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Abstract

This text describes the first application of a novel path flow arigin/destination
(OD) matrix estimator for iterated dynamic traffic assigmin@TA) microsimu-
lations. The presented approach, which operates on adgpebdemand represen-
tation, is derived from an agent-based DTA calibration raéthogy that relies on
an activity-based demand model. The objective of this werto idemonstrate the
transferability of the agent-based approach to the morelwidsed OD matrix-
based demand representation.

The calibration (i) operates at the same disaggregate dasville microsimulation
and (ii) has drastic computational advantages over usuahfalix estimators in
that the demand adjustments are conducted within theiiteriiop of the DTA

microsimulation, which results in a running time of the badition that is in the
same order of magnitude as a plain simulation. We describapafication of

this methodology to the trip-based DRACULA microsimulatiand present an
illustrative example that clarifies its capabilities.

1 Introduction

This text introduces a novel path flow and origin/destima{®D) matrix estimator
for iterated dynamic traffic assignment (DTA) microsimidas. The first part
of this introduction describes the basic concepts of thi#salations and reviews
some of the existing implementations. The second partitedsisting OD matrix
and path flow estimators. Based on this review, the new apprigghen motivated.

Iterated DTA microsimulations are characterized by théofaihg features: They
are microscopic in that both travelers and vehicles are teddat the disaggre-
gate level. They are iterative in that the simulation run@dslly according to

the logic outlined in Algorithm 1, where a demand simulatod @ supply sim-

ulator are alternately executed until a state of mutual isterscy is reached. Fi-
nally, they are usually stochastic in that at least the sitedl travel behavior is
non-deterministic, whereas the traffic flow model may eitherdeterministic or

stochastic. The foundations of the iterated simulatiorr@ggh have been laid by
Cascetta (1989); Cascetta and Cantarella (1991), andapglication to increas-
ingly complex model systems is still the topic of ongoingeash (Nagel et al.;
1998; Nagel and Flétteréd; 2009).

Algorithm 1 leaves open which behavioral dimensions areessmted by the de-
mand simulation (e.g., route choice, departure time chalestination choice,
mode choice, ...), and, indeed, the iterative approach rcamimciple cope with
any of these dimensions (Nagel and Flétterdd; 2009). Howerdy few exist-
ing DTA microsimulations go beyond route choice adjustreg@mongst them
are DynaMIT (Ben-Akiva et al.; 1998; DynaMIT; accessed 2008ETROPOLIS



Algorithm 1 Iterated DTA microsimulation

1. Initialization. Give every traveler an initial percegii of the conditions in
the network.

2. lterations. Repeat the following until stationary cdiwtis are reached.

(a) Demand simulation. Travelers select new mobility plaased on what
they have observed during previous iterations.

(b) Supply simulation. The mobility plans of all travelen® aimultane-
ously executed on the network.

(De Palma and Marchal; 2002), and DRACULA (Liu; 2005; DRACAllaccessed

2010), which also adjust departure time choice for indepatttips, and MATSIm

(Nagel et al.; accessed 2010; Nagel and Flotterdd; 200%\Rraind Nagel; 2006),
which in its current implementation adjusts route, departime, and mode choice
for complete trip chains and is continuously being extenuedards further de-

mand dimensions (Horni et al.; 2008). Far more common aratéd microsimu-

lations that constrain themselves to the equilibratioroate choice (and a strictly
trip-based demand representation). Amongst those are ANME'SS Transport

Simulation Systems; 2006, accessed 2010), DYNAMEQ (INRfessed 2010),
and PARAMICS (Quadstone Paramics Ltd.; accessed 2010).

