theory of general relativity (1919). Alexander
Friedmann’s discovery (1922) of a non-static solution, together with Edwin
Hubble’s evidence (1924) that the observed galaxies are receding from earth,
lead to the realization that we are living in an expanding universe. Georges
Lemâıtre went one step further and suggested (1931) that this expansion
required the universe to contract backwards in time, and it would continue
to do so until contracted to a single point. George Gamow developed this
idea of the big bang theory and used it to explain the origin of the chem-
ical elements through a mechanism called big bang nucleosynthesis (1949).
The direct observation by Arno Penzias and Robert Wilson (1965) of the
predicted cosmic microwave background (CMB) gave strong experimental
evidence for the big bang theory.

Modern satellites, like the Cosmic Background Explorer (COBE) or the
Wilkinson Microwave Anisotropy Probe (WMAP) yield high precision mea-
surements of the CMB. Combined with other cosmological observations like
large-scale structure surveys, this allows for an accurate determination of
many cosmological parameters (Komatsu et al. 2010). In particular it fol-
lows that ordinary baryonic matter makes up less than 5% of the content of
today’s universe but is still making up all the visible objects in the universe.
Dark energy constitutes the largest fraction, almost 72%, whereas 23% are
made of dark matter. Despite the many observational evidences for their
existence (Albrecht et al. 2006; Roos 2010), not much is known about the
fundamental nature of dark energy or dark matter. In its simplest form,
dark energy can be modelled by a cosmological constant Λ in Einstein’s
equations (Peebles and Ratra 2003) and can account for the observed ac-
celerated expansion of the universe (Riess et al. 1998). Although the nature
of dark matter has not yet been identified, the candidates for DM particles
are very light compared to the mass scales of typical galaxies (see for ex-
ample Taoso, Bertone, and Masiero 2008). Given its large abundance, DM
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is essential in the gravitational clustering. Current observations rule out
the possibility that the dominant part of DM is made of hot dark matter
(HDM), meaning particles that remained relativistic by the epoch of matter
domination (see Hannestad et al. 2010, for a recent discussion). This leaves
as possible candidates either cold dark matter (CDM) particles being cre-
ated non-relativistically, or warm dark matter (WDM) particles becoming
non-relativistic well before the matter domination epoch (Avila-Reese et al.
2001; Bode, Ostriker, and Turok 2001)(see also Boyarsky et al. 2009). From
all these considerations emerged what is now known as the concordance
model of cosmology or ΛCDM. It is incredibly successful in reproducing a
large number of observations at various cosmic epochs.

Structure formation

Given the success of the concordance model, one can try to gain a deeper
understanding of structure formation in the universe. The CMB is found
to be very homogeneous with temperature fluctuations of the order of only
10−5. On the other hand, different sky surveys provide a picture of today’s
large-scale structure in the universe. The problem of structure formation
is to understand how the initially very small perturbations evolved into the
galaxies and galaxy clusters we observe today.

According to the standard model of cosmology, a phase of exponential
expansion, called inflation, brought the universe into an almost perfectly
homogeneous and isotropic state with tiny, almost Gaussian perturbations,
leading to the observed anisotropies of the CMB (more details can be found
in many textbooks on cosmology, e.g. Dodelson 2003). These very small
initial fluctuations are believed to be the seeds from which the structures we
observe in today’s universe have formed. The underlying picture is that, as
time goes by, more and more matter is accumulated in the overdense regions,
growing to the large structures we observe. The evolution of perturbations in
the expanding universe is a highly non-linear problem, and a full analytical
solution has so far proved intractable. Numerical simulations have therefore
become an essential tool to study cosmological structure formation.

The details of how the small initial perturbations have been amplified
through the gravitational interactions are closely related to the properties of
the dark matter which dominates the gravitational clustering at large scales.
Studying the formation of structure in the universe can therefore help us
uncover the identity of the dark matter. Indeed, numerical simulations of
structure formation played a decisive role in excluding standard massive
neutrinos as a dark matter candidate (see for example White, Frenk, and
Davis 1983).
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Motivation and objectives

In the absence of a full analytical treatment of nonlinear structure growth,
numerical simulations provide the critical link between the properties of the
underlying model and the features of the finally observed structures. The
formation of structures can be formulated in terms of the phase space evo-
lution of a self-gravitating system described by the Vlasov-Poisson equa-
tions. Current simulations solve these equations via the method of char-
acteristics and solve numerically the problem of the evolution of N self-
gravitating bodies, where N is as large a number as computationally feasible.
The state of the art N-body simulations – Aquarius (Navarro et al. 2010),
Bolshoi (Klypin, Trujillo-Gomez, and Primack 2010), Millennium (Boylan-
Kolchin et al. 2009), Via Lactea (Diemand et al. 2008) – are able to follow as
many as a few billion particles and achieve impressive results. These simu-
lations are however time-consuming and very expensive in computer power.
One reason for this is that the gravitational force is long-ranged: at each
time step, one has to sum over the contributions of all other particles, mak-
ing the algorithm naively of O(N2). Many ingenious techniques have been
developed over the years (for a review, see for example Bertschinger 1998)
to reduce the algorithmic complexity of the force integration to O(N logN),
or even O(N), as in the case of the Fast Multipole Method (Dehnen 2000;
2002).

Given the importance of numerical simulations of structure formation,
we propose and try to explore an alternative approach. The main goal of
this work is to investigate whether it is possible to replace the long-range
gravitational interaction in the Vlasov-Poisson system by a purely local in-
teraction. The inspiration is coming from gauge field theories, where spuri-
ous degrees of freedom are introduced in order to find a simpler description
of the system. This local description is the starting point for a framework
of numerical simulations using techniques of lattice gauge theory. Our ob-
jective is to describe this method in detail. We investigate its feasibility and
study its conditions of validity and possible limitations.

Besides the hope that this could yield a faster algorithm for the sim-
ulations of cosmic structure formation, it will provide an alternative and
independent approach to the existing N-body simulations.

Sketch of our approach

Let us briefly outline the major ingredients of our framework, which will
be explained in more detail throughout this thesis. The figure 1.1 illus-
trates the main steps of our approach. On the top is the Vlasov-Poisson
system governing the dynamics of structure formation. We want to model
the long-range gravitational force by a local interaction with a gauge field.
The classical phase space distribution function being a real quantity, it is
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Fig. 1.1: Chart illustrating the main steps of our approach and how the dif-
ferent systems of equations are related. On the top is the Vlasov-
Poisson system modelling the physics of structure formation, and
on the bottom the related lattice gauge theory system, which we
solve in the numerical simulations.
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not obvious how one could make it transform under gauge transformations.
To allow for the introduction of a gauge field, we will work with the corre-
sponding quantum system described by the Wigner-Poisson equations. The
Wigner equation is equivalent to the Schrödinger equation and, in the semi-
classical limit, it reduces formally to the Vlasov equation.

The idea of trading the classical Vlasov-Poisson system for its quantum
counterpart and solve the Schrödinger equation to study structure formation
has already been considered before. In particular the works of Widrow and
collaborators (Davies and Widrow 1997; Widrow and Kaiser 1993) inves-
tigated this method, and performed several testbed numerical simulations.
They concluded that solving the Schrödinger-Poisson system can yield a
promising alternative to existing N-body simulations. As we shall explain
later in more detail, they evolved a single wavefunction, which didn’t give
a point-by-point correspondence with the classical phase space distribution.
We suggest to improve this by allowing for several wavefunctions.

We also propose to take an additional step, and introduce a dynamical
gauge field to get rid of the non-local Poisson equation to further reduce the
complexity of the algorithm. At the level of the complex-valued wavefunc-
tion, we can introduce a gauge-transformation and an auxiliary Abelian
gauge field and transform the Poisson equation into the set of Maxwell
equations. The fiduciary gauge field mediates the gravitational force giv-
ing a completely local interaction. Moreover, having obtained a fully gauge-
invariant theory, we can use the techniques of lattice gauge theories to obtain
a framework well-adapted for numerical simulations.

Outline

The structure of this thesis is as follows: First, in chapter 2, we review
the equations governing structure formation in the universe and describe
briefly the algorithms and possible difficulties of N-body simulations. Next,
in chapter 3, we discuss the properties of the Wigner distribution function,
its dynamical equations, and how it is related to the Schrödinger and Vlasov
equations. In chapter 4 we discuss the problem of initial conditions and in-
vestigate how to construct wavefunctions such that their Wigner distribution
function is close to a given initial classical distribution function. Then we
turn our full attention to describing the details of our local formulation. We
describe how we introduce gauge fields to obtain a local interaction frame-
work (chapter 5) and how we make use of Wilson’s lattice gauge theory
formulation to obtain an iterative solution of the equations of motion (chap-
ter 6). In chapter 7 we compare our approach to similar methods that have
been used before, and discuss some examples of testbed simulations we per-
formed. Finally we present our conclusions and give an outlook on possible
future work.
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2. Structure formation in the universe

Standard cosmology assumes that the universe can be modelled by a
perfect fluid of density ρ and pressure P in the isotropic and homogeneous
Friedmann-Robertson-Walker spacetime. Under these assumptions, the Ein-
stein equations reduce to the so-called Friedmann equations (Dodelson 2003)

(
ȧ

a

)2

+
kc2

a2
− Λc2

3
=

8πG

3
ρ, (2.1a)

2
ä

a
+

(
ȧ

a

)2

+
kc2

a
− Λc2 = −8πG

P

c2
, (2.1b)

where a denotes the scale factor and k = −1, 0,+1 the curvature of the
spacetime. Dots stand for derivatives with respect to the cosmological
proper time t. For completeness we also introduced a cosmological con-
stant Λ. To study the structure formation in the universe, one starts by
writing the density ρ as the sum of an homogeneous background ρ̄ plus
small inhomogeneities δρ. The background is assumed to evolve according
to the Friedmann equations. In the case of a flat (k = 0) universe filled with
non-relativistic matter (P = 0) and without cosmological constant (Λ = 0),
sometimes called Einstein-de Sitter universe, the solution is found to be

a(t) = a0

(
t

t0

)2/3

, ρ̄(t) =
1

6πGt2
. (2.2)

This corresponds to an expanding universe with a background density get-
ting diluted by the expansion as ρ̄ ∝ a−3(t).

Structure formation can be studied analytically within linear pertur-
bation theory. We won’t give an account of the details of this approach,
but rather try to describe structure formation starting from a phase space
picture. For a systematic treatment of the linear theory of gravitational
perturbations the reader is invited to consult one of the reviews on the
subject (Bernardeau et al. 2002; Ma and Bertschinger 1995; Mukhanov,
Feldman, and Brandenberger 1992).

In the next section we briefly recall the phase space formulation and the
related Vlasov equation. We then give the Vlasov equation for cosmological
structure formation and show how it is equivalent to Newtonian cosmol-
ogy. Finally we explain how N-body simulations solve the Vlasov equation
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and shortly discuss the most important algorithms used. Some potential
difficulties of N-body simulations are also outlined.

2.1 Phase space formulation

In classical mechanics, one may opt for a phase space formulation, to
have a concise description of a dynamical system. For a given system of N
particles, the phase space consists of the 6N dimensional space spanned by
all possible values of positions xi and momenta pi of the particles. Every
point in this multidimensional space defines a possible state of the system
and a trajectory in phase space describes its time evolution.

If the number of particles is very large, one shouldn’t try to keep track
of the trajectories of all individual particles and try to find a statistical
description instead. This allows to pass from the 6N to a 6 dimensional
phase space1. The idea is to construct a distribution function f(x, p, t)
such that f(x, p, t)dxdp gives the number of particles at position x with
momentum p at a given time t. The normalization is chosen such that the
integral over the whole phase space gives the total number of particles∫

dx

∫
dp f(x, p, t) = N. (2.3)

When integrated over all momenta one obtains the particle number den-
sity n(x, t), whereas the integral over all positions yields the momentum
distribution dp(x, t)∫

dp f(x, p, t) = n(x, t),

∫
dx f(x, p, t) = dp(x, t). (2.4)

Its time evolution is governed by Liouville’s theorem which asserts that
in case of dissipationless and collisionless dynamics (Binney and Tremaine
1987), the phase space distribution function is constant along the trajectories
of the system

df

dt
=
∂f

∂t
+
∂x

∂t

∂f

∂x
+
∂p

∂t

∂f

∂p
= 0. (2.5)

Using the definition of the momentum p = mẋ and Newton’s law ṗ = F =
−∇U for a force F derived from a potential U , this can be rewritten as

∂f

∂t
+
p

m

∂f

∂x
− ∂U

∂x

∂f

∂p
= 0, (2.6)

which is known as Vlasov equation.

1 See for instance (Bertschinger 1995, section 3.2) for a derivation of the Vlasov equation
from the BBGKY hierarchy of the Klimontovich density of a collisionless system of N self-
gravitating particles.
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A common way to look for solutions of the Vlasov equation is to use
the method of characteristics (Zwillinger 1997). Given a partial differen-
tial equation of the form

∑n
i=1 ai(x1, . . . , xn, u) ∂u∂xi = c(x1, . . . , xn, u), a

solution is obtained through the characteristics given parametrically by
(x1, . . . , xn, u) = (x1(s), . . . , xn(s), u(s)) such that the following system of
ordinary differential equations holds

dxi
ds

= ai(x1, . . . , xn, u),

du

ds
= c(x1, . . . , xn, u).

(2.7)

In the case of Vlasov’s equation (2.6), the characteristics correspond to
Newton’s law and the definition of the canonical momentum

dp

dt
= F, (2.8a)

dx

dt
=

p

m
. (2.8b)

2.1.1 Cosmological Vlasov equation

We now turn to describing the phase space formulation of cosmic struc-
ture formation. Let us work in comoving coordinates and conformal time

xcom =
xphys

a(t)
, dτ =

dt

a(t)
. (2.9)

From now on x always refers to comoving coordinates and dots represent
derivatives with respect to conformal time. The Vlasov-Poisson system
reads (Bernardeau et al. 2002; Bertschinger 1995)

∂f

∂τ
+

p

am

∂f

∂x
− am∂U

∂x

∂f

∂p
= 0, (2.10a)

∇2U = 4πGa2δρ. (2.10b)

Note that only the density contrast δρ = ρ− ρ̄ sources the Poisson equation.
We still need to define the relationship between the mass density ρ and the
phase space distribution f . The common choice (2.3) is to normalize f to
the total number of particles N . Since Vlasov’s equation is linear in f ,
this normalization is defined up to an overall constant. If all particles have
the same mass m, we may instead choose to normalize the phase space
distribution to the total mass Mtot := mN∫

dx

∫
dp f(x, p, τ) = Mtot. (2.11)
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We adopt this convention because structure formation is driven by the mass
density and not the particle density. The physical mass density and peculiar
velocity fields can then be defined by

ρ(x, p, τ) =
1

a3(τ)

∫
d3p f(x, p, τ), (2.12)

ρu(x, p, τ) =
1

ma4(τ)

∫
d3p p f(x, p, τ). (2.13)

The density contrast is therefore given by

δρ = ρ− 〈ρ〉V = ρ− 1

V

∫
d3x ρ

=
1

a3(τ)

(∫
d3p f(x, p, τ)− Mtot

V

)
, (2.14)

where V denotes the total comoving volume over which we average.
As a cross-check, it can be shown that the characteristics of the Vlasov

equation (2.10a) correspond to the equations of motion in Newtonian cos-
mology and the definition of the canonical momentum

d2x

dτ2
+
ȧ

a

dx

dτ
= −∇U(x), (2.15a)

p = am
dx

dτ
. (2.15b)

The term proportional to ȧ
a can be seen as a viscous force: the expansion

of the universe opposes gravitational infall and as a result the growth of
perturbations is slower in an expanding universe.

If we integrate the Vlasov equation (2.10a) over all momenta, we obtain

∂τ
(
a3ρ
)

+ a3∇(ρu) = 0. (2.16)

Expressed in terms of the cosmological time t and Hubble’s parameter H =
∂ta/a, the above equals

∂tρ+ 3Hρ+
1

a
∇(ρu) = 0, (2.17)

which is nothing but the continuity equation in an expanding universe. Fur-
ther integrating over all comoving coordinates, we get the usual mass con-
servation

∂τMtot = 0. (2.18)

Assuming the dark matter be single-streaming (i.e. having a vanishing stress
tensor, meaning that the velocity dispersion is negligible), the Vlasov equa-
tion leads to the Euler equation

∂τu+ aHu+ (u · ∇)u+∇U = 0, (2.19)
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which describes momentum conservation.

Linearizing and combining the continuity equation (2.17), Euler’s equa-
tion (2.19) and Poisson’s equation (2.10b) one can derive (see for instance
Bernardeau et al. 2002) an equation for the evolution of the density contrast
δ = δρ

ρ̄ :

∂2
t δ + 2H∂tδ − 4πGρ̄ δ = 0. (2.20)

For a matter dominated universe this equation admits two linearly inde-
pendent power-law solutions D±(t)δ(x, t0), where D+(t) ∝ a(t) ∝ t2/3 is a
growing mode and D−(t) ∝ t−1 a decaying mode. D+(t) is called the linear
growth factor. The quick dominance of the growing mode shows that the
initial overdensities will be amplified and grow proportionally to the scale
factor. This growth is the origin of the structure formation in the universe.

2.2 N-body simulations

In the absence of a full analytical understanding of nonlinear structure
growth, numerical simulations provide the main tool to study structure for-
mation in the universe. Instead of solving the underlying Vlasov-Poisson
system (2.10) directly, current simulations solve numerically the problem of
the evolution of N self-gravitating bodies, hence the name N-body simula-
tions. Each body is evolved according to Newton’s law (2.15a) under the
influence of the gravitational potential created by all the others given by
Poisson’s equation (2.10b). In other words, N-body simulations solve the
Vlasov equation via its characteristics by sampling the initial phase space
distribution with a discrete number of particles. The number of bodies is
typically chosen as large as computationally feasible. The advent of large
supercomputers combined with the development of more efficient numerical
algorithms has enabled the field of cosmological simulations to make con-
siderable progress over the last decades. The state of the art simulations
(Millennium; Aquarius; Via Lactea; Bolshoi) are able to follow as many as
a few billion particles. Besides allowing to study the details of structure
formation for a given model, N-body simulations are also used for testing
approximate solutions for the growth of density perturbations. Comparison
with numerical simulations allows to validate approximations and gain a
better understanding under which conditions they can be used. For a re-
view of the topic of N-body simulations, refer for instance to (Bagla 2005;
Bertschinger 1998) or the textbook (Hockney and Eastwood 1988).

2.2.1 Algorithms and complexity

The art of N-body simulations lies chiefly in the computational algorithm
used to obtain the gravitational force. Many ingenious techniques have been



12 2. Structure formation in the universe

developed over the years to reduce the algorithmic complexity of the force
integration.

Particle-Particle (PP) algorithm

Computing the long-ranged force by direct summation over the contribu-
tions from all other bodies – called Particle-Particle method – is prohibitive
for many particles, as O(N2) operations are required to evaluate the gravi-
tational force on all N bodies.

Tree algorithm

The Barnes-Hut tree algorithm divides the space recursively into a hier-
archy of cells, which can contain several particles. The force of a distance
group of particles is then approximated by the force due to a single body in
the center of the cell, with mass equal to the total mass of the particles in
that cell. This algorithm reduces the number of operations to O(N logN),
but the approximation introduces errors on the force which need to be kept
under control.

