Dynamic facial expression recognition using a discrete choice model

Thomas Robin

Michel Bierlaire

Javier Cruz

9th november 2009

The context

- Recent interest for emotion recognition in transportation
 - Driving assistance

 - SafetyMobility
 - Well-being measuring of users
 - Improve public transportation offers
 - Improve car comfort

The context

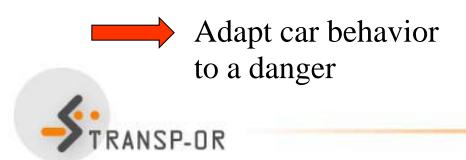
- Emotion: **mental** and **physiological** state associated with a wide variety of feelings, thoughts and behavior.
- Emotions signs easy to measure with non-intrusive techniques for transportation users:

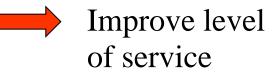
BehaviorFacial expression

- Voice intonation

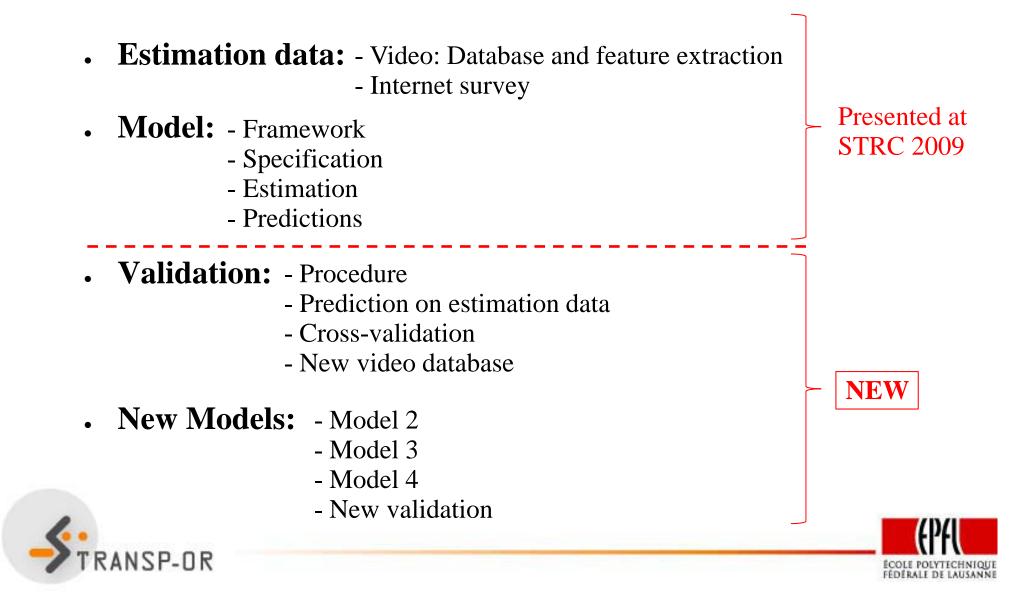
The context

Driving assistance

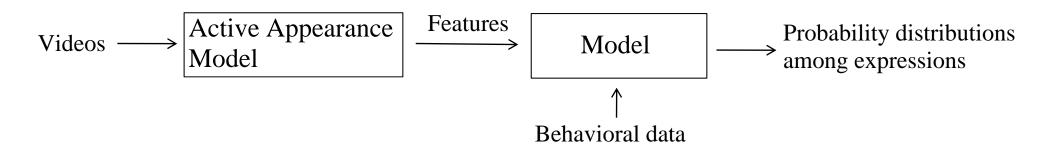




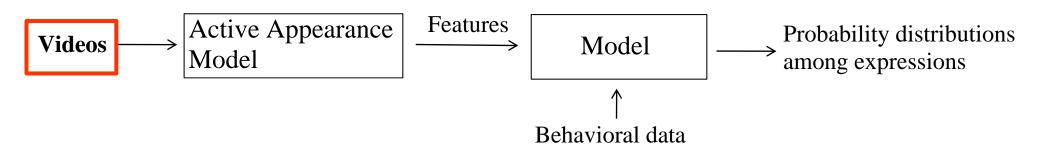
Well being measuring


Objectives

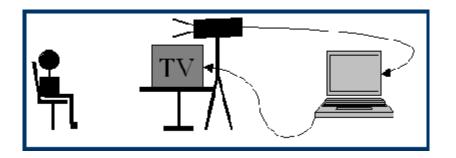
- Model the facial expression recognition made by a person looking at a face video sequence
- Model explicitely the **dynamic process**
- . No classification
- Estimate the model on **behavioural** data (relax ground truth assumptions)



Outline


Introduction

• Model overview:

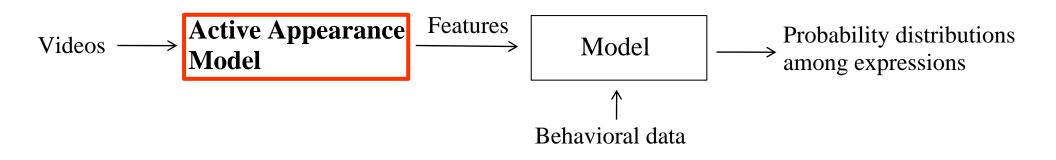


Data: video database

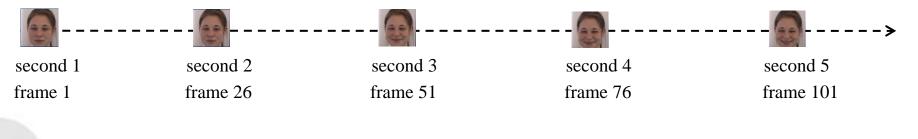
• The Technical University Munich database (TUM) Facial Expression and Emotion Database (FEED)

Students faced to a video, natural expressions recorded

138 sequences, 18 subjects

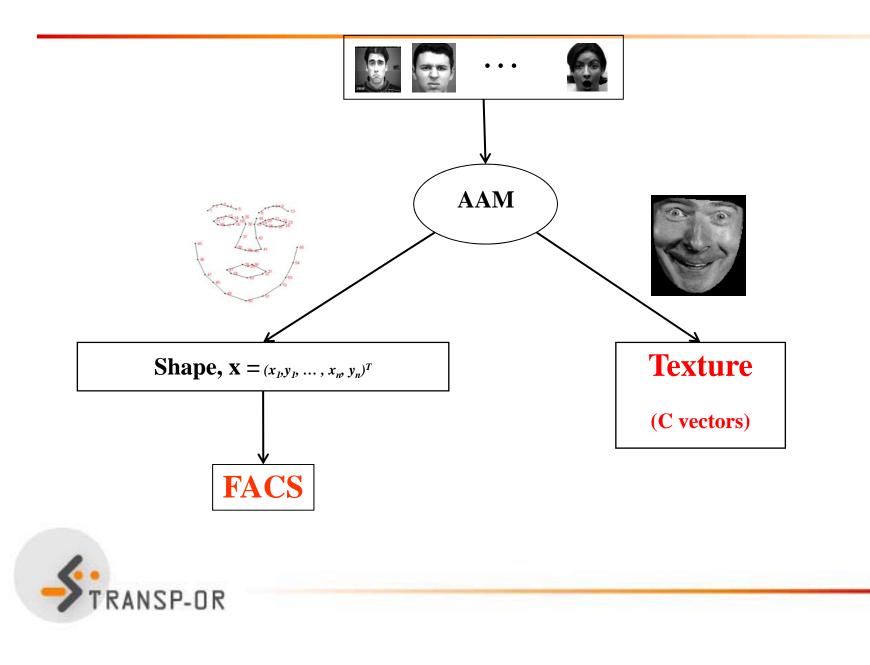


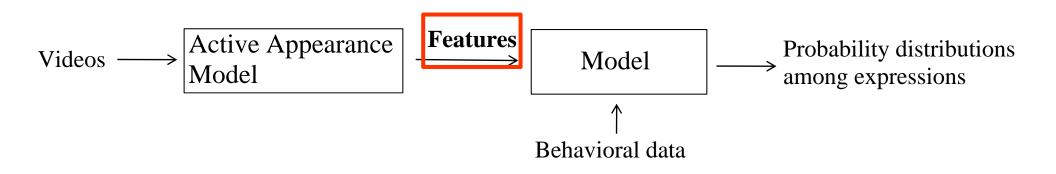
Data: video database


Features extraction: Active Appearance Model

• Video = succession of images, called frames

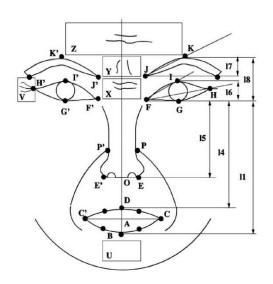
information extracted on each frame


- Hypothesis: individual perception evolves at regular time step (1 s)
 - a video contains 25 frames per second
 first frame of each second retained



Features extraction: Active Appearance Model

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE



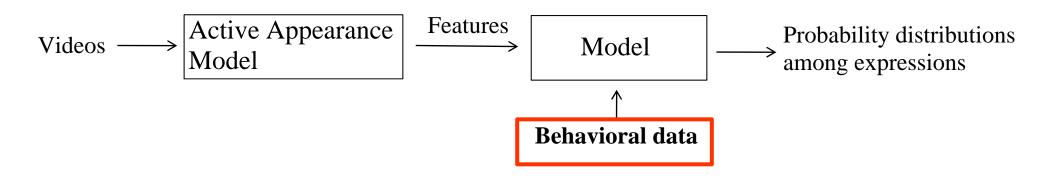
Features: Facial Action Coding System

- FACS developped by Ekman and Friesen (1978)
- Mesurement units, called "Action Units" (AUs) associated to expressions
 leading standard for measuring facial expressions