The usual representation of a trip-based demand is a (jptsile-dependent) OD
matrix that describes the number of trips from every originezto every destina-
tion zone in a traffic network. The estimation of OD matricesf traffic counts
has a long history. Early works consider a static settingrevtzen OD matrix is
estimated given a linear assignment mapping of demand kfidws. Mathemat-
ical techniques deployed for this purpose comprise entropyimization and in-
formation minimization (van Zuylen and Willumsen; 1980gy@sian estimation
(Maher; 1983), generalized least squares (Bell; 1991;l&rerand Toint; 1995;
Cascetta; 1984), and maximum likelihood estimation ($pi#887). Congestion
effects, which lead to nonlinear assignment mappings,yaiedlly dealt with in a
bilevel-setting that iterates between the nonlinear assent and a linearized esti-
mation problem (Maher et al.; 2001; Yang; 1995; Yang et &92). The solution
to this problem can also be phrased as a fixed point of the ecmdlassignment
and OD matrix estimation mapping (Bierlaire and CrittinD80Cascetta and Pos-
terino; 2001). Cascetta et al. (1993) demonstrate how ty c&er the estimation
of static OD matrices to dynamic settings (e.g., Ashok; 18érlaire; 2002; Sher-
ali and Park; 2001; Zhou; 2004).

All of the above-mentioned demand estimators adjust OD iogstrsubject to a
given route choice model that is embedded in the traffic agsémt procedure.
Since route choice modeling is an intricate task (Frejin@&08), modeling er-



rors are likely to introduce biases in the estimated OD medti This problem
can be avoided through the use of path flow estimators (PHES)first PFE was
introduced by Bell (1995); Bell et al. (1997). It estimatestis path flows from
link volume measurements based on a multinomial logit stetth user equilib-
rium (SUE) modeling assumption. It is a one-step observénanit accounts for
congestion effects without resorting to a bilevel-appha€urther enhancements
comprise multiple user classes and a simple analyticaliggenodel to represent
traffic flow dynamics (Bell et al.; 1996). A user equilibriunkP was proposed by
Sherali et al. (2003, 1994); further developments alongehi@es were conducted
by Nie and Lee (2002); Nie et al. (2005). Summing up the patldlbetween
an OD pair yields its OD flow, which means that PFEs also sesv®R matrix
estimators.

This text describes the first application of a novel path flow arigin/destination
(OD) matrix estimator for iterated dynamic traffic assigmin@TA) microsimula-
tions. The presented approach, which operates on a trgdldeEmand representa-
tion, is derived from an agent-based DTA calibration methogly that relies on an
activity-based demand model (Flotterdd et al.; 2010). Tjeative of this work is
to demonstrate the transferability of the agent-basedoagprto the more widely
used OD matrix-based demand representation. The new appgumes beyond
existing methods in that it

e estimates the trip-making of individually simulated trkere without any ag-
gregation;

e is compatible with almost arbitrary demand and supply satous;

¢ has a computational complexity that is in the order of a psaimulation.

The remainder of this article is organized as follows. ®#c® introduces the
two software systems deployed in this study: the DRACULAngs@mulation and
the Cadyts calibration tool, which implements the propasedhodology. A case
study that clarifies the workings of the new approach is giaed discussed in
Section 3. Finally, the article is concluded in Section 4] angoing and future
research work is described.

2 Framework and system components

The work presented in this article involves two softwaregays: the DRACULA
microsimulation and the Cadyts calibration tool. This mettlescribes these sys-
tems and their interactions. DRACULA is outlined in Subget®?.1, and Cadyts
is introduced in Subsection 2.2. The interaction of bothesys is described in
Subsection 2.3.



2.1 DRACULA - a microscopic simulation DTA model

DRACULA (“Dynamic route assignment combining user leagnand microsim-
ulation”) is a simulation tool to investigate the dynamidsdemand and supply
interactions in road networks. The emphasis is on the iategrmicrosimulation
of individual trip-makers’ decisions, travel experiencasd learning. DRACULA
complies with the simulation structure given in Algorithm 1

The system explicitly models individuals’ day-to-day rewind departure time
choices, and how their past experience and knowledge ofédteonk influence

their future choices. Coupled with that is a detailed wittlay traffic microsim-

ulation based on car-following and lane-changing rulese 3ystem evolves con-
tinuously from one day to the next until a pre-defined numibelays or a broadly
balanced state between the demand and supply is reachedlatom results can
be obtained throughout the evolution and on not just the sibahalso variances
and probability distributions both within-day and betweakays. The full details

of the DRACULA suite of models and their applications haverbesported else-
where (e.g., Hollander and Liu; 2008; Liu et al.; 2006; Lidarate; 2004; Panis
et al.; 2006) and will therefore not be detailed herein.