Particle-Mesh (PM) algorithm

The Particle-Mesh algorithm relies on solving Poisson’s equation on a
Cartesian mesh using the Fast Fourier Transform (FFT). Since N-body sim-
ulations use discrete particles to represent the density field, one must first
define a procedure to obtain the mass density on the grid. Moreover the
gravity field obtained as a solution of Poisson’s equation on the mesh must
be interpolated back to the particles. The complexity of the PM algorithm
is O(Ng logNg) + O(N), where Ng is the number of grid cells used for the
FFT. The drawback of this method is that the force poorly approximates
Newton’s inverse square law for separations less than several grid spacings.
The force resolution of PM codes can be improved by using an adaptive
mesh refinement, rather than a static grid to solve Poisson’s equation.

Particle-Particle/Particle-Mesh (P3M) & Tree-PM algorithms

The P3M method is a hybrid of the PP and PM algorithms. The
force computation via the PM method is supplemented by a direct particle-
particle calculation for the pairs separated by only a few grid spacings. Com-
bining this with an adaptive grid, the computational complexity is claimed
to be O(N logN). Another option is to resort to a tree code for the short-
range force evaluation leading to a Tree-PM algorithm.
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Fast Multipole Method (FFM)

The Fast Multipole Method is a variant of the tree algorithm and also
relies on a hierarchical approximation of the force (Dehnen 2000; 2002). The
complexity of this algorithm is O(N) making it the fastest force integration
technique known today. This method was for instance implemented in the
cosmological code PkdGRAV and among others used to study the galactic
mass dark matter halo (Stadel et al. 2008).

2.2.2 Millennium simulation

Let us give a quantitative idea of some features of N-body simulations by
looking at the example of the Millennium simulation (Springel et al. 2005).
It tracks a total of N = 21603 ∼ 1010 particles and uses the Gadget-2

code (Springel 2005) implementing a Tree-PM algorithm to evaluate the
gravitational forces. In particular the FFT was done on a grid of 25603

cells. The simulation box corresponds to a cubic region of 500 h−1Mpc per
side, while the spatial resolution is given to be of the order of 5 h−1kpc.
The individual bodies had a mass of 8.6 · 108M�h−1. The cosmological
parameters were chosen to be consistent with the first-year WMAP data.

The simulation started at redshift z = 127 and was evolved to the present
using about 11 000 timesteps. The initial power spectrum was generated us-
ing the Boltzmann code CMBFAST (Seljak and Zaldarriaga 1996). The initial
conditions were set up in two steps. The first is to construct a homogeneous
particle distribution representing the uniform, unperturbed background den-
sity. The second step is to use Zel’dovich approximation (Zeldovich 1970) to
generate a displacement field on the uniform particle distribution to obtain
a density fluctuation with the desired statistical properties.

The computational complexity of the simulation can be illustrated by
the fact that it required 350 000 hours of CPU time on a cluster with 512
processors, which is the equivalent of 28 days of wall-clock time. In total,
about 5 · 1017 floating point operations were performed. The simulation
required a total of 1TB of memory and generated an output of about 20TB
of data.

2.2.3 Potential difficulties

Even though cosmological N-body simulations have provided a most
valuable tool to investigate the non-linear structure formation in our Uni-
verse, it is fair to say, that they also contain a number of difficulties. Gaining
a quantitative understanding of these issues would allow to better define the
limits of validity of current simulations and open the doors to include new
physics, such as warm or hot dark matter. We will briefly list some of these
limitations of N-body simulations.
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Coarse-graining

In spite of the number of particles being of order of 1011 in recent simu-
lations, it is still many orders of magnitude away from the actual number of
DM particles in the universe. In other words, simulations follow the motion
of unphysical macro-particles with masses of several solar masses and hence
made up of huge lumps of elementary DM particles. This coarse-graining
influences the validity of the simulations.

Velocity dispersion

N-body simulation attribute a certain velocity to the coarse-grained
macro-particles. They are not able to track the velocities of the individual
DM particles, but only the average velocity of the huge lumps of particles.
This procedure is especially hard to justify in the case of warm or hot dark
matter where the velocity dispersion of the particles is relevant.

To some extent, these first difficulties not only apply to N-body tech-
niques. Other methods, like mesh codes, which are based on the discretiza-
tion on a lattice, also present coarse-graining, as they contain minimal length
and velocity scales that can be resolved, which typically correspond to the
lattice spacing. In N-body simulations, however, the situation is more subtle,
and it appears to me, that one should seek a deeper understanding of how
the finite number of bodies affects the validity of the results, in particular
for simulations in presence of warm and hot dark matter.

Discreteness effects

The “problem of discreteness” is that of the relation between the re-
sults of the N-body simulations and the solutions to the theoretical Vlasov-
Poisson system they attempt to model. It has to be stressed that this does
not refer to the errors arising in any numerical simulation because of the
discretization of the equations of motion. Despite its obvious relevance, it
seems that the question of the precise quantitative importance of the dis-
creteness effects is still not settled (Joyce 2008). Wang and White (2007)
have shown that discreteness errors might be even more important in simu-
lations of HDM or WDM.

Force softening

Since the dark matter fluid is supposed to be collisionless, one has to
manually suppress artificial two-body collisions arising between the pseudo-
particles introduced to sample the phase space distribution. This is usually
done by introducing an ad-hoc softening length and suppressing the gravi-
tational force at scales below it (Dehnen 2001). N-body simulations are run
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under the assumption that for a suitable choice of the smoothing, the evolu-
tion of the N pseudo-particles under the softened force should be the same
as the gravitational evolution of the elementary DM particles.

Only game in town

As a matter of fact, there are no alternative tools to study the cosmic
structure formation with the same resolution as N-body simulations. This
is of course not a limitation of the N-body method itself, but makes it more
complicated to evaluate the possible errors of N-body simulations quantita-
tively, as there are basically no independent results to compare with.
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3. Wigner distribution function

We have seen that cosmic structure formation can be described by the
Vlasov-Poisson equations in classical phase space. I this chapter we would
like to put the problem of structure formation aside for the moment, and
begin a new line of development, one that will lead to a new method of
analysing the Vlasov-Poisson system. We now want to investigate the pos-
sibility of a phase space formulation of quantum mechanics and discuss the
properties of the corresponding distribution function, called the Wigner dis-
tribution function. The equation governing its time evolution will be derived,
and we will examine its relationship with the classical Vlasov equation.

3.1 Phase space quantum mechanics

Quantum mechanics is often presented as stemming from the Hamilto-
nian formulation of classical mechanics through ”canonical quantization”.
This rather heuristic procedure consists in promoting the classical variables
to hermitian operators and replacing the classical Poisson brackets by com-
mutators.

Alternatively one can start from the phase space formulation of classical
mechanics and try to find the quantum equivalent of the classical phase
space distribution function (Ercolessi et al. 2007; Hillery et al. 1984). In
other words one has to find a correspondence between classical functions in
phase space, called symbols, and quantum operators in Hilbert space:

operators in Hilbert space↔ symbols in phase space (3.1)

Since the position and momentum do not commute, there is a priori no
unambiguously defined mapping. Different operator orderings can give dif-
ferent functions. Hermann Weyl proposed a systematic way of associating
quantum operators to classical distribution functions, referred to as Weyl
quantization. Its inverse, the Wigner transform, associates to every quan-
tum operator Â a real phase space function A via

sym(Â) :=

∫
dy e

i
~py〈q − y

2
|Â|q +

y

2
〉 = A(q, p). (3.2)

To the product of two operators ÂB̂ is associated the Moyal star product of
the corresponding symbols:

sym(ÂB̂) = sym(Â) ∗ sym(B̂), (3.3)
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where

f(q, p) ∗ g(q, p) := f(q, p) exp

[
i~
2

(
←
∂q
→
∂p −

←
∂p
→
∂q

)]
g(q, p). (3.4)

Defining the Moyal bracket (Moyal 1949) by

{f, g}M := f ∗ g − g ∗ f, (3.5)

the commutator of operators is associated to the Moyal bracket of symbols

sym([Â, B̂]) = {sym(Â), sym(B̂)}M . (3.6)

In the phase space formulation of quantum mechanics, the dynamical equa-
tions are expressed in terms of the Moyal bracket:

i~ ∂tf = {H, f}M , (3.7)

which in the semiclassical limit ~ → 0 reduces to the classical equation in
terms of the Poisson bracket

∂tf = {H, f}P = H

(
←
∂q
→
∂p −

←
∂p
→
∂q

)
f. (3.8)

This illustrates how the algebraic structures of classical and quantum me-
chanics are related through the continuous changing of the parameter ~.
This is the reason why such an approach to quantum mechanics is known
as deformation quantization (Hirshfeld and Henselder 2002).

3.2 Wigner distribution function

The Wigner transform (3.2) maps a quantum operator Â to a classical
function in phase space. Wigner used this to associate to a quantum system a
real phase space function, now called Wigner distribution function (WDF)
(Wigner 1932). It is defined to be the symbol associated to the density
operator ρ̂ describing the quantum system

PW (x, p) :=

∫
d3y e

i
~py 〈x− y

2
|ρ̂|x+

y

2
〉. (3.9)

In the case of a mixed state, the density operator can be written as convex
combination of the pure state wavefunctions ψn

ρ̂ =
∑
n

λn|ψn〉〈ψn|, λn ≥ 0,
∑
n

λn = 1. (3.10)

For mixed states the WDF thus reads

PW (x, p) =

∫
d3y e

i
~py

∑
n

λnψ
∗
n(x+

y

2
)ψn(x− y

2
), (3.11)
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while for a pure state it reduces to

PW (x, p) =

∫
d3y e

i
~py ψ∗(x+

y

2
)ψ(x− y

2
). (3.12)

The WDF has many similarities to the classical distribution function:
PW (x, p) is a real function, as follows by taking the complex conjugate and
changing variables y 7→ −y. It is normalized to 1 in the following sense∫

d3x

∫
d3p

(2π~)3
PW (x, p) = 1. (3.13)

When integrated over all momenta, it gives the probability density:∫
d3p

(2π~)3
PW =

∫
d3y δ3(y)

∑
n

λnψ
∗
n(x+

y

2
)ψn(x− y

2
)

=
∑
n

λn|ψn(x)|2, (3.14)

whereas when integrated over all positions, it yields the momentum distri-
bution ∫

d3x PW =
∑
n

λn

∫
d3x−

∫
d3x+ e

i
~px+e−

i
~px−ψ∗n+ψn−

=
∑
n

λn

∣∣∣ψ̃n(p~)∣∣∣2 , (3.15)

where the subscripts ± denote the dependence on x± := x ± y
2 . The WDF

thus has the attractive property that the marginal distributions, obtained
by integrating over either the position or momentum variables, do reproduce
the correct non-negative position and momentum probability distributions
respectively, as specified by quantum mechanics.

Compared to the classical distribution function, the Wigner distribution
function has the peculiar property that it may assume negative values. For
this reason it is usually called a quasi-probability distribution and cannot
be interpreted as a phase space probability density in the sense of classical
mechanics. The non-positivity of the WDF can be seen from the property∫

dx

∫
dp PW [ψ](x, p)PW [φ](x, p) ∝ |〈ψ|φ〉|2. (3.16)

The right-hand side vanishes for any two orthogonal states ψ, φ; which
implies that the WDF cannot be everywhere positive. According to the
Hudson theorem (Hudson 1974), the WDF of a pure state is pointwise non-
negative if and only if the state is Gaussian.

If ρ̂ is not a pure state, it can be represented as a convex combination
of pure state operators, ρ̂ =

∑
n λn|ψn〉〈ψn|, in infinitely many ways. The
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WDF satisfies the so-called mixture property (Ballentine 2000), which is
the requirement that the phase space distribution should depend only on
the density operator ρ̂, and not on the particular way it is represented as a
mixture of some set of pure states {|ψn〉}.

To summarize, the Wigner distribution function has many properties
similar to the classical phase space distribution. Nevertheless it has been
realized from the early days, that the concept of a joint probability at a
phase space point is limited in quantum mechanics because the Heisenberg
uncertainty principle makes it impossible to simultaneously specify the po-
sition and momentum of a particle. Therefore, the best one can hope to do
is to define a function that has a maximum of properties analogous to those
of the classical distribution function. Many different variants of distribution
functions – Husimi, Kirkwood-Rihaczek, Glauber – have been studied over
the decades, all with their own advantages and shortcomings (Lee 1995, and
references therein). The WDF is despite it’s non-positivity considered to be
a useful calculational tool and finds applications in various domains outside
of quantum physics, like signal processing or optics (Bastiaans 1997).

Given that there is no unique way to define a probability distribution
in quantum mechanics, we choose to work with the Wigner distribution
function, because it satisfies a number of properties, which are helpful for
our approach. In particular it has the correct marginal distributions and,
as we will show in the next paragraph, its dynamical equation is closely
related to the classical Vlasov equation. The downside of the WDF is its
nonpositivity1. Let us stress that our goal is not to interpret the Wigner
distribution function as a fully-fledged phase space distribution, but rather
as a convenient mathematical tool.

3.3 Dynamical equation for the WDF

We now want to derive the dynamical equation satisfied by the WDF.
We shall do it in two different ways, first starting from Liouville’s equation
for the density matrix (Ballentine 2000), and secondly from Schrödinger’s
equation for the wavefunction.

3.3.1 Wigner equation from the Liouville equation

The Wigner distribution being the symbol of the density matrix ρ̂, we
can derive an equation of motion for it starting from the time evolution of ρ̂

i~
d

dt
ρ̂ = 0⇒ i~ ∂tρ̂ = [Ĥ, ρ̂] (Liouville equation). (3.17)

1 See also section 7.1.2 discussing the work of Widrow et al. They opted for the Husimi
distribution, which is positive-definite, but does not have the correct marginal distributions
and a more complicated dynamical equation.
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Consider a Hamiltonian of the form Ĥ = P̂ 2

2m + V̂ . Then we get

∂tρ̂ =
1

i~
1

2m

(
P̂ 2ρ̂− ρ̂P̂ 2

)
+

1

i~

(
V̂ ρ̂− ρ̂V̂

)
. (3.18)

We shall separately compute the two terms of the right hand side. The
first term is most easily evaluated in the momentum representation

∂t〈p|ρ̂|p′〉 =
1

i~
1

2m

(
p2 − p′2

)
〈p|ρ̂|p′〉. (3.19)

Using the expression for the Wigner distribution in momentum space

PW (x, p) =

∫
dk e−

i
~xk〈p− k

2
|ρ̂|p+

k

2
〉, (3.20)

one finds
∂tPW = − p

m
∂xPW , (3.21)

which is nothing but the free Vlasov equation.
The second term can be computed in position representation

∂t〈x|ρ̂|x′〉 =
1

i~
(
V (x)− V (x′)

)
〈x|ρ̂|x′〉, (3.22)

yielding

∂tPW =
1

i~

∫
dy e

i
~py
(
V (x− y

2
)− V (x+

y

2
)
)
〈x− y

2
|ρ̂|x+

y

2
〉. (3.23)

Let us for simplicity consider a pure state described by a single wavefunc-
tion. The dynamical equation for the Wigner distribution function becomes

∂tPW +
p

m

∂

∂x
PW −

1

i~

∫
dy e

i
~py (V+ − V−)ψ∗+ψ− = 0, (3.24)

which we shall refer to as Wigner equation.
Note that, written in this form, the Wigner equation does not only in-

volve the WDF but also the wavefunction. So it seems that we would have
to define initial conditions for both. Now we show that the Wigner equation
can be rewritten in terms of PW only. Expanding the potential in a Taylor
series

V (x+
y

2
)− V (x− y

2
) = y

∂

∂x
V (x) + 2

∑
n≥3

n odd

1

n!
V (n)(x)

(y
2

)n
, (3.25)

we can write the dynamical equation for the WDF as follows

∂tPW +
p

m

∂

∂x
PW −

∂V

∂x

∂

∂p
PW +

∑
n≥3

n odd

1

n!

(
~
2i

)n−1

∂nxV ∂
n
pPW = 0. (3.26)
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One can notice that the first three terms correspond to the classical Vlasov
equation. In three cases, the Wigner equation exactly coincides with the
classical Vlasov equation: for a free particle (V = 0), for a uniform field
(V ∝ x) and for the harmonic oscillator (V ∝ x2). In general, there are
additional terms that can be interpreted as quantum corrections.

It sounds surprising that the equation for the harmonic oscillator reduces
exactly to the classical Vlasov equation, even though we know that the
quantum mechanical treatment introduces discrete energy levels. In this
case the quantum information is encoded purely in the initial conditions.

3.3.2 Wigner equation from the Schrödinger equation

The same dynamical equation can be derived by simply taking the time
derivative of the Wigner distribution function for pure states, and using
the fact that the wave function satisfies Schrödinger equation. Conversely,
when inserting the expression of the Wigner distribution function into the
above equation of motion, one finds the Schrödinger equation for the wave
function.

To be slightly more generic, let us now consider the case of a WDF for
a mixed state

PW (x, p, t) ≡
∫
d3y e

i
~py

∑
n

λnψ
∗
n(x+

y

2
, t)ψn(x− y

2
, t). (3.27)

Suppose each of the wavefunctions satisfies Schrödinger equation

i~∂tψn = − ~2

2m
∇2ψn + V ψn, (3.28)

then the time-derivative of the WDF becomes

∂tPW =

∫
d3y e

i
~py

∑
n

λn

[ 1

i~
~2

2m

(
∇2

+ψ
∗
n+ψn− − ψ∗n+∇2

−ψn−
)

− 1

i~
(
V+ − V−)ψ∗n+ψn−

) ]
,

(3.29)

where the subscripts +,− denote the dependence on x± = x± y
2 . The term

with the Laplacians can be rewritten as follows:

∂tPW ⊃
∫
d3y

∑
n

λn
2i~
m

[
~∇yψ∗n+ · ~∇y

(
e
i
~pyψn−

)
− ~∇y

(
e
i
~pyψ∗n+

)
· ~∇yψn−

]
=

∫
d3y

∑
n

λne
i
~py

(
−2~p

m

)(
~∇yψ∗n+ψn− − ψ∗n+

~∇yψn−
)

= − ~p

m

∫
d3y e

i
~py

∑
n

λn

(
~∇xψ∗n+ψn− + ψ∗n+

~∇xψn−
)

= − ~p

m
· ~∇xPW .
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We thus obtained the same dynamical equation as before, now generalized
to several wavefunctions

∂tPW +
~p

m
· ~∇xPW −

1

i~

∫
d3y e

i
~py (V+ − V−)

∑
n

λnψ
∗
n+ψn− = 0. (3.30)

Note that in this derivation, the only assumption made on λn is that it be
constant. In principle any value is acceptable and it can even be negative
or complex. In our subsequent development (see chapter 4) we will make
use of this freedom. As a consequence, the set of wavefunctions ψn and
weights λn can no longer be given the interpretation of a mixed state in
quantum mechanics, as the condition (3.10) is no longer satisfied. They are
only seen as a convenient tool to encode the phase space information and
do not correspond to any physical quantum mechanical system.