	4110	ATT4	4776	4776	4117
AUI	AU2	AU4	AU5	AU6	AU7
Inner Brow Raiser	Outer Brow Raiser	Brow Lowerer	Upper Lid Raiser	Cheek Raiser	Lid Tightener
AU9	AU10	AU12	AU15	AU16	AU17
CHE I	in the second	de.	30	E.	3
Nose Wrinkler	Upper Lip	Lip Corner	Lip Corner	Lower Lip	Chin Raiser
	Raiser	Puller	Depressor	Depressor	
AU20	AU23	AU24	AU25	AU26	AU27
	3	1	Ē	ē	
Lip Stretcher	Lip Tightener	Lip Pressor	Lips part	Jaw Drop	Mouth Stretch

Features: C vectors

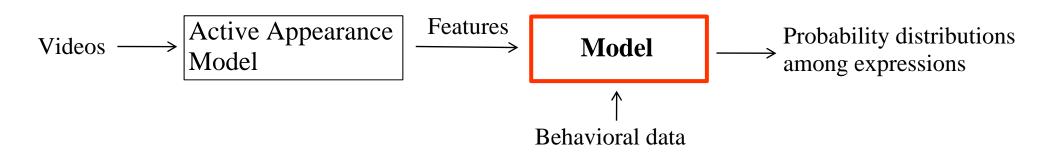
• Direct output of the Principal Component Analysis (PCA) conducted in the AAM


It characterises both **face shape** and **face shadows**

 \longrightarrow C vector: 100 elements

Data: internet survey

- Survey conducted at the address below(English, French, Italian, Spanish): <u>http://transp-or2.epfl.ch/videosurvey/</u>
- Respondents have to: | create an account


Socioeconomics attributes

- label some video sequences with expressions
 observations
- 1 database of video is used:

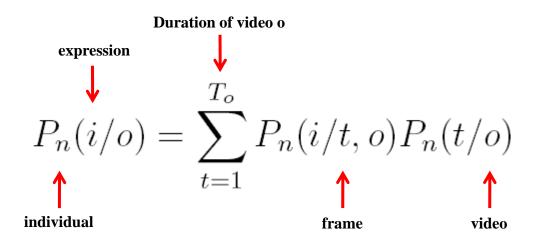
Facial Expression and Emotion Database(FEED)

Model: framework

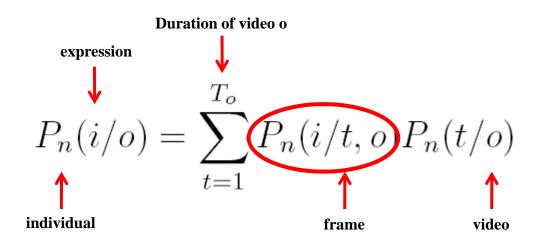
• Combination of 2 DCM

Instantaneous expression perception sub-model

- Similar to static model
- Choice set: expressions
- Attributes: facial features


Video frames weighting sub-model

- Capture influence of each frame on final expression perception
- Choice set: frames (depend on the video)
- Attributes: dynamic features, such as facial features derivatives


Model: framework

- $P_n(i/t, o)$: Instantaneous expression perception sub-model.
- $P_n(t/o)$: Video frames weighing sub-model.
- $P_n(t/o)$: Model.

- Choice set: 9 expressions (Happiness, Surprise, Fear, Disgust, Sadness, Anger, Neutral, Other, Don't know)
- Logit model
- Memory effect : captured in expression utilities

• Memory effect : captured in expression utilities

Directly:

$$V_n(i|t, o) = Vgeneric_n(i|t, o) + a_i Vgeneric_n(i|t - 1, o)$$

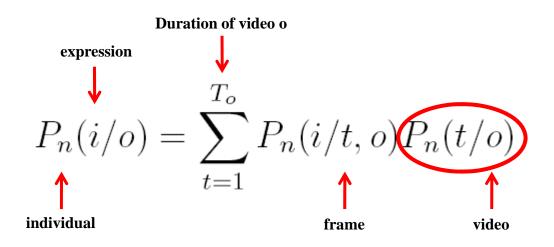
Estimated parameter

Convex combination:

 $V_n(i|t,o) = (1 - a_i) Vgeneric_n(i|t,o) + a_i Vgeneric_n(i|t-1,o)$ $a_i \in [0,1]$

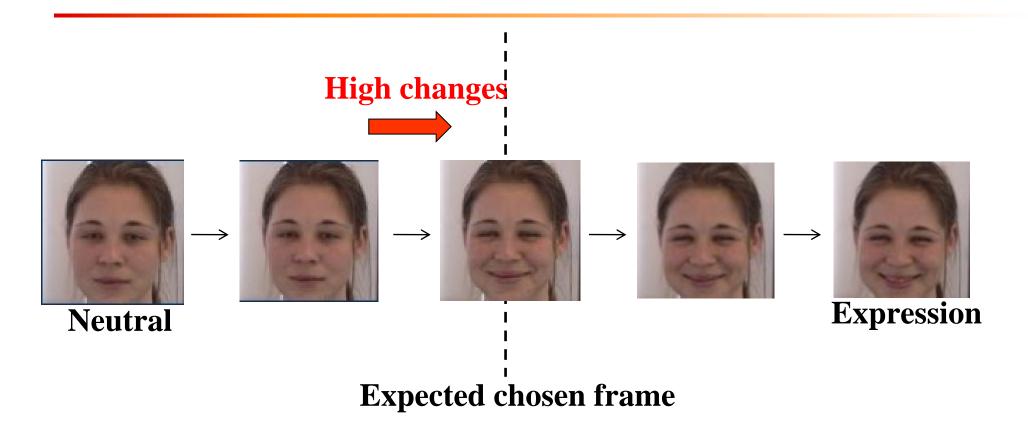
$$V_n(i|t,o) = Vgeneric_n(i|t,o) + a_i Vgeneric_n(i|t-1,o) - Vgeneric_n(i|t,o))$$