For the purposes of this article, DRACULA's sophisticatag@y simulator is cou-
pled with a simple, externally implemented multinomialitqg@INL) route choice
model (Ben-Akiva and Lerman; 1985), and departure timeash@ neglected (in
that fixed departure times are assumed). The limitationsNIE kbute choice mod-
els, in particular with respect to route overlap, are wetlenstood and can to some
extent be corrected for without abstaining from the MNL'swenient functional
form (Ben-Akiva and Bierlaire; 2003; Cascetta et al.; 1998pwever, the syn-
thetic study presented in this article is sufficiently sdriag a plain MNL model.

Formally, denote a single trip-maker Inayand its choice set of available routes by
Cn. The probabilityP,, (i) thatn chooses routé € C,, follows a multinomial logit

model
expiuVa(i)l
Zjecn expuVn(j)l

whereV;, (1) is the systematic utility of alternativeas perceived by, andp is

a scale parameter. In all experimen,(i) is set to the negative travel time one
would have experienced on the considered route in the previeration. That
is, the more complex learning mechanisms provided by DRAZ|#llowing for
long-term driver memories with different weights on diffat days) are not ex-
ploited in this study. Further investigations with more gdax modeling assump-
tions are left as a topic for future research.

Pn(i) =

(1)

Variability in the total demand levels is enabled by givinglg replanning trip-
maker an additional empty route that represents the atteenaf not making a
trip. Assuming a total number & trip makers for a given OD pair and assuming
that on average a fraction 6fc (0, 1) trip makers actually travels per day gives the
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no-travel route a choice probability &— f and requires to scale down the choice
probabilities of all other routes bf; This turns the daily demand for the given
OD pair into a binomial random variable with meé&N and varianceNf(1 — f).
Although the stay-at-home alternative has (again for diitp) a fixed probability

to be chosen, it can be formally accounted for within (1) bsigEng it the utility
value

1 1—f 1 ,
Vn(stay-at-home = o In (T) +—1In Z eHVi )

H JECn
where the logsum term is computed only over the true routécehalternatives.
Whenever the following text speaks of route choice accorttin(1), this therefore
comprises the additional no-trip alternative.

2.2 Cadyts — Calibration of dynamic traffic simulations

Cadyts (“Calibration of dynamic traffic simulations” (Hétod; 2009, accessed
2010)) is a continuously developed software toolbox thiwa to estimate ac-
tivity based travel demand models from traffic counts andokeme-identification
data. Cadyts has been originally developed for the caldratf agent-based DTA
simulations, which do not use OD matrices. In this subsectianore specific per-
spective is adopted on a trip-based demand representatibrromte choice and
dropping a trip being the only choice dimensions.

For the sake of clarity, a somewhat simplified calibratiotiirsg is described in
the following, which results in a particularly interpret@formulation of the esti-
mation: (i) the network is assumed to be uncongested, @i)dégmand simulator
is assumed to deploy an MNL route choice model, (iii) thefizafount sensors
are assumed to have univariate normal error distributiand, (iv) the objective is
to estimate the output (choice distribution) of the demamdieh not its parame-
ters. A more general formulation of the calibration, whicbwever, is not tailored
towards a trip-based simulation, can be found in Fl6ttetcad. €2010).

Denote byy . the traffic count obtained on link in time intervalk, by crﬁk the re-
spective sensor’s error variance, anddyhe set of all sensor-equipped links. The
simulated counterpart of a measuremggt is denoted by .. The basic calibra-
tion approach can be phrased in a Bayesian framework, wbssentially, the prior
route choice distributior?,, (i) of (1) is combined with the measurements’ likeli-
hood function into a posterior route choice distribut®y(il{y qx}aca k) given the
sensor data. Under the above assumptions, the followingozippation of the
posterior distribution can be obtained:

exp [uvn(i) + > aeax %}

ak~i a

Pn(u{y ak}aGA,k) =

3
ZiECn exp [an(j) + Z €A,k %}

ak~j ak
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whereak ~ i indicates that the network travel times are such that fatigwoute

i implies entering linka in time intervalk (i.e., crossing the respective sensor).
Equation (3) is obtained from a consistent mathematicévakgon (Flotterdd et al.;
2010), but it also has a clear intuitive meaning.