3.4 Semi-classical limit

The Wigner equation (3.26) describing the dynamics of the WDF reduces
to the classical Vlasov equation in the naive ~ → 0 limit. Even though the
quantum correction is formally O(~2), the derivatives of PW could generate
additional inverse powers of ~, making the semiclassical limit more involved2.

The properties of the semi-classical limit depend of course on the poten-
tial V (x). In this paragraph we present some results concerning the case of
interest to us, where the potential satisfies Poisson’s equation. In particular,
different authors investigated the semi-classical limit of the Wigner-Poisson
(W-P) system to the Vlasov-Poisson (V-P) system for the Coulomb poten-
tial.

The mathematically rigorous classical limit from W-P to V-P has been
solved first in 1993 independently by (Lions and Paul 1993) and (Markowich
and Mauser 1993). Both references consider a so-called completely mixed
state; i.e. an infinite number of pure states with a strong additional con-
straint on the occupation probabilities

Trρ2 =

∞∑
n=1

(λn)2 ≤ ~3 Const. (3.31)

Under this assumption, the classical limit of the solution to the 3D W-P sys-
tem converges to the solution of the V-P system. Note that the Wigner dis-
tribution function can also have negative values, whereas the semi-classical
limit is a true, nonnegative distribution function. In both references, this
was overcome by using a Gaussian-smoothed Wigner function.

2 This formulation of the statement is not fully satisfying, as the true semi-classical
limit is also a statement about the properties of the wavefunction, and not identical to
sending ~ → 0; which is anyway a dimensionful parameter.
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The situation for a pure state is completely different (Zhang, Zheng, and
Mauser 2002). According to the authors, it appears that a density operator
which has the above property that the trace of its square tends to zero
with the third power of the Planck constant seems to be closer to classical
mechanics than a pure state. For a pure state in 1D, the semi-classical limit
is not unique: examples have been constructed where different regularization
schemes give different limits (Majda, Majda, and Zheng 1994). The question
whether there exists a selection principle to pick the correct classical solution
has also been investigated but is not yet settled (Jin, Liao, and Yang 2007).
No proof of the semi-classical limit from W-P to V-P is known for the pure
state case in 2D or 3D.

For more details the reader is referred to the original papers or the
review (Mauser 2002). See also (Fröhlich, Graffi, and Schwarz 2007) for an
alternative approach of the semi-classical limit.



4. WDF for a given phase space

distribution

We would like to trade the Vlasov equation for the phase space distribu-
tion function for Schrödinger’s equation for the wavefunctions, as this allows
for the introduction of a gauge field as the mediator of the gravitational force.
Or course we don’t require the wavefunctions to have any intrinsic physical
interpretation. We rather consider them, just like the WDF, as a mathe-
matical tool and not as fundamental entities. Still we are faced with the
problem of how to determine a set of wavefunctions such that their WDF
corresponds to the initial classical phase space distribution.

From the outset it is clear that, since the wavefunctions encode both,
the position and momentum information, a single wavefunction (pure state)
cannot be sufficient to describe a generic f(x, p). One should rather look
for a set of wavefunctions (mixed state). The more wavefunctions we allow
for, the more freedom we have and the more accurately the WDF should
represent any given distribution. At the same time the total number of
wavefunctions should be as small as possible because this will reduce the
computational complexity of our numerical simulations.

Given the classical distribution function f(x, p), we want to expand it
using the WDF Ansatz

f(x, p) ≡
Nψ∑
n=1

λn

∫
d3y e

i
~py ψ∗n(x+

y

2
)ψn(x− y

2
). (4.1)

Fourier transforming from p-space to η-space we get

f(x, η) ≡
Nψ∑
n=1

λnψ
∗
n(x− η

2
)ψn(x+

η

2
). (4.2)

We will discuss different approaches to tackle this problem of determin-
ing the set of wavefunctions ψn and weights λn representing a given initial
phase space distribution f(x, p). Let us stress from the outset that these
procedures need only to be used once at the beginning of a numerical sim-
ulation, to set up the initial conditions.
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4.1 Minimization procedure

The first method we present to choose the initial wavefunctions is a brute-
force minimization. The underlying idea is to define a functional measuring
the total absolute error made by approximating the phase space distribution
by the WDF Ansatz

Φ[ψn, λn, Nψ] :=

∫
d3x

∫
d3η

∣∣∣∣∣∣f(x, η)−
Nψ∑
n=1

λnψ
∗
n(x− η

2
)ψn(x+

η

2
)

∣∣∣∣∣∣
2

, (4.3)

and determine a set of wavefunctions that minimizes this error. In practice,
the minimization is most easily done via discretization on a lattice. The
problem is then cast into a minimization of the scalar error function with a
large number of variables corresponding to the values of the wavefunctions
at the lattice points. For different fixed Nψ = 1, 2, . . ., we can determine
the set of wavefunctions ψn and corresponding weights λn which minimizes
the error. One can then compare the results for different Nψ to find an
optimal approximation with a high enough accuracy and a minimal number
of wavefunctions.

Since we are not seeking a true quantum mechanical interpretation, let’s
consider the most general case of complex-valued weights. A naive minimiza-
tion will not yield wavefunctions normalized to unity. Instead of adding this
normalization as a constraint to the minimization, we remove the module of
the complex weights λn, and only keep their phases eiϕn . The modules of the
weights are taken to be the norm of the wavefunctions, thereby normalizing
them to unity.

Splitting the wavefunctions into real and imaginary parts ψn(x) ≡ αn(x)+
iβn(x) and introducing the notation x± = x± η

2 , we get

eiϕnψ∗n−ψn+ = [cosϕn (αn−αn+ + βn−βn+)− sinϕn (αn−βn+ − αn+βn−)]

+i [cosϕn (αn−βn+ − αn+βn−) + sinϕn (αn−αn+ + βn−βn+)] .

The real and imaginary parts of the error are therefore

ERe := Ref −
Nψ∑
n=1

[cosϕn (αn−αn+ + βn−βn+)− sinϕn (αn−βn+ − αn+βn−)] ,

EIm := Imf −
Nψ∑
n=1

[cosϕn (αn−βn+ − αn+βn−) + sinϕn (αn−αn+ + βn−βn+)] .

If we simply minimize the error functional, we will in general obtain wave-
functions that are not smooth enough on the lattice to be evolved numer-
ically. For this purpose it is useful to add a sort of kinetic term to the
functional that will allow us to enforce a certain degree of smoothness. We
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construct the kinetic term from the square of the discretized derivatives with
a certain overall factor κ to tune the smoothness:

K := κ
∑
x

Nψ∑
n=1

|αn(x+ 1)− αn(x)|2 + |βn(x+ 1)− βn(x)|2 . (4.5)

Finally, we minimize this kinetic term with the total error summed over all
lattice points

Etotal := K +
∑
x

∑
η

(
|ERe|2 + |EIm|2

)
. (4.6)

The minimization procedure was implemented in Mathematica and in-
dependently in C++ using the minimization routines of the Gnu Scientific

Libraries. Both methods were applied to cosmic initial conditions of
cold dark matter in the Zel’dovich approximation, for simplicity in a one-
dimensional case. The results confirm the expectation that, increasing the
number of wavefunctions, the total error is reduced. In the case we studied,
it turned out that already a relatively small number of wavefunctions (com-
pared for instance to the number of lattice points) was enough to achieve a
reasonable accuracy.

As usual with minimization procedures, there is no guarantee that the al-
gorithm converges to a global minimum. This would for instance mean that
one has to repeat the minimization with different initial random seeds and
compare their outcomes. Also, even though this minimization was shown to
work for a given phase space distribution f(x, p), in practice it becomes com-
putationally challenging even for rather small 3D lattice sizes, as the number
of variables in the minimization procedure grows too quickly. Despite its ap-
plicability to any distribution function, the brute-force minimization might
not be the best method to determine the initial wavefunctions.

4.2 Eigenvalue problem for hermitian operator

We now turn our attention to obtaining an analytic solution to the prob-
lem of determining the initial wavefunctions. More precisely we will show
how the Wigner Ansatz can be reformulated as an eigenvalue problem, which
we then solve analytically in the special case of a phase space distribution
function in the form f(x, p) = ρ(x)δ(p), meaning the product of a generic dis-
tribution in x with a delta function in momentum. This choice corresponds
to the case of CDM at early times, when the velocities are negligible.

Since f(x, η) is the Fourier transform of a real function f(x, p), it satisfies
the condition f∗(x,−η) = f(x, η). In the coordinates x± := x ± η

2 we can
define

f̂(x−, x+) := f
( x+ + x−

2
, x+ − x−

)
, (4.7)
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which is then hermitian

f̂∗(x+, x−) = f̂(x−, x+). (4.8)

Any square-integrable hermitian kernel can be expressed in terms of its
spectral decomposition (Hilbert-Schmidt theorem)

f̂(x−, x+) ≡
∑
n

λnψ
∗
n(x−)ψn(x+), (4.9)

where the λn are the real eigenvalues and {ψn}n the set of orthonormal
eigenfunctions with respect to the standard scalar product on L2(C3)

〈ψn|ψm〉 :=

∫
d3x ψ∗n(x)ψm(x) = δnm. (4.10)

The WDF Ansatz (4.2) has exactly the same form as the spectral de-
composition (4.9). Therefore we conclude that any given phase space distri-
bution function f(x, p) can be written exactly as WDF, if need be with an
infinite number of wavefunctions. The wavefunctions are the eigenfunctions
of the hermitian operator f̂(x−, x+) and its real eigenvalues correspond to
the weights of the wavefunctions in the mixed state. Notice though, that
they can in general take negative values, implying that we cannot give a full
quantum-mechanical interpretation to the mixed state, as the corresponding
density operator is not positive-definite. Let us emphasize once more that
we consider the wavefunctions as a mere mathematical tool.

Multiplying both sides of (4.9) by ψα(x−) and integrating over x−, the
orthonormality of the eigenfunctions implies the following integral equation∫

d3x− f̂(x−, x+)ψα(x−) = λαψα(x+). (4.11)

This equation shows that the determination of the wavefunctions reduces
to finding the eigenfunctions of the hermitian kernel f̂ . Unfortunately, for
a completely general phase space distribution function, the above equation
might not allow for an analytic solution.

4.2.1 Generalization: weighted scalar product

Above we discussed the eigenvalue problem for the standard scalar prod-
uct 4.10. We now ask the question whether we could generalize the analysis
by allowing for a non-trivial weight function w(x) in the scalar product:

〈φ|ψ〉w :=

∫
d3x φ∗(x)ψ(x)w(x). (4.12)
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It must first be noted that the hermitian kernel f̂∗(x+, x−) = f̂(x−, x+) still
allows to define an integral operator

(f̂φ)(x) :=

∫
d3y f̂(y, x)φ(y)w(y), (4.13)

that is self-adjoint with respect to the weighted scalar product

〈f̂φ|ψ〉w = 〈φ|f̂ψ〉w . (4.14)

This ensures us that the spectral decomposition 4.9 exists, but now the
eigenfunctions are orthonormal with respect to the weighted scalar product
〈ψn|ψm〉w = δnm, and the eigenvalue problem reads∫

d3y f̂(y, x)ψα(y)w(y) = λαψα(x). (4.15)

Let us emphasize that the weighted scalar product is only used to determine
the wavefunctions whose WDF equals the classical distribution function.
The choice of w(x) is completely arbitrary and does not affect the proper-
ties of the WDF or the Schrödinger evolution of the wavefunctions. Clearly
the spectrum will depend on the choice of weight function. The additional
freedom of choosing w(x) could allow to reduce the number of wavefunc-
tions needed in the Wigner Ansatz. Furthermore the arbitrariness of the
weight function also reflects the freedom we have to choose wavefunctions
representing the initial state.

4.3 Eigenvalue problem on the finite interval

Let us study the eigenvalue problem for a phase space distribution of
the form1 f(x, p) = ρ(x)δ(p), for which the integral operator f̂ becomes real
and symmetric

f̂(x−, x+) = ρ

(
x+ + x−

2

)
. (4.16)

We choose the trivial weight function w(x) = 1, which might not be the
optimal choice for a minimal number of wavefunctions, but yields a working
example of the method. Consider a density distribution that is periodic
ρ(x+ L) = ρ(x) and expand it as a Fourier series

ρ(x) =

∞∑
n=1

[
an cos

(
2πn

L
x

)
+ bn sin

(
2πn

L
x

)]
. (4.17)

1 For the sake of simplicity we restrict the analysis of this section to the one dimensional
case, but the generalization to the 3D case is straightforward.
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We omit the spatially constant mode ρ0 which we can trivially represent as
a WDF using a constant wavefunction.

It’s easiest to solve the eigenfunction problem on the doubled inter-
val [0, 2L]. We consider real, square-integrable functions on [0, 2L] extending
them periodically beyond. Using the scalar product defined by

〈φ|ψ〉 :=
1

L

∫ 2L

0
dx φ(x)ψ(x) , (4.18)

the eigenvalue problem reads

1

L

∫ 2L

0
dy ρ

(
x+ y

2

)
ψ(y) = λψ(x). (4.19)

Let’s expand ψ on the Fourier basis on [0, 2L]

ψ(x) =

∞∑
n=1

[
αn cos

(πn
L
x
)

+ βn sin
(πn
L
x
)]
. (4.20)

Since moreover

ρ

(
x+ y

2

)
=

∞∑
n=1

[
an cos

(
2πn

L

x+ y

2

)
+ bn sin

(
2πn

L

x+ y

2

)]
, (4.21)

we may use the trigonometric identities

cos(α± β) = cosα cosβ ∓ sinα sinβ ,

sin(α± β) = sinα cosβ ± cosα sinβ ,

and the orthonormality relations

1

L

∫ 2L

0
dx cos

(πn
L
x
)

cos
(πm
L
x
)

= δnm =
1

L

∫ 2L

0
dx sin

(πn
L
x
)

sin
(πm
L
x
)
,

1

L

∫ 2L

0
dx cos

(πn
L
x
)

sin
(πm
L
x
)

= 0 ,

to rewrite the eigenvalue problem (4.19) as

∞∑
n=1

[
(anαn + bnβn) cos

(πn
L
x
)

+ (bnαn − anβn) sin
(πn
L
x
)]

= λ

∞∑
n=1

[
αn cos

(πn
L
x
)

+ βn sin
(πn
L
x
)]
.

(4.22)

This is equivalent to an eigenvalue problem for the Fourier coefficients(
an bn
bn −an

)(
αn
βn

)
= λ

(
αn
βn

)
. (4.23)
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Therefore the normalized eigenfunctions and corresponding eigenvalues of
our symmetric integral operator are finally given by

ψ±n (x) = N−1/2
[(
an ±

√
a2
n + b2n

)
cos
(πn
L
x
)

+ bn sin
(πn
L
x
)]

, (4.24a)

λ±n = ±
√
a2
n + b2n, (4.24b)

where N :=
(
an ±

√
a2
n + b2n

)2
+ b2n normalizes the eigenfunctions to unity

. It can be checked explicitly that these eigenvectors satisfy the condition
of orthonormality

〈ψ+
n |ψ+

n 〉 = 〈ψ−n |ψ−n 〉 = 1, 〈ψ+
n |ψ−n 〉 = 0 , (4.25)

and yield the correct spectral representation

ρ

(
x+ y

2

)
=

∞∑
n=1

[
λ+
nψ

+
n (x)ψ+

n (y) + λ−nψ
−
n (x)ψ−n (y)

]
. (4.26)

As a conclusion we have been able to solve the eigenvalue problem on the
finite interval and use it to find the wavefunctions for the WDF Ansatz.
This applies for a generic density profile ρ(x) periodic on [0, L] and a phase
space distribution of the form f(x, p) = ρ(x)δ(p). The wavefunctions are
harmonic functions with increasing momenta. In general we would need an
infinite number of wavefunctions. For many applications a finite or even
small number of wavefunctions may be sufficient.

4.4 Fourier series inspired decomposition

Inspired by the above results, we can actually write down a different
choice of wavefunctions, which are even closer to the Fourier basis. Let us
again start by decomposing the density profile on a finite interval [0, L] as
Fourier series:

ρ(x) =
∞∑
n=1

an cos

(
2πn

L
x

)
+
∞∑
n=1

bn sin

(
2πn

L
x

)
≡ ρc(x) + ρs(x). (4.27)

We can expand the first term in cosine on the following set of wavefunctions:{
ψc1n (x) = cos

(
πn
L x
)

@ λn = an ,

ψc2n (x) = sin
(
πn
L x
)

@ λn = −an .
(4.28)

Indeed∑
n

λnψ
∗
n(x)ψn(y) =

∑
n≥1

an cos
(πn
L
x
)

cos
(πn
L
y
)

+
∑
n≥1

(−an) sin
(πn
L
x
)

sin
(πn
L
y
)

=
∑
n≥1

an cos
(πn
L

(x+ y)
)

= ρc
(
x+ y

2

)
.
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The sine part on the other hand, can be expanded on{
ψs1n (x) = 1√

2

[
cos
(
πn
L x
)

+ sin
(
πn
L x
)]

@ λn = bn ,

ψs2n (x) = 1√
2

[
cos
(
πn
L x
)
− sin

(
πn
L x
)]

@ λn = −bn ,
(4.29)

as can be checked as follows∑
n

λnψ
∗
n(x)ψn(y) =

∑
n≥1

bn
1

2

[
cos
(πn
L
x
)

+ sin
(πn
L
x
)] [

cos
(πn
L
y
)

+ sin
(πn
L
y
)]

+
∑
n≥1

(−bn)
1

2

[
cos
(πn
L
x
)
− sin

(πn
L
x
)] [

cos
(πn
L
y
)
− sin

(πn
L
y
)]

=
∑
n≥1

bn

[
cos
(πn
L
x
)

sin
(πn
L
y
)

+ sin
(πn
L
x
)

cos
(πn
L
y
)]

=
∑
n≥1

bn sin
(πn
L

(x+ y)
)

= ρs
(
x+ y

2

)
.

This illustrates once more that the wavefunctions may be taken to be har-
monic functions. The number of wavefunctions needed for an exact rep-
resentation is proportional to the number of significant Fourier modes in
the density ρ(x). Note however that in this case the wavefunctions are not
eigenfunctions of the integral operator f̂ and are not orthogonal on the in-
terval [0, L] but only normalized. Depending on the even or odd nature of n,
the wavefunctions are either periodic or anti-periodic on [0, L]. It can be
checked that the Schrödinger Hamiltonian is still hermitian for this mixed
choice of boundary conditions. Working with these functions comes at the
price of having to introduce two different types of boundary conditions in the
numerical simulation. For the purpose of our exploratory work we decided
instead to work with the previous solution on the doubled interval [0, 2L],
where all functions are periodic.

4.5 Cosmological initial conditions

Observations of structure in the universe are perfectly compatible with
the simplest possible statistical description, namely a Gaussian distribution.
More precisely, each Fourier mode of the density contrast δ(~k) (not to be
confused with the Dirac delta distribution) satisfies an isotropic Gaussian
distribution, entirely described by the power spectrum P (k) := 〈|δ(~k)|2〉,
which is a function of the modulus k only, not of the direction (for details,
refer for instance to the textbook Weinberg 2008). From the knowledge of
the power spectrum one can then generate a realization with the desired
statistical properties

δ(~x) =
∑
~k

[√
P (k)N (0, 1) cos(~k · ~x) +

√
P (k)N (0, 1) sin(~k · ~x)

]
, (4.30)
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where N (0, 1) denotes a Gaussian random number with zero mean and unit
dispersion. This shows that the density contrast for cosmological initial
conditions is in a form for which we know how to construct the WDF, pro-
vided that we start our simulation at times, when the Zel’dovich velocities
of the particles are negligible. Compared to N -body simulations we don’t
need to first perform a FFT to compute δ(~x) but can find the initial wave-
functions directly from the power spectrum. Additionally we don’t need
any glassy pre-initial conditions to model the constant background. On the
other hand, we would in principle need as many wavefunctions as Fourier
modes are important in the power spectrum.