 a_i unbounded


Specification of $Vgeneric_n(i|t, o)$

- Inspiration:
 - Sorci, M., Antonini, G., Cruz, J., Robin, T., Bierlaire, M. and Thiran, J.-P. (n.d.). Modelling human perception of static facial expressions, *Image and Vision Computing*. Accepted for publication.
- Linear in parameters and attributes specification:
 - Alternative Specific Constants (ASC)
 - Measures corresponding to AU (FACS)
 - No Expression Descriptive Units (EDU)
 - Elements of C vectors (outputs of AAM)

Model: frames weighting sub-model



- Choice set: Frames of the videos (it depends on *o*)
- Logit model
- Utility specification: Derivatives of facial features

Model: frames weighting sub-model

- Specification of $V_n(t|o)$:
 - Linear in attributes and parameters (for simplicity)
 - Generic parameters
 - Frame Attributes:
 - 1) Facial features of frame *t*
 - 2) Difference between Facial features of frames t and t-1
 - 3) Difference between Facial features of frames t and θ

Model 1: specification

- Aim: find the best model in terms of fit, interpretability and prediction
- What can we play with?
 - Sub-model of expression perception

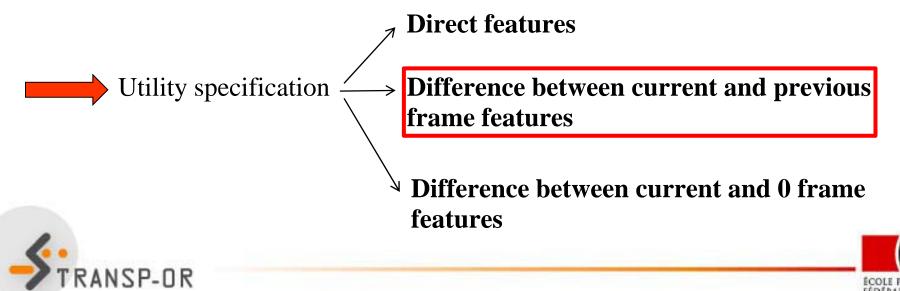
Memory effect
Convex combination

- Sub-model of frame influence

¬ Direct features

Utility specification \longrightarrow Difference between current and previous frames features

Difference between current and 0 frames features



Model 1: specification

- Sub-model of expression perception

Memory effect Convex combination

- Sub-model of frame influence

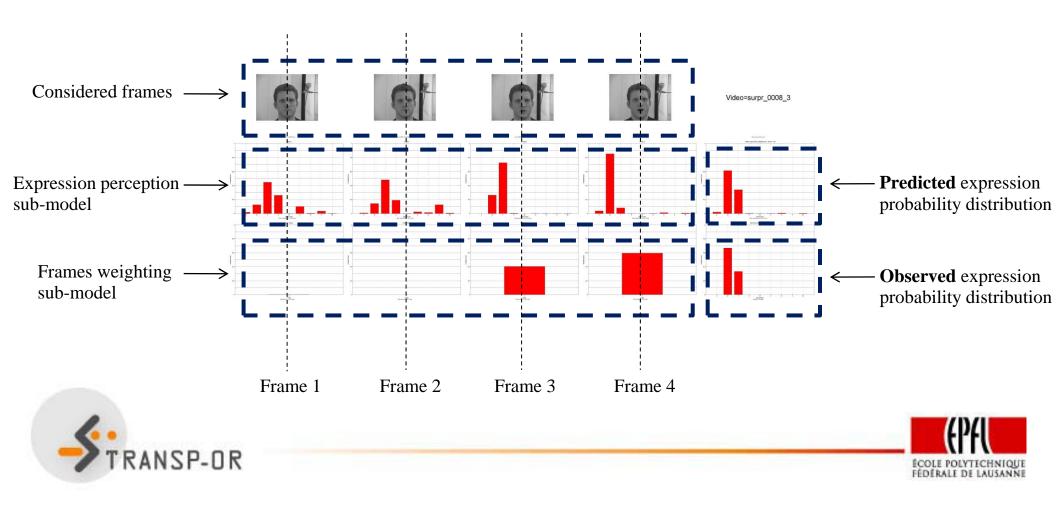
Model 1: estimation

- Likelihood maximization
- Estimation program based on the BIOGEME software
- General model fit:

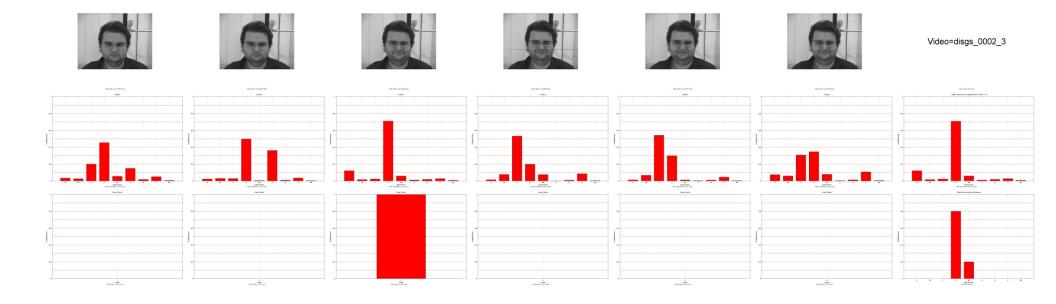
Nb of observations:	418
Nb of parameters:	44
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-565.71
$ar{ ho}^2$:	0.336

Model 1: estimation

Sub-model of expression perception

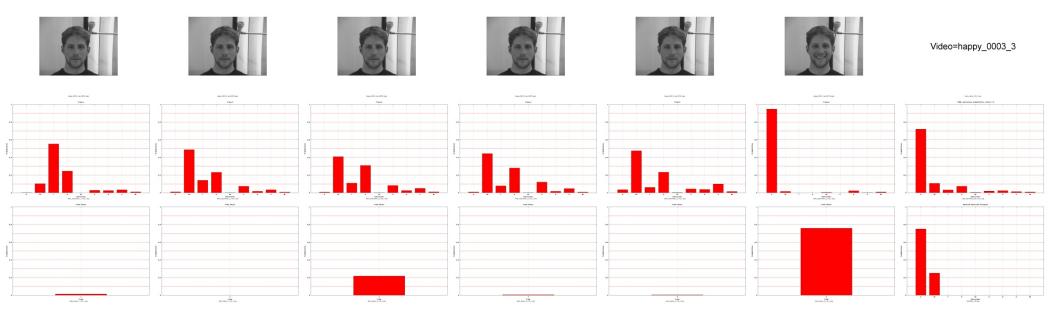

Std-error	t-test 0
4.60	-1.13
3.59	2.15
0.33	-2.81
5.30	-2.51 -2.55
3.83	4.56
2.61	2.45
5.12	1.55
2.35	-5.82
2.55 90.55	-3.82 4.67
30.33 17.77	5.38
22.01	-4.98
1.41	-4.30
4.34	4.79
2.39	-3.10
2.39	
21.68	
27.93	-1.69
27.33 29.71	7.26
17.46	4.89
15.29	-8.02
87.16	3.10
42.60	5.75
20.91	4.57
47.10	-5.37
37.67	-7.10
12.26	2.31
14.97	4.38
27.28	1.48
14.75	7.07
21.17	6.50
8.47	1.90
10.49	2.98
0.14	-5.16
0.08	-2.91
0.11	-3.86
0.09	-2.48
_	_
	0.09

Sub-model of frame influence

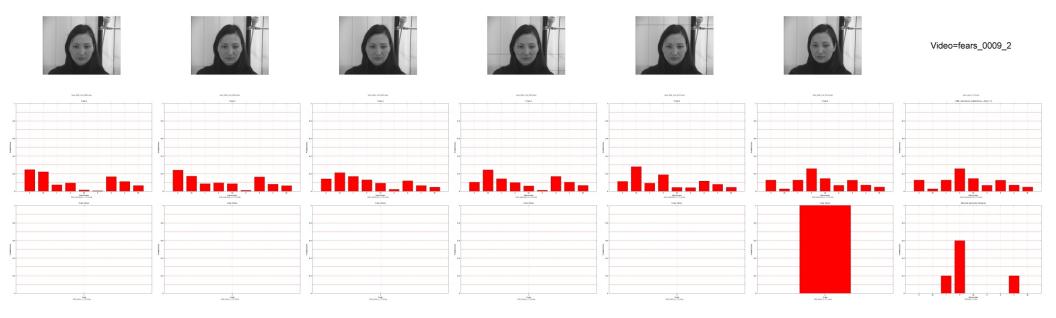

	Id	Parameter name	Value	Std-error	t-test 0
	1	$b_XC_1_deriv_FRAME$	-5.67	1.96	-2.90
C vector deriv	2	$b_FRAME_eye_h_deriv$	-59.69	14.75	-4.05
	3	$b_FRAME_eye_brow_angle_deriv$	3.12	0.80	3.88
	4	$b_FRAME_Xmouth_h_deriv$	112.20	30.50	3.68
	5	$b_FRAME_Xmouth_w_deriv$	-15.13	3.91	-3.87
AUs deriv	6	$b_XC_2_deriv_FRAME$	-17.61	4.28	-4.12
	7	$b_XC_3_deriv_FRAME$	16.19	3.75	4.31
	8	$b_XC_5_deriv_FRAME$	-7.04	2.01	-3.50