The prior route choice probabilities are changed only tghoadditive modifica-
tions of the utilities. That is, the only affected elementshe behavioral model
are the alternative-specific constants (ASCs). This isgiltder the objective in the
given setting is to adjust the choices and not the choice huogdficients, and an
ASC captures all effects on a choice that are not reflectedhdwtiributes of the
alternatives or the decision maker (Ben-Akiva and Lermags).

Regarding the nature of the ASC maodifications, consldergie.'sm:nddenci‘M

in the utility correction. If more vehicles are counted ialiy than are simulated
(Yak > qax), the addend is positive and the utility of routes that ctbgssensor
on link a in time intervalk is increased. Hence, simulated drivers are encouraged
to select routes that contribute to the simulated countclvihésults in a lower
deviation between reality and simulation. Vice versa, & simulation generates a
flow that is higher than the real countd. < qqx), the utility correction is negative
and the simulated drivers are kept away from taking routasdbntribute tog .
The scaling of the utility corrections by/crﬁk ensures that more reliable sensors
take greater effect than unreliable ones. In summary, thieraaon works like a
controller that steers the simulated drivers towards eorestse fulfillment of the
sensor data.

Cadyts can cope with more general settings than what is mexbéere. For ex-
ample, the experiments described in Section 3 rely on sonii¢éi@thl features of
the calibration that enable its application in congesteaditamns (Flotteréd and
Bierlaire; 2009).

2.3 Integration of DRACULA and Cadyts

This section describes how DRACULA and Cadyts are linkeetiogr. The next
section then deploys the technology described here foli@sseirexperiments.

The communication between DRACULA and Cadyts is based ohanging data
through files. The flow chart of Figure 1 outlines the intdmatt between the
two systems. The program logic is implemented in a Pythoiptsitrat calls both
DRACULA, the route replanning module, and Cadyts in the ssargy order.

After an initialization of both systems, DRACULA is execdtence with an ar-
bitrarily selected route for each traveler. Hereafter,itbeations start. Given the
most recent travel times, the route choice model is evaluateevery single trav-
eler, and the resulting prior route choice probabilities stored (recall that this
includes the option of not making a trip). This corresporalart evaluation of (1).
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Cadyts then internally adjusts the route choice probasliaccording to (3), sam-
ples one route per trip-maker from the resulting posteristridution, and saves
this route as the chosen alternative. DRACULA then loadstadsen routes on the
network. The resulting travel times are fed back to the rohtéce model, and the
iterations start anew.

Cadyts operates at the fully disaggregate level in thatatsieith individual trav-

elers (trip makers) without associated OD pairs. The demeptesentation in
DRACULA is based on OD matrices (possibly separated by tiloe and/or user
class). In order to interact these two approaches, DRACUAEes a population
of trip-makers from the OD matrices in its initializationept Every trip-maker
in this population is then maintained as a uniquely idemtiatity throughout all
following process steps, and its association to one péati€dD pair is also stored.
This allows to re-aggregate estimated path flows and OD ceatfrom the indi-

vidually adjusted route choice behavior.

3 Experiments

We investigate the interactions of the Cadyts calibratidth the DRACULA sim-
ulation in a synthetic scenario. The purpose of these exysts is to clarify the
functioning and the capabilities of the approach. Expenitsevith real networks
are the subject of future research. The computationalldéifsiof the calibration
methodology for large-scale scenarios is demonstratedoiteFod et al. (2009),
where, however, a multi-agent simulation instead of altdged transport simula-
tion is estimated.

The experiments are run in the network shown in Figure 2. Dehemters the
network at the leftmost node, turns either left or goes gitriaat the diverge, and
leaves the network at the rightmost node. A traffic light isalied in the center
of the straight route, serving as a bottleneck that gere@nagestion-dependent
travel times. The link capacities and geometrical layoueschosen such that the
traffic light constitutes the only bottleneck in the systemd that free-flow travel
is possible everywhere else. The two routes differ by 28 gz ainder free-flow
conditions (taking into account an average delay due toitiea and by 1 km
in length. One may think of a straight route going throughtg-center and of a
longer by-pass route.