4.6 Matrix formulation

Given that the WDF Ansatz can be thought of as spectral decomposition
of an hermitian operator, we can now analyze the solution in the discrete
case, where the problem reduces to a matrix problem. Let’s again restrict
the analysis to one dimension. Working on a lattice (x1, x2, . . . xN ), we
can think of any function f(x) as a vector (f(x1), . . . , f(xN ))T and of any
function of two variables as a matrix. We can thus reinterpret the functional
relationship

f̂(x−, x+) := f
( x+ + x−

2
, x+ − x−

)
=

Nψ∑
n=1

λnψ
∗
n(x−)ψn(x+), (4.31)

in terms of matrices:

F̂ij ≡
Nψ∑
n=1

λnΨ∗jnΨin =

Nψ∑
n=1

Nψ∑
k=1

ΨinλnδnkΨ
†
kj . (4.32)

The property f̂(x+, x−) = f̂∗(x−, x+) then translates into the fact that F̂ is
a hermitian matrix F̂ † = F̂ , which we can diagonalize by means of a unitary
transformation

F̂ij ≡
(

Ψ · Λ ·Ψ†
)
ij
, (4.33)

where

F̂ ∈ CN×N , Ψ ∈ CN×Nψ , Λ = diag(λ1, . . . λNψ) ∈ RNψ×Nψ .

The columns of Ψ are the wavefunctions ψn sampled on the lattice. The
property that Ψ is unitary Ψ†Ψ = I implies the normalization of the wave-
functions on the lattice. This matrix formulation has the advantage, that
it’s straightforward to compute the spectrum of any given hermitian matrix.
The shortcomings of this approach are two-fold: firstly we would need as
many wavefunctions as lattice points, which comes at a big computational
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cost, and secondly the eigenvectors have no a priori reason to be smooth
enough to be used as initial conditions for our numerical scheme. More-
over it has to be noted that we would need to compute the eigenvectors
for a matrix containing the full 3D lattice. Computing the eigenvectors of a
n×n matrix is in general a problem of complexity O(n3) (Numerical Recipes
2007). Since the size of the matrix is related to the number of lattice points
N3, one quickly reaches lattice sizes making the solution of the eigenvalue
problem impossible.

4.7 Remarks concerning the number of
wavefunctions

For numerical simulations in a finite box with periodic boundary condi-
tions, the spatial lattice resolution also dictates the resolution in momentum
space. The size of the box is related to the lattice size in k-space since the
wavevectors take discrete values ~k = 2π

L ~n. The maximal wavevector is linked
to the lattice spacing in real space. This illustrates the relationship between
the number of wavefunctions and the spatial resolution of the simulation.
If we keep all the modes, we need O(N3

x) wavefunctions, where Nx is the
number of lattice points in one direction. Note that this corresponds, in
order of magnitude, to the number of particles in N-body simulations. So
even if we keep the maximal number of wavefunctions needed to accurately
represent the initial conditions, the complexity of our numerical scheme will
still be comparable to the naive O(N2) complexity of N -body simulations.

The other advantage of working with harmonic wavefunctions to rep-
resent the initial conditions is that we have an intuitive picture of what
happens if we remove some modes. In analogy with the Fourier series, the
density will not be represented exactly at every point, but the approximation
becomes closer and closer as we include more and more modes. Knowing
some of the properties of the system we want to model may help to get a
deeper insight into which modes are really needed.

In many simulations one does not necessarily need the same resolution on
all scales. Instead one could work with an adaptive grid (Plewa, Linde, and
Weirs 2005) and have higher resolution in the scales of interest. This would
allow to reach better precisions while keeping the number of wavefunctions
constant.

In the special case of simulations of cosmic structure formation, the
concept of cosmic variance could help to further reduce the number of wave-
functions required. Indeed, given that we can only observe one universe, the
statistical fluctuation in large angular patches is high, as not many statisti-
cally independent patches are available in our sky. This is a well-known fact
when studying the CMB radiation. This means that the statistical error is
anyway large on these scales, so we don’t need to work with a very high
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precision. The cosmic variance could provide a tool to estimate how many
wavefunctions are really needed in a given range of scales.

Let us also recall that the freedom of choosing the weight function in
the scalar product (4.12) of the eigenvalue problem may help to consider-
ably reduce the number of wavefunctions. Even though this seems to be a
promising route to take, we didn’t investigate it any further in this work.

Last but not least, we need to emphasize that the number of wavefunc-
tions is preserved by the quantum mechanical evolution. Only their shapes
will change. This shows that it is the complexity of the initial conditions
that dictates the number of wavefunctions required. In a setup where only
a restricted number of harmonics are present in the initial density distribu-
tion, already relatively few wavefunctions would be sufficient to represent
the system and its time evolution.
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5. Local interaction framework

In Newtonian gravity, much like in classical electrodynamics, each body
moves in the potential generated by all the other. As both forces are long-
ranged, the total force acting on each of the N particles will be given by
the sum of the contributions from all the other particles, no matter how far
away. In gravitational N-body simulation this picture yields the naiveO(N2)
estimate for the force calculation at each timestep. But it is well-known
that this long-ranged interaction through the potential can be replaced by a
purely local interaction with a gauge boson. In this approach, each particle
only interacts locally with the gauge field.

We propose to reformulate the cosmological Vlasov-Poisson system we
presented in section 2.1.1

∂f

∂τ
+

p

am

∂f

∂x
− am∂U

∂x

∂f

∂p
= 0,

∇2U = 4πGa2δρ,

as a purely local problem, by introducing an auxiliary U(1) gauge field. To
achieve local gauge invariance, we shall trade the real-valued phase space
distribution function f(x, p) for a finite set of complex-valued wavefunctions
{ψn(x)}n. For this we shall assume that the classical distribution function
can be approximated by the Wigner distribution function of some auxiliary
mixed state

f(x, p) ' PW (x, p) =

∫
dy e

i
~py

∑
n

λnψ
∗
n(x+

y

2
)ψn(x− y

2
). (5.1)

The details of how this approximation is to be understood, and how we con-
struct in practice the set of wavefunctions {ψn}n for any given f(x, p) have
been discussed in the chapter 4. For the time being, let us assume that we
have determined a set of wavefunctions such that the above approximation
holds.

The dynamical evolution of the WDF is given by the quantum-corrected
Vlasov equation (3.26), or equivalently, by the Schrödinger equations (3.28)
of the wavefunctions interacting in a self-consistent way with a potential
obeying the Poisson equation. The cosmological Vlasov equation is very
similar to the classical one, up to the replacements

m 7→ a(τ)m, V 7→ a(τ)mU. (5.2)
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Therefore the Schrödinger-Poisson system in the expanding universe be-
comes

i~∂τψn(τ, ~x) = − ~2

2ma(τ)
∇2
xψn(τ, ~x) +ma(τ)U(τ, ~x)ψn(τ, ~x), (5.3a)

∇2
xU(τ, ~x) = 4πGa2(τ)δρ(τ, ~x), (5.3b)

where ρ is the mass density [kg m−3] related to the wavefunctions [kg1/2m−3/2]
by

ρ =
1

a3

∫
d3~p

(2π)3
f(τ, ~x, ~p) =

1

a3

∑
n

λn|ψn|2. (5.4)

The normalization is chosen such that the phase space density integrates to
the total mass∫

d3~x

∫
d3~p

(2π)3
f(τ, ~x, ~p) =

∫
d3~x

∑
n

λn|ψn|2 = Mtot, (5.5)

implying for the background density

ρ̄ = 〈ρ〉 =
1

V

1

a3

∫
d3~x

∑
n

λn|ψn|2 =
1

a3

Mtot

V
, (5.6)

where V denotes the total comoving volume. Therefore the density contrast
δρ := ρ− ρ̄ reads

δρ =
1

a3

(∑
n

λn|ψn|2 −
Mtot

V

)
. (5.7)

In the semi-classical limit, the Schrödinger-Poisson system (5.3) formally
reduces to the original Vlasov-Poisson system describing gravitational struc-
ture formation.

5.1 Introducing gauge fields

The reformulation in terms of the complex-valued wavefunction has the
advantage that it allows for the introduction of a gauge symmetry. In anal-
ogy with the gauge-invariant variables of electrodynamics (Vlasov et al.
1987), we can introduce new fields defined by1:

Ψn(τ, ~x) := e
im
~c κα(τ,~x)ψn(τ, ~x), (5.8a)

~A(τ, ~x) :=
1

c
~∇α(τ, ~x), (5.8b)

α(τ, ~x) :=
c

κ

∫ τ

τ0

dτ ′a(τ ′)U(τ ′, ~x). (5.8c)

1 Dimensions: α : J m
kg

~A : J s
m kg

U : J
kg
, G : J m

kg2 , a,κ : dimensionless
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In terms of the transformed fields, the Schrödinger and Poisson equations
become

i
~
m
∂τΨn =

1

2a

(
−i ~
m
~∇− κ ~A

)2

Ψn ,

~∇ · ∂τ ~A =
4πG

κ

(∑
n

λn|Ψn|2 −
Mtot

V

)
.

The mass m only appears together with ~ in the combination ζ := ~
m . The

dimensionless constant κ has no physical meaning as it can trivially be
reabsorbed into ~A. Henceforth we will adopt the canonical choice κ = 1:

iζ∂τΨn =
1

2a

(
iζ ~∇+ ~A

)2
Ψn , (5.9a)

~∇ · ∂τ ~A = 4πG

(∑
n

λn|Ψn|2 −
Mtot

V

)
. (5.9b)

5.2 Lagrangian formulation

So far the field ~A is non-dynamical and there are no propagating waves
associated to it. It is an artifact of the field redefinition. In order to obtain
a local formulation of the Poisson equation (5.9b), we want to render the
gauge fields dynamical and add their propagating waves. We promote ~A to
a dynamical gauge field by adding a temporal component A0 and a kinetic
term. For this purpose it is most transparent to work with a Lagrangian
formulation using the standard toolbox of field theory.

Consider the non-relativistic, gauge-invariant theory of an Abelian gauge
field interacting with a set of complex scalar fields φn described by the
Lagrangian

L = α
1

2
F0iF0i − β

1

4
FijFij (5.10)

+ 4πG
∑
n

λn

[
1

2
(φ∗nD0φn +D0φ

∗
nφn)− 1

2a
~Dφ∗n · ~Dφn

]
+ 4πGρ̄A0,

where α, β are dimensionless parameters introduced for later convenience.
D0φ := (iζ∂τ−A0)φ and ~Dφ := (iζ ~∇+ ~A)φ denote the covariant derivatives.
For α = β = 1 the first two terms of the Lagrangian reduce to the usual
Maxwell Lagrangian LMaxwell = −1

4F
2
µν describing the theory of a free U(1)

gauge field.
The last term 4πGρ̄A0 was added to ensure that Poisson’s equation is

sourced by the density contrast δρ instead of the full mass density. This
additional term preserves the gauge-invariance of the action, as the comoving
background density ρ̄ = Mtot

V is time-independent and it does not affect the
other equations of motion.
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The equations of motion obtained from the Lagrangian (5.10) read:

(iζ∂τ −A0)φn =
1

2a
(iζ ~∇+ ~A)2φn , (5.11a)

α∂iF0i = 4πG

(∑
n

λn|φn|2 −
Mtot

V

)
, (5.11b)

−α∂0F0i + β∂jFji = 4πG
−1

2ac

∑
n

λn

(
φ∗n ~D

iφn + ~Diφ∗nφn

)
, (5.11c)

and are invariant under the gauge transformations:

φn 7→ e
iϑ
ζcφn, A0 7→ A0 −

1

c
∂τϑ, ~A 7→ ~A+

1

c
~∇ϑ. (5.12)

We can make use of the gauge freedom to fix the gauge and work in the
temporal gauge A0 = 0:

iζ∂τφn =
1

2a
(iζ ~∇+ ~A)2φn , (5.13a)

−α ~∇ · ∂τ ~A = 4πG

(∑
n

λn|φn|2 −
Mtot

V

)
, (5.13b)

α ~̈A+ βc2 ~∇×
(
~∇× ~A

)
= 4πG

−1

2a

∑
n

λn

(
φ∗n ~Dφn + ~Dφ∗nφn

)
. (5.13c)

The first two equations (5.13a) and (5.13b) correspond to what we had
in (5.9) before promoting the gauge fields to dynamical fields. The third
equation (5.13c) is new and encodes the dynamics and interaction of waves.
We also see that the Poisson equation has the correct sign for the attractive
gravitational force only if we take α = −1, thus changing the sign in front of
the first term in the Maxwell Lagrangian. We will discuss the implications
of this change of sign in more detail in section 5.4.

It also has to be stressed that the speed of propagation of the waves, c,
is a purely fiducial number, which is in general different from the physical
speed of light cphys = 299 792 458 m/s. We are free to choose this parameter
in a way that is convenient for our simulations (see section 5.4), as long as we
remain in the non-relativistic limit, meaning that the waves propagate much
faster than the matter. An additional condition of validity of the method
is that the effects due to the dynamical waves are small. In particular we
don’t want that a particle can lose its momentum by emitting radiation. In
practice we can require that the total energy in the waves is small compared
to the potential energy. This can also be controlled by the choice of the
parameter c.
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5.3 Dimensionless reformulation

A standard technique for numerical simulations is to rescale all quantities
to obtain a dimensionless reformulation.

Introducing typical time- and lengthscales of the problem T, L, we can
define dimensionless coordinates, fields and parameters:

θ :=
τ

T
, y :=

x

L
,

b0 :=
T 2

L2
A0, ~b :=

T

L
~A, χn :=

√
L3

Mtot
Ψn,

λ := ζ
T

L2
, Λ := 4πGT 2Mtot

L3
, C := c

T

L
,

(5.14)

with the normalization of the wavefunctions chosen as∫
[0,L]3

d3x
∑
n

λn|Ψn|2 = Mtot,

∫
[0,1]3

d3y
∑
n

λn|χn|2 = 1. (5.15)

In this dimensionless reformulation the Lagrangian (5.10) becomes (ignoring
overall coefficients, since they don’t affect the equations of motion)

L ∝ α1

2

(
~̇b+ ~∇b0

)2

− β 1

2
C2
(
~∇×~b

)2
(5.16)

+ Λ
∑
n

λn

[
1

2
(χ∗nD0χn +D0χ

∗
nχn)− 1

2a
~Dχ∗n · ~Dχn

]
+ Λb0,

where D0χ = (iλ∂θ − b0)χ and ~Dχ = (iλ~∇ +~b)χ. The dots and gradients
are understood with respect to the dimensionless coordinates θ and y. The
gauge transformations for the dimensionless fields are:

χ 7→ e
iΘ
λ χ, b0 7→ b0 − Θ̇, ~b 7→ ~b+ ~∇Θ. (5.17)

In the temporal gauge b0 = 0, the Schrödinger-Maxwell equations read

iλχ̇n =
1

2a

(
iλ~∇+~b

)2
χn , (5.18a)

−α~∇ · ~̇b = Λ
(∑

n

λn|χn|2 − 1
)
, (5.18b)

α~̈b+ βC2~∇×
(
~∇×~b

)
= Λ
−1

2a

∑
n

λn

[
χ∗n
~Dχn + ~Dχ∗nχn

]
. (5.18c)

To summarize we have shown how the cosmological Vlasov-Poisson sys-
tem was transformed into the Schrödinger-Maxwell system (5.18). In the
chapter 6 we will explain how the dynamical evolution of the above system
of equations is done using the tools of lattice gauge theories.
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5.4 Tachyonic instability

We try to model the purely attractive gravitational force by means of an
Abelian vector field Aµ. This is of course not meant to be a fundamental
description of gravity, which is described by a helicity 2 field. Instead we
seek the simplest model yielding the correct gravitational force in the context
of our numerical simulations. In order to use a vector field as a mediator,
we need to change the sign in the Poisson equation to make it correspond
to a purely attractive force. As we will see, this comes at the price of
having a negative coefficient in front of the kinetic energy. The system can
thus lower its energy by increasing the amplitude of the gauge field. This
growth is exponential and is what we call the tachyonic instability. In our
simulations, we have to keep this tachyonic mode under control. The time
for this exponentially growing mode to develop should be small compared
to the typical timescale we are interested in. This requirement will impose
some restrictions on the parameters of the Lagrangian, which we want to
study in this section.

Consider a Lorentz-violating Lagrangian of the type

L = α
1

2
F0iF0i − β

1

4
FijFij −

1

cε0
AµJ

µ, (5.19)

where α and β are real parameters. For α = β = 1 we recover the usual
Maxwell Lagrangian. The equations of motion are{

α∂iF
i0 = J0 1

cε0
= 1

ε0
ρ,

α∂0F
0i + β∂jF

ji = 1
cε0
J i,

(5.20)

The first equation shows that the sign of α fixes the sign in Poisson’s law.
In order to study the stability of the solutions, let’s first remove the

unphysical degrees of freedom. We work in the temporal gauge A0 ≡ 0.
Let’s also decompose the gauge field into its longitudinal and transverse
parts: ~A ≡ ~AT − ~∇f , with ~∇ · ~AT = 0. Then the equations of motion read{

α∇2ḟ = 1
ε0
ρ,

α( ~̈AT − ~∇f̈)− βc2∇2 ~AT = 1
ε0
~J,

(5.21)

We can use the Poisson equation2 to solve for the longitudinal component

ḟ = − 1

4π

1

αε0

∫
d3y

ρ(y)

|x− y|
, (5.22)

and then, using current conservation ρ̇ = −~∇ · ~J , integrate it out in the
second equation

α ~̈AT − βc2∇2 ~AT =
1

ε0
~J +

1

4πε0
~∇x
∫
d3y

~∇y · ~J(y)

|x− y|
=:

1

ε0
~JT . (5.23)

2 Note that this argument goes through whether the source is ρ or δρ, since ρ̇ = δρ̇.
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Let’s use the dimensionless form of this equation to study the stability. In
the case of a linear differential equation, we would apply a Fourier transform
to obtain the dispersion relation. Our equation is unfortunately non-linear
in the fields. To study the stability of the gauge mode, we may assume
that the scalar field is constant, and drop the gradient terms. We can then
Fourier transform the spatial coordinates in the equation of motion:

α~̈bT (θ,~k) + βC2~k2~bT (θ,~k) = −Λ
1

a(θ)
χ∗χ~bT (θ,~k) , (5.24)

where the notation χ∗χ :=
∑

n λnχ
∗
nχn emphasizes that the wavefunctions

χn are assumed to be constant. Note that it is always the full density
entering, not the density contrast as in Poisson’s equation.