- Check model validity
- Prediction display example:

• Expressions order: H, SU, F, D, SA, A, N, O, DK



GOOD



• Expressions order: H, SU, F, D, SA, A, N, O, DK

• Expressions order: H, SU, F, D, SA, A, N, O, DK

Validation: introduction

- Prove model applicability
- Inspired from:
 - Robin, T., Antonini, G., Bierlaire, M. and Cruz, J. (2009). Specification, estimation and validation of a pedestrian walking behavior model, *Transportation Research Part B: Methodological* 43(1): 36–56.
- Procedure:
 - Prediction on estimation data
 - Cross-validation on estimation data
 - Prediction on a new video database (not used for model estimation)

Validation: prediction on estimation data

• Outlier: observation with predicted choice probability less than 1/9

Outlier percentage

ASC model	model 1
35.89%	18.90%

Validation: prediction on estimation data

• Distance between observed and predicted expression distribution

Sum over all videos
$$T = \sum_{o} (\sum_{i=1}^{9} \frac{(N_{io} - n_{o}p_{io})^2}{n_{o}p_{io}})$$

$$N_{io}$$
 : number of labels for expression *i* and video *o* n_o : number of labels for video *o*

 p_{io} : predicted probability of expression *i* for video *o*

	Null model	ASC model	model 1	
	1831.65	1472.38	1512.20	
TRAN	SP-OR			for

Validation: cross-validation on estimation data

Save data for validation

- Data are divided **randomly** in 5 subsets, each one containing 20% of the facial videos
- Model estimation on 4 subsets, simulation on the remaining one

- 5 experiments

- Comparison between observations and predictions, with the outlier percentage

Validation: cross-validation on estimation data

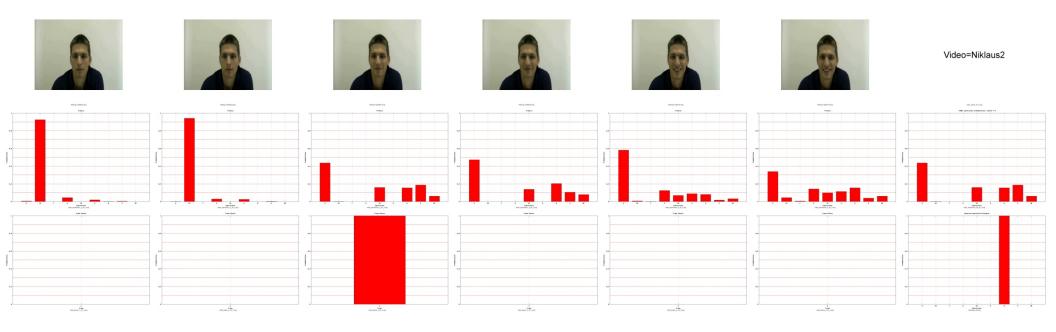
• Cross-validation:

- Data statistics:

	data 1	data 2	data 3	data 4	data 5
Number of videos	14	14	14	14	17
Number of observations	65	102	74	79	98

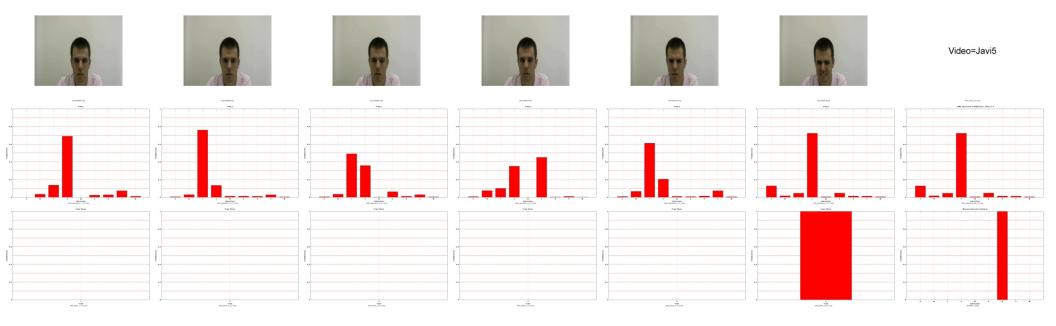
- Outlier percentage :

	simulation 1	simulation 2	simulation 3	simulation 4	simulation 5
ASC model	23.08%	50.98%	35.13%	27.85%	35.71%
model 1	23.07%	28.43%	25.67%	31.64%	Not converged


- Apply the model on a new video database not involved in the estimation process
 - Database collected during summer 2009 by Clément Denis
 - Natural expressions (65)
 - But, poor resolution and lack of luminosity
- Man Machine Interface (MMI) by Maya Pantik
- Played expressions using FACS (1395)
- Natural expressions (167)
- Benchmark for computer vision algorithm