In this experiment, a population of 3000 drivers is congderThe stay-at-home
probability T — f is set to 1/3 in (2), which means that on average 2000 traseler
decide to make a trip, with a standard deviation of approtega6 travelers. The
scale parametar of the utility function (negative travel time) in the logihoice
model (1) is set to 0.01. Considering both routes and theattéqpme option, the
choice set is hence three-dimensional. The length of thysiageriod is one
hour, an the demand is distributed uniformly over this timerval.
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Figure 2: Test network

All calibration experiments follow the logic outlined indtire 1. Plain simulations
are conducted by taking Cadyts out of the loop, which is tmeesas running the
calibration with an empty measurement file, i.e., wikh= {} in (3). All simula-

tions and calibrations are run for 100 iterations, whichespp sufficient to reach
stationary conditions by visual inspection of the respedtiajectories (see below).

3.1 Plain simulation

A plain simulation in this setting results in the demand Is\and simulated traffic
counts indicated in the first wide column (“simulation”) cdfle 1. Every field of
this table displays two values: a mean value and a standaiatide (in brackets).
All statistics are obtained from the last 50 iterations @& thspective runs.

The first simulation column displays the network entry flowkheir mean val-
ues are consistent with the demand profile. Their standarétons are higher
than the 26 veh/h one would expect from the binomial demasililolition, which

is most likely a result of the link inflows being also randonalffected by traffic

flow dynamics. No vehicles enter the system after one houghwineans that no
demand is held back at the network entry because of congesfiects.

The second simulation column displays the simulated flontb@atmeasurement
location. Roughly half of the total network entries take #tmight route (and
hence pass the sensor location). Because it takes somedtireadh the sensor
link from the network entry, vehicles enter the sensor limkreafter one hour.

This effect is compounded by the traffic light right upstreafithe sensor link,

which generates an additional delay for vehicles that takestraight route.

Figures 3 and 4 show the evolution of the network and sens@ritiflows per
15-min time interval over the iterations of the simulatiddince the initial route
assignment is a 50/50 split, the system stabilizes almasieidiately around a sta-
tionary distribution. The ongoing variability in the cus/is due to (i) demand level
fluctuations, (ii) route choice variations, and (iii) staskic traffic flow dynamics.
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Table 1: Results

simulation calibration 1 ¢ = 25 veh/h) calibration 2 ¢ = 10 veh/h)
inflow of | inflow of || measured inflow of | inflow of | measured inflow of | inflow of
entry link | sensor link flow entry link | sensor link flow entry link | sensor link
interval 1 1960.16 880.87 - 1938.51 880.39 - 1934.28 880.0
0:00 - 0:15| (47.21) (39.53) (44.99) (39.5) (44.74) (39.88)
interval 2 2072.79 | 1069.96 700 1942.35 779.53 700 1920.16 716.55
0:15-0:30| (53.26) (53.21) (25) (52.8) (57.67) (20) (51.47) (66.68)
interval 3 1960.0 1046.82 1300 2067.61 | 1231.69 1300 2102.04 | 1287.77
0:30 — 0:45|| (53.63) (52.61) (25) (55.35) (71.91) (10) (52.48) (89.32)
interval 4 1946.12 | 1024.31 - 1946.12 | 1028.71 - 1946.12 | 1032.63
0:45-1:00| (51.41) (49.26) (51.41) (48.03) (51.41) (51.21)
interval 5 0.0 129.73 - 0.0 129.65 - 0.0 129.02
1:00 - 1:15 (0.0) (20.63) (0.0) (19.39) (0.0) (19.31)

time intervals are written as “hours:minutes”; all othelues are vehicles per hour (veh/h)
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3.2 Calibration

The same one-hour peak period as before is considered, Wb#rehe (presum-
ably real) sensor data and the demand are represented bwjseconstant values
in four 15 min time intervals. We investigate the exploitatiof this sensor data to
the adjustment of both the route choice and the total denevmdlsl across all time
slices. (Note that the estimation takes place jointly fotiale slices.)