The source term is still proportional to the time-dependent scale fac-
tor. In order to be able to also Fourier transform with respect to the time
coordinate, we assume that this time-dependence can be neglected. Hence

(−ω2α+ βC2~k2)~bT = −Λ

ā
χ∗χ~bT , (5.25)

implying the dispersion relation

ω2 =
β

α
C2~k2 +

1

α

Λ

ā
χ∗χ. (5.26)

As long as the right-hand side is positive, ω is real, and the solution is os-
cillating in time. If, however, it becomes negative, ω becomes imaginary, and
the solution contains an exponentially growing mode ∝ e|ω|θ. The system
exhibits an instability. Hence the condition for the absence of instabilities:

β

α
C2~k2 +

1

α

Λ

ā
χ∗χ ≥ 0. (5.27)

For the attractive Poisson equation, α = −1, we get −βC2~k2 ≥ Λ
āχ
∗χ ≥ 0.

For this equation to have a solution for real ~k (no exponentially growing
mode in space), we need to choose β negative.

Let’s choose α = −1, β = −1. The dispersion relation is then

ω2 = C2~k2 − Λ

ā
χ∗χ. (5.28)

In the absence of matter we have ω2 = C2~k2. This shows that the propaga-
tion velocity of the waves in vacuum is C. For the non-relativistic limit we
are interested in, this should be large compared to the typical velocities of
the particles.

The stability condition for the gravitational case is:

C2~k2 ≥ Λ

ā
χ∗χ. (5.29)
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For large enough values of ~k2 there are no instabilities. Choosing C large,
we can decrease the minimal value of ~k2. Also note that, for zero sources,
the condition reduces to ~k2 ≥ 0. This translates the fact that it is only
through the coupling to matter that the negative kinetic term for the gauge
field can produce instabilities. In the absence of any sources, we can simply
redefine the sign of the energy.

Let’s use the stability condition to deduce a bound on C. The strongest
bound on C comes from the smallest value of k, i.e. k = 2π/Lbox and the
smallest scale factor. In our simulations the scale factor is normalized to 1
at the initial time and is then increasing. Therefore the strongest bound is

C2 ≥ Λχ∗χ
L2

box

(2π)2
. (5.30)

Moreover, for our choice of adimensional units, Lbox = 1. Let us write C =
1
s

∆y
∆θ , meaning that the wave advances by 1 lattice spacing every s timesteps.

Now the constraint becomes in terms of s

s ≤ ∆y

∆θ

2π√
Λχ∗χ

. (5.31)

We can combine this condition for the absence of the tachyonic mode with
the Courant condition for the numerical stability (see appendix B), which
essentially requires that the waves should not propagate more than one
lattice spacing each timestep:

1 . s ≤ ∆y

∆θ

2π√
Λχ∗χ

. (5.32)

In our numerical simulations, we have to choose the speed of propagation of
the fiducial gauge fields such that the above relation is satisfied. This ensures
the absence of the tachyonic mode, and the stability of the numerical scheme.

To summarize we can say that our wish to model the gravitational in-
teraction by an Abelian gauge field introduces an exponentially growing
mode in our theory. Let us emphasize that the presence of this tachyon has
nothing to do with how we decide to numerically solve the equations. Its
existence was shown in the continuum theory. By an appropriate choice of
parameters, the growth of the unstable mode can be avoided. In the up-
coming section 7.3 we will perform some testbed numerical simulations to
check if our estimates for the stability condition can be trusted and to show
that the tachyonic mode can indeed be kept under control.



6. Lattice gauge theory formulation

We have mapped the cosmological Vlasov-Poisson system to the Schrö-
dinger evolution of a set of wavefunctions interacting with a dynamical gauge
field. Our next step is to describe how to solve these equations numerically.
The standard procedure would be to discretize the equations on a lattice
using finite-differences, and then solve these iteratively. Having added the
auxiliary Abelian gauge field to model the long-range gravitational interac-
tion, we propose to use a numerical scheme that is gauge-invariant. This
will be done along the lines of lattice gauge theories.

Insisting on a manifestly gauge-invariant numerical scheme has several
practical advantages. One possible consequence of breaking the gauge in-
variance can be that the numerical scheme becomes unstable and leads to
diverging solutions (Grigoriev, Rubakov, and Shaposhnikov 1989). Addition-
ally, in a gauge-invariant theory, Poisson’s equation plays a special role, as
it only corresponds to a constraint on the initial data. Put in a nutshell this
means that we have one less equation to solve in the simulation (refer to
section 6.4 for more details).

In preparation for the numerical simulation of the Maxwell-Schrödinger
system on a lattice, we first explain the Wilson approach (Wilson 1974) to
lattice gauge theories and apply it to the special case of an Abelian gauge
field interacting with a non-relativistic scalar field. Textbooks on lattice field
theory (Montvay and Münster 1994; Rothe 2005; Smit 2002) present the
construction of the gauge-invariant action using the Wilson lines. Following
the same approach, we derive the action for the Maxwell-Schrödinger the-
ory on a lattice. By varying the action, we deduce the classical equations of
motion. They are gauge invariant and yield the usual Maxwell-Schrödinger
equations in the continuum limit. Finally, we show how the equations of
motion can give an explicit scheme to numerically compute the time evolu-
tion of the fields from their initial configuration. We explain the special role
played by Gauss’ constraint, and describe how we construct initial conditions
that satisfy it.

Notations

In this part, no summation is understood for repeated lower indices, and
will be written explicitly when present. The lattice spacing is denoted by aµ:
∆t = 1

ca0 is the time spacing and ai = ∆x is the spatial grid size (assumed
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to be the same for all three directions).
∑

x denotes the sum over all lattice
points. The lattice neighbour of the point x in the direction µ̂ is denoted
by x+ aµ̂. Forward finite differences are denoted by ∆

∆µf(x) :=
1

aµ
(f(x+ aµ̂)− f(x)) , (6.1)

and overlined operators correspond to backward finite differences

∆µf(x) :=
1

aµ
(f(x)− f(x− aµ̂)) . (6.2)

When a field appears without an explicit argument, it is understood to be
taken at x (resp y for the adimensional coordinates):

Uiφ(x+ aî) +Diφ ≡ Ui(x)φ(x+ aî) +Diφ(x). (6.3)

6.1 Wilson’s lattice gauge theory formulation

In order to do numerical simulations, we need to discretize the field
theory on a lattice. According to the standard discretization procedure
one would replace all derivatives by finite differences. The details of the
discretization are not unique, but all ambiguities should disappear in the
continuum limit where the lattice spacing is sent to zero. The problem with
the standard discretization is however that it breaks gauge invariance. We
will follow Wilson’s approach to make the lattice theory gauge-invariant.

Let the action of an element of the gauge group G ∈ U(1) on the scalar
field φ be

φ(x) 7→ G(x)φ(x), φ∗(x) 7→ φ∗(x)G†(x). (6.4)

Introduce the parallel transporter, or Wilson line

Uµ(x) := e
ie
~caµAµ(x), (6.5)

transforming as

Uµ(x) 7→ G(x)Uµ(x)G†(x+ aµ̂). (6.6)

Fig. 6.1.1: Wilson line, or link variable, between two lattice sites.
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As opposed to the matter field φ(x), which takes values on each lat-
tice site, the Wilson line Uµ(x) links two neighbouring lattice points (see
figure 6.1.1) and is therefore often referred to as link variable.

In order to make the action manifestly gauge-invariant, one has to insert
Wilson lines between any two field operators taken at different lattice points,
e.g. φ∗(x)Uµ(x)φ(x + aµ̂). Alternatively, the substitution to be made can
be written for the discretized derivative

1

aµ
(φ(x+ aµ̂)− φ(x)) −→ 1

aµ

(
φ(x+ aµ̂)− U †µ(x)φ(x)

)
. (6.7)

This is the lattice equivalent of the covariant derivative as can be seen from
its gauge transformation law:

1

aµ

(
φ(x+ aµ̂)− U †µ(x)φ(x)

)
7→ G(x+ aµ̂)

1

aµ

(
φ(x+ aµ̂)− U †µ(x)φ(x)

)
.

To complete the construction of the lattice action, we need to find a
gauge-invariant term corresponding to the kinetic term F 2

µν in the continuum
limit. First, we can obtain a gauge-invariant object of link variables by
building a loop or plaquette

Pµν(x) := Uµ(x)Uν(x+ aµ̂)U †µ(x+ aν̂)U †ν (x). (6.8)

Fig. 6.1.2: Gauge-invariant plaquette of Wilson lines.

Its gauge transformation is

Pµν(x) 7→ G(x)Pµν(x)G†(x). (6.9)

In the Abelian case, the plaquette operator is itself gauge-invariant since
the fields commute. In the non-Abelian case, its trace is a gauge-invariant
quantity.
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Using the expression of the Wilson line (6.5), the plaquette operator
becomes

Pµν(x) = e
ie
~caµaνFµν(x), (6.10)

where Fµν denotes the discretized field strength tensor

Fµν(x) := ∆µAν(x)−∆νAµ(x). (6.11)

Moreover, expanding in lattice spacing, we have

1− 1

2

(
Pµν + P †µν

)
' 1

2

e2

~2c2
a2
µa

2
νFµνFµν . (6.12)

This allows us to write a lattice action for the free gauge field

SMaxwell =
~2c2

2e2
a0a

3
i

∑
x

[
2α

1

a2
0a

2
i

∑
i

(
1− 1

2

(
P0i + P †0i

))

− β 1

a4
i

∑
i,j

(
1− 1

2

(
Pij + P †ij

)) ]
,

(6.13)

where the dimensionless parameters α, β have been introduced for later con-
venience. For α = β = 1 this reduces, in the continuum limit a→ 0, to the
usual Maxwell action. Using the identity cosx = 1

2

(
eix + e−ix

)
the action

equals

SMaxwell =
~2c2

2e2
a0a

3
i

∑
x

[
2α

1

a2
0a

2
i

∑
i

(
1− cos

( e
~c
a0aiF0i

))
− β 1

a4
i

∑
i,j

(
1− cos

( e
~c
a2
iFij

)) ]
.

(6.14)

This has to be supplemented with a gauge-invariant action for the mat-
ter. Inspired by (6.7), let us define the covariant derivatives on the lattice
by

D0φ(x) :=
i~
e

1

∆t

(
φ(x+ at̂)− U †0(x)φ(x)

)
aµ→0−→

(
i
~
e
∂t −A0

)
φ(x), (6.15a)

Diφ(x) :=
i~
e

1

ai

(
φ(x+ aî)− U †i (x)φ(x)

)
aµ→0−→

(
i
~
e
~∇+ ~A

)
φ(x). (6.15b)

This allows us to write a gauge-invariant action for the matter:

SMatter =
e

ε0
a0a

3
i

∑
x

[
1

2

(
φ∗U0D0φ+D0φ

∗U †0φ
)
− e

2m

∑
i

Diφ
∗Diφ

]
, (6.16)

where the parameter ε0 can be identified with the permittivity of the vacuum.
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Having derived the lattice equivalent of the action, we can deduce from
it the discretized equations of motion. The variation of the total action
Stot = SMaxwell + SMatter yields

i~
2∆t

[
U0φ(x+ at̂)− U †0(x− at̂)φ(x− at̂)

]
= − ie~

2m

1

ai

∑
i

[
Diφ(x− aî)− UiDiφ

]
,

α
~c
e
a2
i

∑
i

∆i sin
( e
~c
a0aiF0i

)
= a0a

3
i

1

ε0

e

2

(
φ∗U0φ(x+ at̂) + φ∗(x+ at̂)U †0φ

)
,

−α ~c
e
a2
i ∆0 sin

( e
~c
a0aiF0i

)
+ β

~c
e
a0ai

∑
j

∆j sin
( e
~c
a2
iFji

)
= a0a

3
i

1

ε0

e2

2mc

[
Uiφ

∗Diφ+Diφ
∗U †i φ

]
.

For more details how the equations of motion are obtained, the interested
reader is referred to the appendix C, where the derivation is given for the
Schrödinger equation.

In contrast with the usual continuum Maxwell equations, the lattice
equations of motion are non-linear. This illustrates how non-trivial it would
have been to deduce gauge-invariant equations of motion by discretizing
their continuum versions. It can be checked that all equations of motion are
indeed gauge-invariant/covariant, as expected from the gauge symmetry of
the action. Moreover, in the continuum limit a→ 0, they reduce to

i~∂tφ− eA0φ =
1

2m

∑
i

(
−i~∂i +

e

c
Ai

)2
φ,

α ~∇ · ~E =
1

ε0
e|φ|2,

−α∂0F0i + β
∑
j

∂jFji =
1

cε0

−ie
2m

[
φ∗
(
~∂i +

ie

c
Ai

)
φ−

(
~∂i −

ie

c
Ai

)
φ∗φ

]
,

which (for α = β = 1) correspond to the standard Maxwell-Schrödinger
equations

i~∂tφ− eA0φ =
1

2m
(−i~~∇− e ~A)2φ, (6.17a)

~∇ · ~E =
1

ε0
e|φ|2, (6.17b)

−1

c
∂t ~E + c~∇× ~B =

1

cε0

−ie
2m

[
φ∗(~~∇− ie ~A)φ− (~~∇+ ie ~A)φ∗φ

]
. (6.17c)

Summarizing we have derived a fully gauge-invariant description of the
Maxwell-Schrödinger theory on a lattice, which reduces to the correct con-
tinuum limit as the lattice spacing is sent to zero.
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6.2 Lattice theory for our dimensionless
formulation

In section 5.3 we derived the adimensional form of the Schrödinger-
Maxwell equations corresponding to the cosmological Vlasov-Poisson sys-
tem. As already discussed we want to use the lattice gauge theory approach
to integrate the equations numerically. Having seen how to write a man-
ifestly gauge-invariant action on the lattice, we can now use this knowl-
edge, to find the lattice theory describing our Schrödinger-Maxwell equa-
tions (5.18).

By complete analogy with the previous section, the gauge-invariant the-
ory on the lattice can be described by the Lagrangian (summation over i, j):

LMaxwell =
α

∆θ2∆y2
[1− cos (∆θ∆yF0i)]−

βC2

2∆y4

[
1− cos

(
∆y2Fij

)]
, (6.18a)

LMatter = Λ
∑
n

λn

[
1

2

(
χ∗nU0D0χn +D0χ

∗
nU
†
0χn

)
− 1

2a
~Dχ∗n · ~Dχn

]
, (6.18b)

Lbackground = Λ b0, (6.18c)

where the link variables are now given by

U0 = ei
∆θ
λ
b0 , Ui = e−i

∆y
λ
bi , (6.19)

whereas the interaction with the matter fields is described by the covariant
derivatives

D0χn(y) =
iλ

∆θ

(
χn(y + aθ̂)− U †0(y)χn(y)

)
, (6.20a)

Diχn(y) =
iλ

∆y

(
χn(y + aî)− U †i (y)χn(y)

)
. (6.20b)

The adimensional gauge transformations on the lattice are given by:

Uµ(x) 7→ G(x)Uµ(x)G−1(x+ aµ̂), χn(x) 7→ G(x)χn(x), (6.21)

where G(x) = ei
1
λ
ϑ(x). We also make use of the discretized field strength

F0i = −∆0b
i −∆ib

0, Fij = −∆ib
j + ∆jb

i. Furthermore note that the term
yielding the background density in Poisson’s equation is written in a form,
where it is only gauge-invariant in the continuum limit. Alternatively one
could construct this term using an auxiliary, non-dynamical scalar field, for
which we could write a fully gauge-invariant action on the lattice. Both
approaches result in the same equations of motion that are perfectly gauge-
invariant on the lattice.
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Finally, the equations of motion on the lattice in the b0 = 0 gauge,
reducing to (5.18) in the continuum limit, are found to be:

1

2

iλ

∆θ

(
χn(y + aθ̂)− χn(y − aθ̂)

)
= − 1

2a

iλ

∆y

∑
i

[
Diχn(y − aî)− UiDiχn

]
, (6.22a)

− α 1

∆y∆θ

∑
i

∆̄i sin
(
∆θ∆y ∆0b

i
)

= Λ

(∑
n

λnRe
[
χ∗n(y)χn(y + aθ̂)

]
− 1

)
, (6.22b)

− α 1

∆y∆θ
∆̄0 sin

(
∆θ∆y ∆0b

i
)

+ βC2 1

∆y2

∑
j

∆̄j sin
(
∆y2Fji

)
= Λ

1

2a

∑
n

λn

[
Uiχ

∗
nDiχn +Diχ

∗
nU
†
i χn

]
. (6.22c)

6.3 Iterative solution of the equations of motion

We now show how one can rearrange the equations of motion (6.22)
to give formulas for the fields at the next timestep y + aθ̂. This is an
example of an explicit scheme, where the fields at θ + ∆θ (for each y) can
be calculated explicitly from the quantities already known. Moreover, in
this case, the algorithm describes a two-level scheme where two time steps
have to be stored to compute the next one. In terms of memory, this is the
most efficient way, as it corresponds to the minimal number of time slices
required to solve a second order difference equation.

Suppose we know all the fields at two initial time slices y−aθ̂ and y. We
can then use the equations of motion to deduce the fields at the next time
step y + aθ̂. First, the current appearing in Maxwell equations (6.22c) can
be rewritten as follows:

Ji := Λ
1

2a

∑
n

λn

[
Uiχ

∗
nDiχn +Diχ

∗
nU
†
i χn

]
= Λ

1

2a

iλ

∆y

∑
n

λn

[
Uiχ

∗
nχn(y + aî)− χ∗n(y + aî)U †i χn

]
= Λ

1

a

λ

∆y

∑
n

λn Im
(
χ∗n(y + aî)U †i χn

)
.
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The iterative solution of the equations (6.22a) and (6.22c) finally reads:

χn(y + aθ̂) = χn(y − aθ̂) + i
1

a

λ∆θ

∆y2

∑
i

[
Ui(y)χn(y + aî)− 2χn(y)

+ U †i (y − aî)χn(y − aî)
]
, (6.23a)

bi(y + aθ̂) = bi(y) +
λ

∆y
arcsin

[
sin

(
∆y

λ

(
bi(y)− bi(y − aθ̂

))
+
β

α
C2 ∆θ2

∆y2

∑
j

(
sin

(
∆y2

λ
Fji

)
− sin

(
∆y2

λ
Fji(y − aĵ)

))

− 1

α
Λ ∆θ2 1

a

∑
n

λn Im
(
χ∗n(y + aî)U †i χn

) ]
. (6.23b)

These equations define the time evolution of the fields and form the core
of our numerical simulations. Notice that we only used the equations of
motion for the matter fields (6.22a) and the spatial components of the vector
field (6.22c), not the one corresponding to the temporal component (6.22b),
since that equation plays a special role, as shall be discussed in the next
section.

When solving the Schrödinger equation numerically, it is important to
use an integration scheme, that is unitary and preserves the normalization
of the wavefunction. In our case, the unitarity is a direct consequence of
gauge invariance, as the norm of the wavefunction can be identified with
the Noether charge of the global U(1) symmetry. Therefore the use of a
gauge-invariant lattice formulation also ensures that the normalization of
the wavefunction is conserved in time, as could be checked in our numerical
simulations.