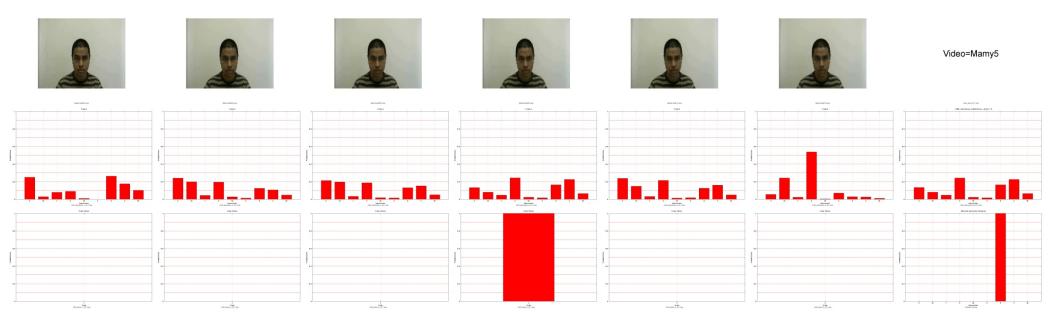
But account not yet activated

- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK



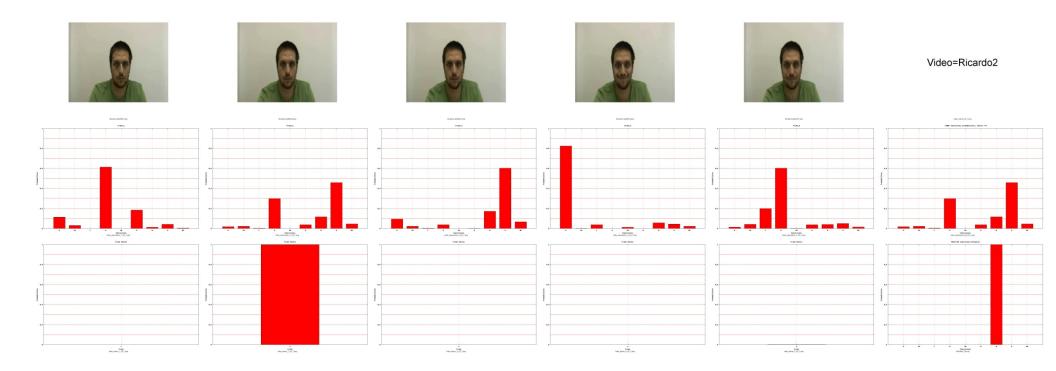
GOOD

- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK



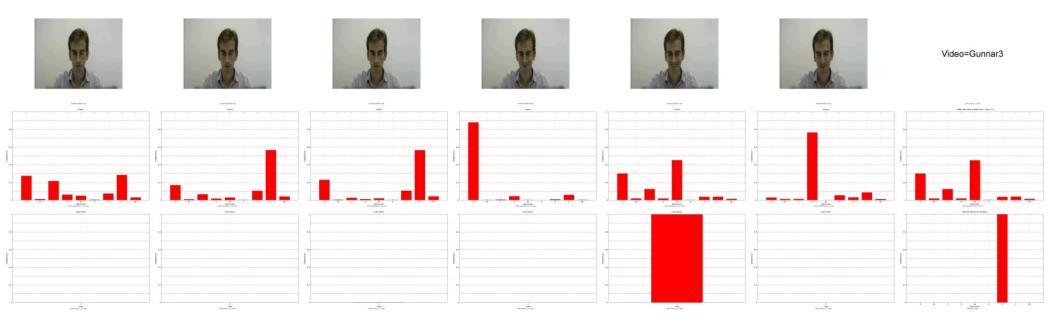
GOOD

- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK



NOT GOOD

- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK



BAD

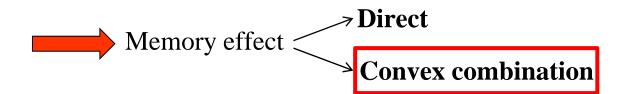
- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK

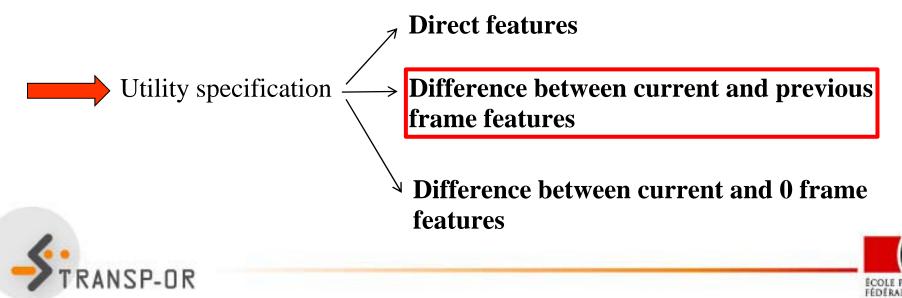
BAD

New models: introduction

- What are the problems of model 1?
 - Model of frame influence too sensitive
 - Validation results not so good
- How results can be improved?