The second and third main column of Table 1 show the results@icalibration
experiments. In both experiments, the same measuremerisdated: a measured
flow that is roughly 300 veh/h lower than the plain simulatiorthe second time
interval, and a measured flow that is roughly 300 veh/h higien the plain sim-
ulation result in the third time interval. Through this, wweéstigate the ability of
the calibration to both increase and decrease demand amtiggatevels. No mea-
surements are assumed to be available in the first and foomghiniterval in order
to underline that the method functions with arbitrarily feveasurements. The two
experiments differ in the standard deviation of the hypiithésensor data, which
is 25 veh/h in the first calibration experiment (second maiormn) and 10 veh/h
in the second one (third main column).

In a nutshell, the calibration yields the effect one woulgext from the sensor

data: it modifies both the demand levels and the route choiaeviay that improves

the measurement reproduction, with the fit improving as Hr@wnce of the sensor
data is reduced. This is plausible in that the calibratiodeisigned to generate a
statistically consistent combination of the prior infottioa contained in the model

system and the additional information contained in the credata.

Supplementary to Table 1, Figures 5 and 6 give the evolutiothe calibrated
network entry and sensor link entry flows over the iteratidd®sed on these figures
and Table 1, three further observations can be made.

First, the adjustment of the demand levels is not as promiathat of the route
flows. This is due to the behavioral distribution generatedhie simulation sys-
tem (without any measurements): Figures 3 and 4 as well estdkistics in Table
1 reveal that the relative variability in the route flows igtner than the variabil-
ity in the demand levels. Arguing in Bayesian terms (from ahhihe calibration
is indeed derived), this leaves greater freedom for adjaistsnof the prior route
choice distribution than for adjustments of the prior dethimvel distribution, and
hence the route flows are affected more strongly than thédetaand levels by
the sensor data.

Second, the variability in the sensor link entry flows insesa as the fit to the
measurements is increased. This is so because the meastgemeselected to
represent out-of-equilibrium conditions (they differ stéamtially from the flows
resulting from a plain simulation): as the system is movedabequilibrium, its
sensitivity to the bottleneck-induced delay on the straighte increases, hence the
reaction of the route choice model becomes stronger, amability increases. This

13
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means that, although the calibration only compares meanlaied and measured
flows, it implicitly also adjusts the system variability irpkausible way.

Third, the calibrated simulation attains quite rapidly &isinary state. Noting that
the behavioral adjustment process implemented by theratibh is embedded
within the iterative loop of the simulation, this indicatevast computational ad-
vantage over usual approaches where the iterative simmleiembedded within
an outer adjustment loop of the OD matrix. In the presentguatageh, no outer
loop is present, and the complexity of a calibration is indhger of a plain simu-

lation. (The path flow estimator by Bell also is a one-steprebr, but it is yet to

be transferred to a microsimulation setting.)

4 Summary and outlook

This text describes the first application of a novel OD madrid path flow estima-
tor for iterated DTA microsimulations. The presented applois derived from an
agent-based DTA calibration methodology that relies oncinity-based demand
model. This work explains how to apply the calibration in thip-based domain
and presents illustrative examples that clarify its caisds.

Summarizing, the following findings can be extracted froesthexperiments:

¢ the calibration interacts meaningfully with the simulatio that it improves
the measurement fit in the proper direction;

¢ the calibration accounts for the uncertainty assigneddasémnsor data;

¢ the calibration accounts for the uncertainty in the priosteyn states (de-
mand levels, route choice) in that it adjusts such aspects stmongly that
are represented a priori through a wider distribution inuthealibrated sim-
ulation;

e although the calibration directly evaluates only the meawiation between
simulated and measured flows, the resulting shift of theegay'st working
point can come along with a behaviorally and physically niregil change
in the variability of the system’s states;

¢ the computational complexity of the calibration is in thelar of a plain
simulation.

Our ongoing work focuses on the testing of the methodologyldmer DRAC-
ULA networks that are based on real scenarios. Future wdtlc@rprise various
extensions of the Cadyts methodology, including the ino@&tion of richer sensor
data (vehicle re-identifications, smartphone data) andadiné calibration of fur-
ther demand and supply parameters along with the demamadadistn presented in
this article.
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