6.4 Gauss constraint

The equation of motion for the temporal component of the gauge field,
also known as Poisson’s equation or Gauss constraint, plays a special role,
as it is not a dynamical equation but merely a constraint on the initial
data (Dirac 1964; Weinberg 1995). Let us illustrate this, for the sake
of simplicity, in the continuous case. Using the equations of motion, it’s
straightforward to show that the time-derivative of the Poisson equation is
proportional to the divergence of the current:

∂0(Poisson eq.) ∝ ∂µJµ. (6.24)

In a gauge-invariant theory, the current is conserved ∂µJ
µ = 0, implying

that the Gauss constraint is conserved in time. So, if the theory is gauge-
invariant, and the initial configuration of the fields satisfies Gauss constraint,
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then it remains fulfilled at all later times. It is in this sense that Poisson’s
equation can be seen as nothing but a constraint on the initial data. There-
fore, since we used Wilson’s approach to insist on the gauge invariance of
the theory, we only have to solve the other equations of motion.

One can show the lattice equivalent of (6.24) using the full non-linear
equations of motion (6.22). Indeed, making use of the Schrödinger and
Maxwell equations on the lattice one can show that

∆0(Poisson eq.) = 0, (6.25)

where the discretized Poisson equation (6.22b) is understood. This result
is a direct consequence of the gauge-invariant equations of motion. No ap-
proximations have to be made: it holds for any lattice spacing, not only in
the continuum limit.

To fulfill the Gauss constraint on the initial data we use a minimization
procedure: given the initial matter distribution, find a gauge field configu-
ration that minimizes the Gauss constraint. The minimization relies on the
gradient descent method which is based on the observation that a function
f(x) decreases fastest if one goes from an initial point xn in the direction
of the negative gradient of f at xn. This prescription provides an iterative
method to search for the minimum of f :

xn+1 = xn − εn∇f(xn), (6.26)

where εn is a small stepsize that is allowed to change at every iteration. The
iteration hopefully converges to a local minimum of f .

Let’s now describe how this is applied to our case. Let G = 0 denote the
Gauss constraint (6.22b). We want to determine a gauge field configuration
~b(y) minimizing the Gauss constraint to zero with a given accuracy. Since
the constraint has to be satisfied at every point y, we minimize the squared
deviation summed over the whole lattice

f(bi) :=
∑
y

G2(bi(y)). (6.27)

Along the lines of the gradient descent method, this can be done solving the
equations

∂ξb
i = − ∂f

∂bi
, (6.28)

where ξ denotes an unphysical minimization time. If we solve this differen-
tial equation numerically using a first-order finite-differences scheme (Euler
method), we recover the usual gradient descent algorithm (6.26). To im-
prove the convergence and accuracy of the minimization, we instead use a
second-order Runge-Kutta method (Numerical Recipes 2007):

bi
∣∣
ξ+1

= bi
∣∣
ξ

+ε F i
(
bi
∣∣
ξ

+
1

2
ε F i(bi

∣∣
ξ

)

)
, (6.29)
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where we introduced the notation F i := − ∂f
∂bi

. In practice the stepsize ε is
chosen small enough to make the iteration converge.

This minimization procedure allows us to find an initial field configura-
tion satisfying Gauss constraint. In principle, the gauge invariance ensures
that the constraint remains satisfied for all later times. Unfortunately, the
numerical errors due to the limited precision of the simulation can lead to
a violation of gauge invariance and thus of Gauss constraint. For this rea-
son one should monitor the evolution of the Gauss constraint during the
numerical simulations. When doing very long runs, the violation of Gauss
constraint can become too large. In such a situation one can implement a
cooling procedure to make the system come back to a state satisfying the con-
straint with the desired accuracy (Grigoriev, Rubakov, and Shaposhnikov
1989). The implementation of the cooling can be done using a gradient de-
scent method, like we did to generate the initial conditions.

6.5 Complexity and memory requirements

Having presented the algorithm of the time evolution, let us estimate its
computational complexity and memory requirements.

Consider a three-dimensional spatial grid made of L3
x lattice points. Let

Nψ be the number of wavefunctions we evolve. Adding the 3 spatial compo-
nents of the gauge field, Nf = Nψ + 3 is the total number of fields we evolve
in time. At each timestep, we need to compute each of the fields at every
lattice point, making the algorithm of complexity

O
(
L3
x ·Nf

)
. (6.30)

This has to be compared with N-body simulations, which have a naive com-
plexity of O(N2), that can be reduced to O(N logN) using optimized algo-
rithms. The more particles are tracked, the better becomes the spatial reso-
lution. Roughly, for a total of N particles, ∆xresol ∼ Lbox/N

1/3. In our case,
the spatial resolution is defined by the lattice spacing ∆xresol ∼ Lbox/Lx.
Thus, for comparable spatial resolution, we would need Lx ∼ N1/3. From
this we conclude that the complexity of our algorithm scales as O(N ·Nf ).
In the ideal situation where we only need a few wavefunctions, Nf ∼ O(1),
our approach provides an O(N) algorithm to study structure formation.
It seems that in the worst case we would need as many wavefunctions as
there are Fourier modes on the lattice, Nf ∼ O(L3

x), implying a complex-
ity of O(N2), which is the same as the naive force summation in N-body
simulations.

These estimates illustrate that our algorithm can indeed compete with
the complexity of N-body simulations. It also shows how crucial it is to
reduce the number of wavefunctions as much as possible.
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Let us next have a look at the memory requirements of our approach.
Given that our time evolution relies on a two-level explicit scheme, we need
to keep the field configurations at two timesteps in memory. For Nψ complex
wavefunctions and 3 real gauge field components on the whole lattice, we
need 2 · L3

x [2Nψ + 3] variables. Assuming that each is stored as a double

of 8 byte, we can estimate the minimal memory needed by our numerical
simulation

Memory & 2 · L3
x [2Nψ + 3] · 8 byte. (6.31)

Let’s look once more at the worst case scenario Nψ ∼ O(L3
x) ∼ O(N). Hence

Memory & 32N2 byte. (6.32)

This has to be compared with N-body simulations, which have to store at
least the position and velocity of each particle at every timestep

MemoryN-body & 2 · 6N · 8 byte. (6.33)

As an example we may give the Millennium simulation (see section 2.2.2),
which needed about 400 GB to store the information of their 21603 particles,
in agreement with the above estimate.

We have to conclude that our approach can be strongly constrained by
its memory requirements. The gain in computational complexity seems to
have come at a considerable cost in memory. If we consider the 1 TB of
memory available to the Millennium simulation, we could only have ∼ 563

lattice points!
To avoid this intolerable limitation, the number of wavefunctions must

be much less than the number of lattice points. In this case our memory
requirements also scale proportionally to N as for N-body simulations. It is
conceivable that some situations of physical interest only need a relatively
small number of wavefunctions. We also have already mentioned some pos-
sibilities to reduce the number of wavefunctions in section 4.7. Another
direction for a solution could be to consider an adaptive mesh to increase
the spatial resolution for a constant number of lattice points.
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7. Discussion and Examples

7.1 Comparison with previous approaches

Let us now briefly review previous works using the Schrödinger equa-
tion to model structure formation in the universe and compare them to our
approach.

7.1.1 Coles et al.

Let us first mention the works of Peter Coles and collaborators (Coles
2002a; b; Coles and Spencer 2003; Short and Coles 2006a; b) who use
the relation between the hydrodynamic equations and quantum mechanics.
In particular, starting from the Euler and continuity equations of a self-
gravitating fluid with a curl-free flow ~v = ~∇φ, one can make the Ansatz ψ =

αe
i
ν
φ and rewrite the fluid equations as a non-linear Schrödinger equation

iν∂tψ = −ν
2

2
∇2ψ + V ψ + Pψ, (7.1)

where the potential V satisfies Poisson’s equation and P = ν2

2
∇2|ψ|
|ψ| is the

quantum pressure term. Using the semi-classical Ansatz ψ(x) =
√
ρ(x)e

i
~ θ(x),

where ~∇θ(x) = ~p(x) is the local momentum flow, they study cosmological
structure formation (in the fluid limit) by solving the above Schrödinger
equation.

Being based on the hydrodynamic formulation, their method shares the
same limitations. In particular they cannot work with a completely general
phase space distribution function.

7.1.2 Widrow et al.

A different approach, which is closer to ours, was proposed by Lawrence
Widrow and collaborators (Davies and Widrow 1997; Widrow and Kaiser
1993). They model the collisionless dark matter particles by a single wave-
function satisfying the Schrödinger-Poisson equations. As a possible motiva-
tion for this, they consider the Schrödinger equation as the non-relativistic
limit of the Klein-Gordon equation for some scalar field describing the dark
matter.
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The general procedure is very similar to ours: sample the wavefunc-
tion from the initial phase space distribution, evolve in time using the
Schrödinger-Poisson equations, recover the final phase space distribution
from the wavefunction:

f(x, p, tini)
sampling7−→ ψ(x, tini)

Schröd.-Poiss.7−→ ψ(x, tfin)
distr.7−→ f(x, p, tfin). (7.2)

But there are also a number of differences which we shall describe. The first
is that they use a single wave-function, whereas we use several to have a
better accuracy in reproducing the initial phase space distribution. Also the
details of how the initial wavefunction is obtained are very different. They
start from the N-body sampled phase space distribution and build Gaussians
centered on each of these points, with a certain width η

|η(xj , pj)〉 ∝ e
−

(x−xj)2

2η2 − i
~ ~pj ·~x. (7.3)

The wavefunction is then obtained from the incoherent superposition of
these wavepackets for each “particle”

|ψ〉 :=
1√
N

N∑
j=1

eiφj |η(xj , pj)〉, (7.4)

where eiφj is a random phase. In particular, this sampling procedure relies
on the assumption that each “particle” has a well-defined momentum. It
is unclear how it could be generalized to the case of warm dark matter,
where the velocity dispersion is important. We remove the need for this
assumption by allowing for several wavefunctions. At the same time this
allows us to represent any initial phase space distribution without relying
on N-body sampling.

Time evolution of the non-local Schrödinger-Poisson system is done us-
ing an explicit finite-differences scheme for the wavefunction and a FFT
algorithm to solve the Poisson equation. We try to improve the algorithm
for the time evolution by introducing the gauge fields to work with a purely
local interaction.

Widrow et al. use the Husimi representation to recover the phase space
information from the wavefunction. The Husimi distribution is essentially
equal to the Wigner distribution with an additional Gaussian smoothing of
width η

FH(x, p) :=
1

(2π~)3

1

(πη2)3/2

∣∣∣∣∫ d3x′ e
− (x−x′)2

2η2 − i
~px
′
ψ(x′)

∣∣∣∣2 . (7.5)

Compared to the WDF it has the advantage of yielding a phase space distri-
bution that is positive-definite at every point. This comes at the price of the
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marginal distributions not being equal to the usual position and momentum
distributions, but rather Gaussian broadened versions of it

ρH(x) =

∫
d3p FH(x, p) =

1

(πη2)3/2

∫
d3x′ e

− (x−x′)2

η2 |ψ(x′)|2. (7.6)

Only in the limit η → 0 does it reduce to the usual probability distribution.
Similarly one can show that the other marginal distribution reduces to the
standard momentum distribution only when η →∞. This complementarity
is of course related to Heisenberg’s uncertainty principle.

Note that it is in principle this smoothed distribution (7.6) that enters
Poisson equation instead of |ψ(x)|2. Since this would requiring an additional
space integration at each timestep, Widrow and Davies approximate it with
the usual distribution |ψ(x)|2 in the Poisson equation.

When computing the Husimi distribution of the sampled wavefunction (7.4)
one gets a first term with a summation over equal “particles”, and a second
“interference” term, which they claim to be small:

FH =
1

N

N∑
j=1

e
−

(x−xj)2

2η2 e−
2η2

~2 (p−pj)2

+ interference terms. (7.7)

The first term represents a Gaussian-smoothed version of the usual δ rep-
resentation 1

N

∑
j δ(x − xj)δ(p − pj) for N particles. The presence of the

interference term implies that FH is in general not a good point-by-point
approximation of the real phase space distribution. Actually 〈FH〉 ' f only
when averaged on scales ∆x & η, ∆p & ~

η . Note that there is no a priori rea-
son why the non-linear time evolution should yield an answer that is again,
in average, close to the real distribution function. Let us recall that we allow
for several wavefunctions to have an initial phase space representation that
is arbitrary close the to the classical distribution function at every point,
not only when averaged.

The authors have made several simulations using this Schrödinger method
obtaining results in agreement with usual N-body simulations. They also
claim that their method is computationally comparable to N-body simula-
tions making it a promising tool for cosmological purposes.

7.2 Implementation

Let us give a brief description of how we put our method into practice to
run numerical simulations. The time evolution of the Maxwell-Schrödinger
system is dictated by the iterative solution (6.23). This numerical scheme
requires two time-slices of initial data. The initial configuration of the wave-
functions is related to the initial phase space distribution (see chapter 4).
For better usability and larger flexibility, we used the symbolic language of
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Mathematica to generate the initial conditions for the wavefunctions. The
core of the numerical simulation was implemented in C++. Such a high-level
programming language has the clear advantage of being very readable and
easily extensible, while producing portable and usually relatively efficient
programs. To make use of nowadays multicore processors, the central parts
of the code were parallelized using OpenMP. All our simulations were run on
a quadcore desktop computer.

Given the initial wavefunctions, we make use of the gradient descent algo-
rithm (6.29) to obtain the initial gauge field configuration. Now that all the
fields are known at the initial time slices, we use our explicit scheme (6.23)
to compute the next timestep. Since the iterative solution contains the fields
at neighbouring lattice sites, care has to be taken that the boundary con-
ditions are implemented correctly. This is most easily done by augmenting
the arrays containing the values of the fields on the lattice by so-called ghost
points to store the periodic boundary conditions.

Fig. 7.2.1: Illustration of the arrays on the lattice, for simplicity taken
to be one dimensional. Two time slices are given as initial
conditions. An explicit scheme is used for the time evolution.
We add ghost points to the array in order to store the boundary
conditions.

At regular intervals, the configuration of the fields was written to a file
for later analysis. The same was done with all simulation parameters and
the quantities we monitored to check the accuracy of the simulation (like
conservation of the total probability and total energy and the deviation
from Gauss constraint). The data analysis was done using Mathematica.
Whenever the output files of the simulation were too large, they were pre-
processed by Python scripts before being analyzed.
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7.3 Numerical tests of the tachyonic instability

Modelling the gravitational interaction by means of an Abelian gauge
field comes at the price of introducing a tachyonic instability. Having esti-
mated in section 5.4 under which conditions this instability is expected to
occur, we now want to run some testbed simulations in which we can observe
this exponentially growing mode and explicitly show that we can suppress
it by the correct choice of parameters.

The instability occurs in Maxwell’s equation independently of what hap-
pens in the matter sector. So let’s consider the simplest case of a single back-
ground wavefunction χ that is constant in time and space. Let’s furthermore
consider a purely transverse gauge field ~∇·~bT = 0 and a non-expanding uni-
verse a(θ) = 1. In the continuum limit, the equation of motion for the gauge
field reduces to

α~̈bT − βC2∇2~bT + Λ|χ|2~bT = 0. (7.8)

7.3.1 Stable mode

For α = β = 1 we recognize the standard Proca equation for a massive
vector field of mass m2

b = Λ|χ|2. This system is free of instabilities for
any choice of parameters. Let us have a closer look at the corresponding
equations on the lattice. The current appearing in Maxwell equations (6.22c)
can be rewritten as follows:

Ji = Λ
1

2

[
χ∗UiDiχ+Diχ

∗U †i χ
]

= Λ
λ

∆y
Im
(
χ∗(y + aî)U †i χ

)
,

which, in the case of a constant matter distribution, becomes:

Λ
λ

∆y
Im
(
χ∗(y + aî)U †i χ

)
= Λ

λ

∆y
|χ|2 ImU †i

= Λ
λ

∆y
|χ|2 sin

(
∆y

λ
bi
)
.

The full equation for the transverse component bx(y) then reads

α
1

∆y∆θ
∆0 sin (∆θ∆y ∆0b

x)− βC2 1

∆y2
∆y sin

(
∆y2∆yb

x
)

+Λ
λ

∆y
|χ|2 sin

(
∆y

λ
bx
)

= 0. (7.9)

In the continuum limit ∆θ,∆y → 0 it indeed reduces to the Proca equation.
For finite lattice spacing, however, the mass term is not directly proportional
to the gauge field, but rather its sine. In order for this term to be in the
linear regime, we need

∆y

λ
bx � 1. (7.10)
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In particular, this constraint depends on the parameter λ, which is arbi-
trary in the present case. If, for fixed lattice spacing ∆y, λ is chosen too
small, the above condition will not be satisfied, and the non-linearity of
the mass term cannot be neglected. As a consequence, additional modes
will be excited during the time evolution of the system. This effect can
be seen nicely in figure 7.3.1a, which shows the gauge field bx at different
times. It compares the simulation data (blue dots) to the solution of the
Proca equation with sine mass term (7.9) (full green line) and linear mass
term (7.8) (dashed red line). Initially only one mode is present. The so-
lution of the linear mass term Proca equation shows this single mode with
oscillating amplitude. The solution of the sine mass term clearly shows that
other modes get excited because of the non-linearity. The simulation data
agrees nicely with this solution, but is very different from the solution of the
linear Proca equation. The effect of the non-linearities becomes smaller if we
reduce the lattice spacing. The figure 7.3.1b shows the result if we increase
the number of lattice points from 30 to 90. The simulation data still agrees
nicely with the non-linear Proca equation, and the difference with the linear
equation is reduced considerably. For small enough lattice spacing, the two
become indistinguishable, as expected from the continuum limit. For our
later simulations, as usual when solving discretized equations, we need to
pay attention to choose parameters to be close to the continuum limit.

7.3.2 Unstable mode

For α = β = −1 the mass term of the gauge field becomes negative and
the system contains a tachyonic instability for the modes with small enough
wavenumber (5.29)

k2
unstable ≤

Λ|χ|2

C2
. (7.11)

The amplitude of the unstable mode should increase exponentially with
time. Figure 7.3.2 shows the time evolution of such an unstable mode in
the simulation, and compares it to the solutions of the Proca equation with
linear and sine mass term. Naively we would expect the amplitude to grow
exponentially

A(θ) = A0e
Ωθ, with Ω2 = −C2k2 + Λ|χ|2. (7.12)

The figure 7.3.3 shows the behaviour of the maximal amplitude of the gauge
field as a function of time. As one can see, the slope of the solution of the
linear Proca equation (dashed red line) agrees well with the expected expo-
nential growth (dotted purple line). The solution of the non-linear Proca
equation (full green line) however, reveals a saturation of the amplitude at
late times. The value at which the amplitude saturates is roughly when the
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(a) 30 lattice points
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(b) 90 lattice points

Fig. 7.3.1: Gauge field bx(y) at different times. The plots correspond to
the simulation data (blue dots) and the solutions of the Proca
equation with sine mass term (full green line) and linear mass
term (dashed red line). On the finer lattice the dots of the sim-
ulation data are almost indistinguishable from the green line.
[Parameters: Lx = 30, 90, λ = 0.01,Λ = 104, C = 10∆y, |χ|2 = (∆yLx)−3/2]
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argument of the sine in the mass term is of order π. This shows that, if
the non-linearity of the mass term cannot be neglected, it leads to a flat-
tening effect in the growth of the amplitude. Interestingly, the non-linearity
introduced because of the lattice formulation helps us in the sense that it
suppresses the exponential growth of the instability.

7.3.3 Stable and unstable mode

As a next case study, we set up a numerical simulation with initial con-
ditions containing two different modes with wavenumbers k1, k2 and ampli-
tudes A1, A2 respectively

~bT |ini = [A1 sin(k1y) +A2 sin(k2y)]~ex. (7.13)

We can change the stability of the modes by tuning the parameters of the
simulation. The most interesting situation is when one mode is stable and
the second unstable. Let’s consider the following setup:

We choose the simulation parameters such that the intermediate mode
k = 2 2π

Lbox
defines the limiting case of the stability condition:

2
2π

Lbox
≡ Λ|χ|2

C2
. (7.14)

The propagation speed C is fixed by Courant’s condition and the require-
ment that the timescale for the instability to develop

τinst ∼
1√

Λ|χ|2
=

4π

LboxC2
(7.15)

is small compared to the time of the simulation. The figure 7.3.4 shows
the outcome of such a simulation. The initial configuration contains the two
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Fig. 7.3.2: Gauge field bx(y) at different times. The plots correspond to
the simulation data (blue dots) and the solutions of the Proca
equation with sine mass term (full green line) and linear mass
term (dashed red line).
[Parameters: Lx = 30, λ = 1,Λ = 104, C = 10∆y, |χ|2 = (∆yLx)−3/2]
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Fig. 7.3.3: Semi-Log plot of the maximal amplitude of the gauge field as
a function of time. The dotted purple line shows the naive
exponential behaviour, whereas the other correspond to the so-
lutions of the Proca equation with linear (dashed red line) and
sine (full green line) mass term.
[Parameters: Lx = 30, λ = 1,Λ = 104, C = 10∆y, |χ|2 = (∆yLx)−3/2]



66 7. Discussion and Examples

modes with equal amplitudes A1 = A2 = 0.01. At later times, the instability
develops only in the long wavelength mode, making its amplitude increase
exponentially. Quickly, only that mode is visible, as the amplitude of the
stable mode becomes negligible. One can see that the solution of the Proca
equation fits nicely the data of the numerical simulation.

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.01

0.02 Θ=0.000

æ

æ

æ

æ

ææ
æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ

æ

ææ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ
ææ

æ

æ

æ0.2 0.4 0.6 0.8 1.0

-0.015
-0.010
-0.005

0.005
0.010
0.015 Θ=0.005

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææææ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

ææææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.015

-0.010

-0.005

0.005

0.010

0.015 Θ=0.010

æ
æ

ææ
æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ
ææ

æ

0.2 0.4 0.6 0.8 1.0

-0.02

-0.01

0.01

0.02
Θ=0.015

æææ
æ

æ

æ

æ

æ

æ

æ

æ

ææ
æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

æ
æ

æ
ææ

æ

æ

æ

æ

æ

æ
ææ

æ

æ

æ

æ

æ

æ

æ

æ
ææ

0.2 0.4 0.6 0.8 1.0

-0.03
-0.02
-0.01

0.01
0.02
0.03

Θ=0.020

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææ
æ

æ
æ

æ
æ

æ
ææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
ææ

æ
æ

æ
æ

æ
æ

æææ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.04

-0.02

0.02

0.04 Θ=0.025

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æææææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææææ
æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.06
-0.04
-0.02

0.02
0.04
0.06 Θ=0.030

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æææ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.10

-0.05

0.05

0.10 Θ=0.035

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
ææææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææææ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.15
-0.10
-0.05

0.05
0.10
0.15 Θ=0.040

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æææææ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æææææ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.1

0.2
Θ=0.045

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æææææ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æææææ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.2

0.4 Θ=0.050

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

ææææææ
æ

æ
æ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ
æ

æ
æ

æ
ææææææ

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.2 0.4 0.6 0.8 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6 Θ=0.055

Fig. 7.3.4: Gauge field bx(y) at different times. The results from the simu-
lation (blue dots) are almost indistinguishable from the solution
of the Proca equation with linear mass term (green line).
[Parameters: Lx = 60, λ = 1,Λ = 10517, C = 470∆y, |χ|2 = (∆yLx)−3/2]

Conclusion

We can conclude that the exponentially growing mode is indeed present
in the system, but that we know how to control it by choosing the parameters
of our simulations. The examples show that the estimates we made for the
instability in the continuous equations can also be trusted for the numerical
simulations using the lattice gauge theory formalism. However, as usual
when solving a system of equations via discretization, one has to be careful
to be close to the continuum limit, in order to suppress undesired effects
coming from the non-linearity of the lattice formulation.



7.4. Schrödinger-Newton system 67

7.4 Schrödinger-Newton system

As a next test of our approach, we consider the time evolution of the
Schrödinger-Newton system{

iλ∂0χ = −λ2

2 ∇
2χ+ Uχ ,

∇2U = Λ|χ|2,
(7.16)

with given initial conditions for the wavefunction. This system of equations
has for instance been studied in the context of semi-classical gravity (Salz-
man 2005; Salzman and Carlip 2006, and references therein). The authors
consider the spherically symmetric case and solve the radial equations nu-
merically for a Gaussian initial state.

We use Mathematica to solve the radial Schrödinger-Newton equa-
tions. Independently we run our full 3D code with dynamical gauge fields
and spherically symmetric initial conditions. Finally we compare the solu-
tion of the radial equation to the result of our numerical simulation.

7.4.1 Numerical solution of the spherically symmetric case

We now consider the special case of the spherically symmetric Schrödinger-
Newton system. Switching to spherical coordinates, and assuming that there
is no angular dependence (i.e. zero angular momentum ` = 0), the Lapla-
cian reads ∇2χ = 1

r2∂
2
r (rχ). We also define F := rχ and G := rU , for which

the Schrödinger-Newton (7.16) system becomes{
iλ∂0F = −λ2

2 ∂
2
rF + 1

rGF,

∂2
rG = Λ1

r |F |
2.

(7.17)

We choose initial conditions corresponding to a Gaussian wavefunction:

F0(r) = rχ0(r) = r
(
2πσ2

0

)−3/4
e
−r2

4σ2
0 . (7.18)

The equations were split into real and imaginary parts and solved numer-
ically using Mathematica. We discretized the equations on a spatial grid
for the radial component and replaced the corresponding derivatives by their
finite-differences approximations. The time derivative was integrated using
the built-in NDSolve routine. As a cross-check we solved the Schrödinger-
Newton system with the same initial conditions as Peter Salzman. The
results were found to be in good agreement with his plots.

7.4.2 Comparison with the 3D simulation

Independently we ran our full 3D numerical simulation with the dynam-
ical gauge fields for the same parameters and Gaussian initial conditions.
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The results are in good agreement with the solution of the radial equations
obtained with Mathematica.

The figure 7.4.1 shows how a slice of the density |χ|2 evolves with time:
under the effect of gravity, the distribution collapses and becomes more
peaked. The dots are the result of the 3D numerical simulation, and agree
well with the full lines showing the solution of the radial equations.

Fig. 7.4.1: Time evolution of the density |χ|2. Gravity makes the density
collapse and become more peaked. The dots show the result of
the full 3D numerical simulation. The lines were obtained from
the Mathematica code solving the spherically symmetric case.
[Parameters: Lx = 60, λ = 0.022866,Λ = 1, C = 30, σ0 = 0.07071]

In figure 7.4.2 we plot the maximum of the density as a function of time.
Again, the results of the 3D simulation can be seen to match the spherically
symmetric Mathematica solution. The two curves start to deviate at
late times, which can be related to the lattice resolution. At late times,
the density is very peaked and only a few lattice points sample it in our
simulation, which is not enough to resolve it with high precision.

Conclusion

To conclude we can say that our 3D numerical simulation with the gauge
fields is able to reproduce the time evolution of the Schrödinger-Newton
system. The results agree well with the solution of the spherically symmetric
system obtained independently using Mathematica.
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Fig. 7.4.2: Time evolution of the maximum of the density |χ|2. The blue
line shows the result of the full 3D numerical simulation. The
dashed red line was obtained from the Mathematica code
solving the spherically symmetric case.
[Parameters: Lx = 60, λ = 0.022866,Λ = 1, C = 30, σ0 = 0.07071]

7.5 Growth of cosmic perturbations

We now apply our framework to a toy-example of cosmic perturbation
growth. Let us consider the simplest possible case of a constant background
ρ̄ and a small perturbation (ε � 1) with a single Fourier mode kp taken
along the x-direction

ρ(~x) = ρ̄+ ε [cos(kpx) + sin(kpx)] . (7.19)

Even such a simplified setup should be sufficient to study the qualitative
features of the structure growth in both, a static and expanding universe.

Simulation setup

In chapter 4 we discussed the generation of the initial wavefunctions,
in particular representing initial conditions for cosmological structure for-
mation (section 4.5). The equations (4.24) define a possible representation
of the density (7.19) in terms of wavefunctions. In this particular case we
use three wavefunctions: one for the constant background, and two for the
density perturbation.

The numerical simulation was performed on a 303 spatial grid corre-
sponding to a physical box size of 60 Mpc (in comoving coordinates). To
reduce unwanted effects of the limited size of the simulation, the scale of
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the perturbation was chosen small compared to the box size and larger than
the Nyquist mode defined by the lattice spacing. The background density is
linked to the expansion of the universe through Friedmann’s equation (2.1a)

H2(τ) =
8πG

3
ρ̄phys(τ) =

8πG

3
ρ̄com a

−3(τ), (7.20)

where τ denotes the conformal time. In a purely matter dominated (Einstein-
de Sitter) universe, the scale factor will grow as the square of the conformal
time. Let us normalize it such that it is equal to one at the beginning of our
simulation aini ≡ 1, implying

H2
ini =

8πG

3
ρ̄com ≡

8πG

3
|Ψ0|2, (7.21)

where Ψ0 denotes the constant wavefunction representing the background
density. The above relation fixes the value of this wavefunction in terms of
the initial Hubble parameter, which can be computed by rescaling today’s
value H0 to the redshift corresponding to the beginning or our simulation

Hini = H0(1 + zini)
3/2. (7.22)

We ran our simulations for the choice zini = 1000 and using today’s Hubble
parameter H0 ' 70 km s−1Mpc−1. The initial conditions with a density
contrast of δini ∼ 10−6 where evolved up to a final redshift of zfin ∼ 200
using 3 · 104 timesteps. The same initial perturbations were evolved in
a matter-dominated, expanding universe and in a static universe without
expansion.

The free parameters of our simulation were determined as follows. The
fiduciary propagation speed of the waves C was chosen to be compatible with
the absence of the tachyonic instability and the numerical stability of our
numerical scheme (as explained in section 5.4). The adimensional parameter
λ related to ~ was chosen small enough for the quantum corrections to be
negligible. More specifically, this means that the first quantum correction
in the Wigner equation (3.26) has to be small compared to the contribution
to the classical Vlasov equation:

∂xV ∂pPW >
1

24
~2∂3

xV ∂
3
pPW . (7.23)

We checked that this condition was indeed satisfied in our simulation. An-
other condition of validity of our approach is to be close enough to the
continuum limit, to suppress the non-linearities of the discretized equations
(as illustrated in section 7.3). A sufficient condition for this to be the case,
is that the exponent in the link variables

Ui = e−i
∆y
λ
bi (7.24)
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remains small1. The inverse dependence of the exponent on λ shows that
we have to pay attention when reducing the value of λ not to spoil the
continuum limit. In figure 7.5.1 we plot the maximal exponent in the link
variable Ux to illustrate that it is indeed much smaller than 1. We can
therefore neglect the non-linearities in the equations of motion because of
the discretization.
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Fig. 7.5.1: Maximum of ∆y
λ b

x over all space as a function of the adimen-
sional simulation time θ. The blue dots show the result in
presence of expansion, whereas the purple squares correspond
to a static universe.

Results

Figure 7.5.2 shows the time evolution of the density. The initial ampli-
tude of the harmonic density increases with time, without distortion of the
shape, as expected from the linear regime of structure formation.

To analyze the growth of the perturbation, we performed a Fourier trans-
form on the density contrast to obtain |δk|2. In this way we could also check
that no other Fourier modes than the initially present were excited dur-
ing the simulation. This is a cross-check for the linearity of the evolution
of the small density perturbation. The figure 7.5.3 compares the growth
|δk(θ)|2/|δk(θini)|2 for our mode in the expanding and non-expanding uni-
verses. Clearly, the growth of the perturbation is suppressed in presence of
expansion.

1 Notice that this is actually not a necessary condition, as we could perform a gauge
transformation (provided it exists) to make the exponent smaller.
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Fig. 7.5.2: Time evolution of the density field in an expanding universe.
The initial amplitude of the harmonic density increases with
time, without distortion of the shape, as expected from struc-
ture formation in the linear regime.
[Parameters: Lx = 60, λ = 0.005,Λ = 114, C = 10, kp = 2π 4/L ]
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Fig. 7.5.3: Comparison of the growth of the perturbation |δk(θ)|2/|δk(θini)|2
in a non-expanding universe (purple squares, upper line) and in
a matter-dominated, expanding universe (blue dots, lower line)
as a function of the conformal simulation time θ. The growth
is clearly suppressed in the presence of expansion.
[Parameters: Lx = 30, λ = 0.005,Λ = 114, C = 10, kp = 2π 4/L ]
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We also fitted the growth in the non-expanding universe with the ex-
pected superposition of an exponentially growing and decaying mode (see
fig 7.5.4a). The presence of the decaying mode can be seen at early times,
where it is essential to fit the growth. In the expanding Einstein-de Sit-
ter universe, the density contrast is expected to be the superposition of
a growing mode proportional to the scale factor a and a decaying mode
proportional to a−3/2 (see equation (2.20)). The results of our numerical
simulations can be fitted with this expected behavior (see figure 7.5.4b).
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(a) non-expanding universe [Parameters: Lx = 30, λ = 0.005,Λ = 114, C = 10, kp = 2π 4/L ]

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

6

æ
æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

0.0 0.1 0.2 0.3 0.4 0.5

1

2

3

4

5

6

(b) expanding universe [Parameters: Lx = 60, λ = 0.005,Λ = 108.3, C = 10, kp = 2π 4/L ]

Fig. 7.5.4: Growth of the perturbation |δk(θ)|2/|δk(θini)|2 in a non-
expanding and matter-dominated universe (blue dots) as a func-
tion of the simulation time θ. The green line represents a fit
with a superposition of the growing and decaying modes. The
dashed red line is a fit with the growing mode only. The figures
on the right illustrate the importance of the decaying mode to
fit the growth at early times.

Conclusion

We used our framework to study the growth of a single-mode density
perturbation in a cosmological context, reproducing its main features.
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Concluding remarks

An alternative framework for numerical simulations of structure forma-
tion was presented. Inspired by the Wigner distribution function (WDF) in
quantum mechanics and gauge field theories, we trade the classical Vlasov-
Poisson equations for an equivalent system with a completely local inter-
action. Besides the hope that this might yield a faster algorithm for the
simulations of structure formation, it could provide an alternative and in-
dependent approach to N-body simulations.

We derived the equation governing the dynamics of the WDF, showed its
equivalence with the Schrödinger equation and summarized what is known
about the semi-classical limit, in which it reduces to the classical Vlasov
equation. We discussed several methods to obtain an initial set of wave-
functions having a WDF close to a given classical distribution function. We
concluded that any classical distribution can be represented as the WDF of a
set of wavefunctions, although no strict quantum mechanical interpretation
should be given to the corresponding mixed state.

In one approach, the determination of the initial wavefunctions is shown
to be equivalent to the solution of an eigenvalue problem for a hermitian
operator. As a working example, we computed the wavefunctions repre-
senting the cold dark matter phase space distribution at early times. They
were found to be related to the Fourier modes of the matter distribution.
The computational efficiency depends crucially on the number of wavefunc-
tions needed. We went through different techniques (minimization, weighted
scalar product) which could help to find a minimal number of wavefunctions
describing a given initial state. Fortunately such a procedure has only to be
carried out once at the beginning of a numerical simulation to obtain the
initial conditions. Moreover the quantum evolution will leave the number of
wavefunctions fixed.

As a next essential step, we introduced dynamical gauge fields to obtain
a purely local interaction. More specifically, the long-range gravitational
force is mediated by an auxiliary Abelian gauge field. This simplest possible
description comes at the price of introducing an exponentially growing mode
into the system. We showed how a suitable choice of parameters can keep
this tachyonic mode under control.

We proceeded by applying the techniques of lattice gauge theory to ob-
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tain a fully gauge-invariant discretization of our system. This provided a nu-
merical scheme for an iterative solution of the equations of motion. Insisting
on a gauge-invariant formulation, the Poisson equation (Gauss constraint)
plays a special role, and reduces to a constraint on the initial data. We
described a minimization algorithm based on the gradient descent method
that allows to compute the initial gauge field configuration satisfying the
Gauss constraint.

The computational complexity of our approach was estimated and com-
pared to N-body simulations. Depending on the number of wavefunctions
being evolved, our complexity ranges from O(N) to O(N2). Unfortunately
our approach comes at a certain cost in memory, as it scales proportionally
to N in the best case and N2 in the worst. This emphasizes once more how
crucial it is to have a minimal number of wavefunctions.

We discussed some previous works using the Schrödinger equation to
model structure formation in the universe and outlined the improvements
we made. We then described how we implemented the proposed framework
into a fully three-dimensional numerical code which we used to perform dif-
ferent testbed simulations. First we applied it to the study of the tachyonic
instability to show that the exponentially growing mode is indeed present,
but that we know how to control it by an appropriate choice of parame-
ters. As a second test of our framework we examined the time evolution of
the Schrödinger-Newton system for an initial Gaussian wavefunction. We
compared the results of our three-dimensional code to an independent nu-
merical solution of the spherically symmetric Schrödinger-Newton system.
The results were found to be in good agreement, giving us an additional
confirmation of the validity of our local interaction framework using gauge
fields.

Lastly we applied our approach to the study of cosmic perturbations.
We considered the simplest case of the time evolution of a single Fourier
mode in both a static and matter-dominated universe. The main features of
the growth of perturbations in the cosmological context were reproduced.

Possible future work

Numerous open questions remain and many interesting routes have not
been explored.

To reduce the complexity and memory requirements of our framework,
it is crucial to reduce the number of wavefunctions needed as much as possi-
ble. One promising idea to investigate is how one should choose the weight
function in the scalar product to obtain a minimal number of relevant eigen-
functions. A suitable choice of this weight function could also allow to solve
the eigenvalue problem for more general phase space distributions. Yet an-
other idea could be to look for inspiration in the domain of data compression
and learn to encode the phase space information with a minimal number of
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basis functions. Even lossy data compression could be useful, as we can
allow for some error in the initial phase space representation provided that
it reduces the number of wavefunctions considerably. Alternatively, it would
also be interesting to identify physical problems that can be modelled with
only a few wavefunctions. Another suggestion of possible future work is
to analyze if one could describe the gravitational interaction using a scalar
field instead of a vector field (refer to appendix E for more details). Besides
having less fields to evolve, this would have the advantage of removing the
exponentially growing thereby allowing us more freedom in the choice of
simulation parameters.

In order to perform some additional tests of our framework, it could
be instructive to first avoid the high memory requirements, and implement
an effectively one-dimensional problem. The most straightforward proce-
dure would be to run planar 1+1 dimensional simulations. Another setup
of physical interest would be to study spherically symmetric systems. In
particular we could compare our results with the analytical solution of the
spherical infall model and the corresponding N-body simulations.

One possible application for three-dimensional simulations would be to
thoroughly analyze the linear growth of cosmic perturbations. One could
start in the deeply linear regime and compare the time evolution with
Zel’dovich approximation and follow the generation of the Zel’dovich pan-
cakes.

Since our main goal was to test the validity of the proposed framework,
putting effort into optimizing the code was not one of our priorities. There
is certainly a lot of potential for further optimization in different directions.
Since we have a local interaction on a spatial grid, the parallelization of the
algorithm using MPI is straightforward. As a result the code could be run
with good efficiency on clusters. It would also be interesting to implement an
adaptive mesh refinement. Any improvements along these lines would yield
numerical simulations reaching significantly higher spatial resolutions and
larger ranges of scales. Another advantage is that our approach scales very
efficiently with the number of CPU’s used as the time evolution is purely
local.

Let us emphasize that our approach has a number of attractive features.
Most importantly, the full phase space information is encoded in the wave-
functions. Working with many wavefunctions, we are in principle able to
represent any given phase space distribution, including those where the ve-
locity dispersion is important. Potentially, this would allow for numerical
simulations of structure formation in presence of warm dark matter.
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A. Conventions

This appendix lists some of the conventions and units1 used in this work.

4-vectors:

xµ =

(
ct
~x

)
, Aµ =

(
Φel

c ~A

)
, Jµ =

(
cρ
~j

)
, ∂µ =

(1
c∂t
~∇

)

xµ [m] , Aµ
[

J

C

]
, ~A

[
J s

C m

]
, Jµ

[
C

s m2

]
, ∂µ

[
1

m

]
Electromagnetic fields:

~B = ~∇× ~A,
(
~E
)i

= F i0 = F0i =
(
−∂t ~A− ~∇Φel

)i
~B

[
T =

J s

C m2

]
, ~E

[
V

m
=

J

C m

]
Field strength tensor:

Fµν =


0 Ex Ey Ez
−Ex 0 −cBz cBy
−Ey cBz 0 −cBx
−Ez −cBy cBx 0

 Fµν =


0 −Ex −Ey −Ez
Ex 0 −cBz cBy
Ey cBz 0 −cBx
Ez −cBy cBx 0


Maxwell equations:

∂µF
µν = 1

cε0
Jν ⇐⇒

{
~∇ · ~E = 1

ε0
ρ

−∂t ~E + c2~∇× ~B = 1
ε0
~j

εµνρσ∂νFρσ = 0 ⇐⇒

{
~∇ · ~B = 0

∂t ~B + ~∇× ~E = ~0

Fµν
[

J

C m

]
,

1

ε0

[
J m

C2

]
Vector identity:

~∇(~∇ · ~A)−∇2 ~A = ~∇× (~∇× ~A)

1 m=meter, s=seconds, C=Coulomb, J=Joule, T=Tesla, V=Volt
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Gauge transformations:

φ 7→ e
ie
~cϑφ, Aµ 7→ Aµ − ∂µϑ ⇐⇒ Φel 7→ Φel −

1

c
∂tϑ, c ~A 7→ c ~A+ ~∇ϑ

ϑ

[
J m

C

]
Covariant derivative:

Dµ = ~∂µ + i
e

c
Aµ ⇐⇒ D0 = ~

1

c
∂t +

ie

c
Φel, Di =

(
~~∇− ie ~A

)i
Dµ

[
J s

m

]
Fourier Transform:

f̃(~k) =

∫
d3~x e−i

~k·~xf(~x)

f(~x) =

∫
d3~k

(2π)3
ei
~k·~xf̃(~k)∫

d3~k

(2π)3
ei
~k·~x = δ(~x),

∫
d3~x e−i

~k·~x = (2π)3δ(~k)

Green’s function:

∇2Φ(~x) = −ρ(~x) ⇐⇒ Φ(~x) =
1

4π

∫
d3x′

ρ(~x′)

|~x− ~x′|
Spherical coordinates without angular dependence:

~∇f = ∂rf ~er

~∇ · ~V =
1

r2
∂r
(
r2Vr

)
∇2f =

1

r2
∂r
(
r2∂rf

)
=

1

r
∂2
r (rf) =

2

r
f ′ + f ′′

Numerical values:

1M� ' 2 · 1030 kg ' 1057 GeV

1 Mpc ' 3.086 · 1022 m ' 1.56 · 1038 GeV−1

1 sec ' 1.5 · 1024 GeV−1

GN ' 6.67428 · 10−11 kg−1m3s−2

' 4.5 · 10−48M−1
� Mpc3s−2 ' 6.7 · 10−39 GeV−2

c ' 3 · 105 km s−1 ' 0.97 · 10−14 Mpc s−1

H0 ' 70 km s−1 Mpc−1 ' 2.268 · 10−18 sec−1

~ ' 6.626 · 10−34 J s ' 6.626 · 10−34 kg m2s−1

e ' 0.0854 GeV0 , α = e2 ' 0.00729 ' 1

137
ρcrit ' 2 · 10−47 GeV4 , ρcluster ' 10−45 GeV4



B. Numerical stability

A general problem when solving differential equations using finite differ-
ences is that of the propagation of numerical errors. A scheme is said to be
numerically stable if the errors made at one timestep do not cause the er-
rors to increase as the computations are continued. A numerically unstable
scheme has exponentially growing errors and typically leads to divergences.
The stability of a numerical scheme can be investigated by means of the von
Neumann stability analysis (Numerical Recipes 2007).

Let us illustrate the stability analysis in the case of the Maxwell equa-
tion (5.24) with a single space dimension

αb̈T (θ, y)− βC2∇2bT (θ, y) + Λ|χ|2 bT (θ, y) = 0. (B.1)

Using the simplest finite differences prescription

b̈T =
1

∆θ2

[
bt(y + aθ̂)− 2bt(y) + bt(y − aθ̂)

]
, (B.2a)

∇2bT =
1

∆y2
[bt(y + aŷ)− 2bt(y) + bt(y − aŷ)] , (B.2b)

and a Fourier-like Ansatz

bT (θ = n∆θ, y = r∆y) ≡ eiωn∆θ−ikr∆y, (B.3)

the equation becomes for α = β = −1

sin2

(
ω∆θ

2

)
= C2 ∆θ2

∆y2
sin2

(
k∆y

2

)
− Λ

4
∆θ2|χ|2. (B.4)

This is the numerical dispersion relation for our method. We see that for
the numerical solutions, ω is only approximately a linear function of k.
Consequently the phase velocity vp = ω/k will depend on k, and waves with
different wavenumbers will propagate with different velocities. As a result,
a wavepacket containing several k will change its shape as it propagates.
This phenomenon, which is purely a result of the discretization, is called
numerical dispersion (Bondeson, Rylander, and Ingelström 2005).

The method is numerically stable if the solution does not contain any
exponentially growing modes, i.e. ω is real. Hence the stability condition

0 ≤ sin2

(
ω∆θ

2

)
≤ 1. (B.5)
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Using the numerical dispersion relation, the lower bound becomes

C2 ∆θ2

∆y2
sin2

(
k∆y

2

)
≥ Λ

4
∆θ2|χ|2, (B.6)

which, when expanded for small lattice spacing gives

C2k2 ≥ Λ|χ|2, (B.7)

which happens to coincide with the tachyon stability condition (5.29) derived
before. The upper bound, however, produces a new condition, that can be
seen as an upper bound on the timestep

∆θ2 ≤ 1

C2

∆y2 sin2
(
k∆y

2

)
− Λ

4 |χ|2
. (B.8)

In the special case without matter Λ = 0, and using the fact that the sine
is bounded by 1, this reduces to

C
∆θ

∆y
≤ 1, (B.9)

which is commonly known as the Courant condition. As a result, the
timestep should be small enough, that the wave doesn’t propagate more
than one gridspacing each integration step. In the cases of interest to us,
it happens that the second term in the denominator of (B.8) is negligible
compared to the first, so that we can work with the usual Courant condition.

In simulations of electrodynamics for instance, where the value of C
has a physical origin, the Courant condition dictates the timestep to be
small enough to avoid any numerical instabilities. In our case, however, the
propagation speed C is purely fiduciary and we can reinterpret the stability
condition as a lower bound on C. Combined with the upper bound from
the tachyon stability, this defines the acceptable values for this parameter.
Given that the range was always large enough in our simulations, we took
the very conservative point of view to require

C
∆θ

∆y
. (10−2 − 10−3),

to avoid any numerical instabilities.



C. Derivation of the lattice Schrödinger

equation from the action

In this appendix we give a more detailed derivation of the Schrödinger
equation from the lattice action.

The matter action on the lattice is given by (6.16):

SMatter =
e

ε0
a0a

3
i

∑
x

[
1

2

(
φ∗U0D0φ+D0φ

∗U †0φ
)
− e

2m

∑
i

Diφ
∗Diφ

]
,

Using the definition (6.15) of the covariant derivatives, we can expand the
action as follows:

SMatter =
1

ε0
a0a

3
i

∑
x

[
1

2

i~
∆t

(
φ∗U0φ(x+ at̂)− φ†(x+ at̂)U †0φ

)
− ~2

2m

1

a2
i

∑
i

(
φ∗(x+ aî)− Uiφ∗

) (
φ(x+ aî)− U †i φ

)]
.

The equations of motion are obtained by varying the action with respect
to the fields. On the lattice, the functional derivative reduces to a normal
derivative with respect to the field at a given lattice site:

ε0
a0a3

i

∂SMatter

∂φ∗(z)
=

1

2

i~
∆t

∑
x

(
δx,zU0φ(x+ at̂)− δx+at̂,zU

†
0φ
)

− ~2

2m

1

a2
i

∑
x

∑
i

[
δx+âi,z

(
φ(x+ aî)− U †i φ

)
− Uiδx,z

(
φ(x+ aî)− U †i φ

)]
=

1

2

i~
∆t

(
U0(z)φ(z + at̂)− U †0(z − at̂)φ(z − at̂)

)
+

~2

2m

1

a2
i

∑
i

[
Ui(z)φ(z + aî)− 2φ(z) + U †i (z − aî)φ(z − aî)

]
,

implying the equation of motion

i~
2∆t

(
U0φ(x+ at̂)− U †0(x− at̂)φ(x− at̂)

)
= − ~2

2m

1

a2
i

∑
i

[
Uiφ(z + aî)− 2φ+ U †i (z − aî)φ(z − aî)

]
.
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The RHS can be rewritten in terms of covariant derivatives. Using

Diφ(x− aî)− UiDiφ(x) =
i~
eai

(
φ(x)− U †i (x− aî)φ(x− aî)

)
− Ui(x)

i~
eai

(
φ(x+ aî)− U †i (x)φ(x)

)
=

i~
eai

[
2φ(x)− U †i (x− aî)φ(x− aî)− Ui(x)φ(x+ aî)

]
,

the equation of motion equals

i~
2∆t

(
U0φ(x+ at̂)− U †0(x− at̂)φ(x− at̂)

)
= − ie~

2m

1

ai

∑
i

[
Diφ(x− aî)− UiDiφ

]
.

This is the equivalent of the Schrödinger equation on the lattice.
Let us check that it yields indeed the usual Schrödinger equation in

the continuum limit. Expanding the link variables to first order in lattice
spacing, we find

i~
1

2∆t

(
φ(x+ at̂)− φ(x− at̂)

)
− e

2

(
A0(x)φ(x+ at̂) +A0(x− at̂)φ(x− at̂)

)
= − ie~

2m

1

ai

∑
i

[
Diφ(x− aî)−Diφ+

ie

~
ai ~A

iDiφ(x)

]
= − ie~

2m

∑
i

[
−∆̄iDiφ+

ie

~
~AiDiφ(x)

]
.

Taking the continuum limit ∆t, ai → 0, we obtain

i~∂tφ− eA0φ =
1

2m

∑
i

(
−i~~∇− e ~A

)2
φ,

which is indeed the Schrödinger equation in a background gauge field.



D. Unitarity of the discretized

Schrödinger equation

A feature of the continuous Schrödinger equation is that it conserves the
normalization of the wavefunction. One commonly refers to this property
as unitarity, as it corresponds to the conservation of the total probability.
From the field theoretic perspective, this is a consequence of the symmetry
under global phase transformations of the wavefunction, the total probabil-
ity being the associated Noether charge. When discretizing the Schrödinger
equation to do numerical simulations one has to take care not to spoil the
unitarity. Since our approach is fully gauge-invariant, we expect that it
should also be unitary, given that the global symmetry is a trivial conse-
quence of the gauge symmetry. Moreover, since we can perform a different
global transformation on each wavefunction χn, the norm of the individual
wavefunctions is preserved. We now propose to show explicitly how our dis-
cretized equations of motion imply the conservation of the normalization of
the different wavefunctions.

From Noether’s theorem we know that to every symmetry is associated
a conserved current ∂µJ

µ = 0 and a corresponding charge that is conserved
in time ∂0

∫
d3yJ0 = 0. Looking at the discretized Poisson equation (6.22b)

we infer that the lattice version of J0
n corresponding to the global phase

transformation χn(y) 7→ eiϑχn(y) is given by

J0
n = Re

[
χ∗n(y)χn(y + aθ̂)

]
. (D.1)

In the continuum limit a → 0 it reduces to the standard probability den-
sity |χn(y)|2. We want to make use of the discretized Schrödinger equa-
tion (6.22a) to show explicitly that the norm is conserved at every timestep:

∑
x

J0
n(y) =

∑
x

J0
n(y − aθ̂)

⇐⇒
∑
x

Re
[
χ∗n(y)χn(y + aθ̂)

]
=
∑
x

Re
[
χ∗n(y − aθ̂)χn(y)

]
(D.2)

Replacing χn(y + aθ̂) using the Schrödinger equation in the rewritten form
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as in (6.23a), we obtain∑
x

Re
[
χ∗n(y)χn(y + aθ̂)

]
=
∑
x

Re
[
χ∗n(y)χn(y − aθ̂)

]
+
∑
x

Re

[
χ∗n(y)

iλ∆θ

a∆y2

∑
i

[
Uiχn(y + aî)− 2χn + U †i (y − aî)χn(y − aî)

]]
.

The first term of the right-hand side corresponds to the total probability at
the previous timestep. For the total probability to be conserved, we expect
the second term to vanish. As it equals

λ∆θ

a∆y2

∑
x

∑
i

Re
[
i
(
−2χ∗nχn + χ∗nUiχn(y + aî) + χ∗nU

†
i (y − aî)χn(y − aî)

)]
,

a sufficient condition for it to be zero is that we take the real part of a purely
imaginary quantity, thus it is enough to show that∑

x

[
χ∗nUiχn(y + aî) + χ∗nU

†
i (y − aî)χn(y − aî)

]
∈ R. (D.3)

Since
∑

x corresponds to the sum over all lattice points, we may relabel the
coordinates as y 7→ y − aî in the first term and use the periodic boundary
conditions to obtain∑

x

[
χ∗n(y − aî)Ui(y − aî)χn(y) + χ∗nU

†
i (y − aî)χn(y − aî)

]
, (D.4)

which is clearly in the form of a term plus its complex conjugate, and there-
fore real. Hence∑

x

Re
[
χ∗n(y)χn(y + aθ̂)

]
=
∑
x

Re
[
χ∗n(y)χn(y − aθ̂)

]
(D.5)

We therefore conclude that the conservation of the norm of each wavefunc-
tion is an immediate consequence of our discretized equations of motion and
the boundary conditions.



E. Scalar field mediated gravitation

Our framework for numerical simulations of structure formation is based
on the introduction of an Abelian gauge field to have a local interaction. This
comes at the price of having an exponentially growing mode in the system
which has to be suppressed by a suitable choice of parameters. Alternatively,
one may try to make use of a scalar field to mediate the gravitational inter-
action. Besides having less fields to evolve, this would have the advantage
of not introducing any instability, thereby allowing us more freedom in the
choice of simulation parameters. This section is devoted to investigating the
scalar field description in more detail.

Consider the following Lagrangian for a real scalar field U interacting
with the complex scalar matter fields χn

L =
1

2C2
U̇2 − 1

2
(~∇U)2 + Λρ̄ U

+ Λ
∑
n

λn

[
iλ

2
(χ∗nχ̇n − χ̇∗nχn)− λ2

2a
~∇χ∗n · ~∇χn − |χn|2U

]
. (E.1)

The equations of motion are found to be

iλχ̇n = −λ
2

2a
∇2χn + Uχn, (E.2a)

− 1

C2
Ü +∇2U = Λ

(∑
n

λn|χn|2 − ρ̄
)
. (E.2b)

The first is Schrödinger equation and the second reduces to the Poisson
equation sourced by the density contrast δρ when the additional − 1

C2 Ü
term is negligible. In particular this happens in the non-relativistic limit
C →∞. The associated Hamiltonian density is given by

H =
1

2C2
U̇2 +

1

2
(~∇U)2

+ Λ
∑
n

λn
λ2

2a
|~∇χn|2 + Λ

(∑
n

λn|χn|2 − ρ̄
)
U, (E.3)

which has a positive definite kinetic energy term for the scalar potential.
This implies that there is no tachyonic instability in the system. This shows
that one can use a scalar field to mediate the attractive gravitational inter-
action, without introducing any exponentially growing modes.
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The next step in order to do numerical simulations is to rewrite a dis-
cretized version of the equations of motion (E.2). We opted again for an
explicit scheme as it is computationally more efficient than an implicit al-
gorithm. Our discretization of the equations of motion (E.2) is given by

χn(y + aθ̂) = χn(y − aθ̂) + i
λ∆θ

a
∇2

disχn(y)− i 2∆θ

λ
U(y)χn(y), (E.4a)

U(y + aθ̂) = 2U(y)− U(y − aθ̂)

+ C2∆θ2∇2
disU(y)− C2∆θ2Λ

(∑
n

λn|χn|2 − ρ̄
)
, (E.4b)

where ∇2
dis denotes the discretized Laplacian

∇2
disU(y) =

1

12∆y2

∑
i

(
−U(x+ 2aî) + 16U(x+ aî)

− 30U(y) + 16U(x− aî)− U(x− 2aî)
)
. (E.5)

In particular, one can show along the lines of appendix D that this numerical
scheme is unitary and conserves the norm of each wavefunction. Several
numerical simulations where performed with this method and the results
agree with the ones obtained with the gauge fields.
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in signal processing, ed. Mecklenbräuker & Hlawatsch pp. 375–426, Pdf.

Ercolessi, Elisa et al. (2007). “Wigner distributions in quantum mechanics”.
In: J.Phys.: Conf. Ser. 87.

Hillery, M. et al. (1984). “Distribution functions in physics: Fundamentals”.
In: Phys. Rep. 106.3 pp. 121–167.

Hirshfeld, Allen C. and Peter Henselder (2002). “Deformation quantization
in the teaching of quantum mechanics”. In: Am. J. Phys. 70 pp. 537–547.

Hudson, R.L. (1974). “When is the Wigner quasi-probability density non-
negative?” In: Rep. Math. Phys. 6 pp. 249–252.

Lee, Hai-Woong (1995). “Theory and application of the quantum phase-
space distribution functions”. In: Phys. Rep. 259 pp. 147–211.
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