- Specification


- Better adaptation of the validation procedure



Model 2: specification

- Sub-model of expression perception

- Sub-model of frame influence

Model 2: estimation

• General model fit:

Model 1:

Nb of observations:	418
Nb of parameters:	44
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-565.71
$ar{ ho}^2$:	0.336

<u>Model 2:</u>

Nb of observations:	418
Nb of parameters:	44
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-561.72
$ar{ ho}^2$:	0.340

Model 2: estimation

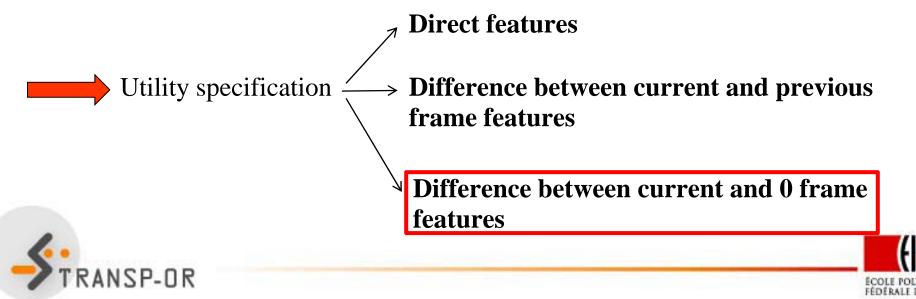
Sub-model of expression perception

	Id	Parameter name	Value	Std-error	t-test 0
r	1	ASC A	-0.91	3.47	-0.26
	2	ASC D	8.71	2.45	3.56
	3	ASC_DK	-0.93	0.34	-2.74
ASCs	4	ASC F	-9.44	5.25	-1.80
ASCS	5	ASC H	8.16	2.31	3.54
	6	ASC_O	7.73	1.98	3.90
	7	ASC_SA	6.37	3.53	1.81
	8	ASC_SU	-10.50	2.01	-5.23
2	9	b_broweye_l2_SA	296.57	80.98	3.66
	10	$b_broweye_l3_SU$	81.81	16.07	5.09
	11	b_broweye_r2_A_D_F_SA_SU	-93.22	16.70	-5.58
	12	$b_eye_angle_below_l_F$	2.00	1.53	1.31
	13	$b_eye_angle_l_F_SA$	15.43	3.46	4.46
	14	$b_eye_angle_r_F_SA$	-5.61	1.66	-3.39
	15	$b_eye_brow_angle_l_SA$	-8.35	4.12	-2.03
	16	b eye mouth dist l2 D	-27.08	15.01	-1.80
A TT-	17	b eye mouth dist l H O SA	-29.26	16.50	-1.77
AUs 🚽	18	b eye nose dist l A	141.24	23.74	5.95
	19	b eye nose dist l D F O SA	52.04	13.65	3.81
	20	b eye nose dist r D F O SA A	-92.32	12.03	-7.67
	21	b leye h F	285.91	80.42	3.56
	22	b leye h SU	208.40	42.05	4.96
	23	b mouth h A D H SA F SU	69.76	17.46	4.00
	24	b mouth nose dist2 A SA	-156.57	33.99	-4.61
	25	b mouth nose dist H	-146.64	29.14	-5.03
L	26	b mouth w A D F H O	16.23	8.98	1.81
r i	27	b XC 1 SU	66.36	15.04	4.41
	28	b XC 1 F	33.83	24.02	1.41
C vector	29	b XC 1 D	71.89	11.19	6.42
C vector	30	b XC 1 A	96.12	19.43	4.95
	31	b XC 2 H	8.66	4.94	1.75
Ļ	32	b XC 2 SU	31.38	10.36	3.03
	33	AH	-1.01	0.34	-2.99
lemory effect -	34	$\overline{A} D$	-0.69	0.28	-2.51
remory effect	35	$A^{-}SA$	-0.96	0.30	-3.19
	36	A A	-0.50	0.22	-2.24
-STRA	NS	SP-OR			

Sub-model of frame influence

		Id	Parameter name	Value	Std-error	t-test 0
		37	$b_XC_1_deriv_FRAME$	-5.21	1.81	-2.88
		38	$b_FRAME_eye_h_deriv$	-63.60	14.65	-4.34
C vector deriv		39	$b_FRAME_eye_brow_angle_deriv$	3.14	0.73	4.28
		40	$b_FRAME_Xmouth_h_deriv$	93.42	20.42	4.57
		41	b FRAME Xmouth w deriv	-17.72	4.12	-4.31
AUs deriv	٢	42	b_XC_2_deriv_FRAME	-18.80	4.36	-4.32
AUSUEIIV		43	b_XC_3_deriv_FRAME	16.74	3.59	4.66
	L	44	$b_XC_5_deriv_FRAME$	-6.71	1.81	-3.70

Model 2: prediction 1



Model 3: specification

- Sub-model of expression perception

Memory effect Convex combination

- Sub-model of frame influence

Model 3: estimation

• General model fit:

Model 1:

Nb of observations:	418
Nb of parameters:	44
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-565.71
$ar{ ho}^2$:	0.336

<u>Model 3:</u>

Nb of observations:	418
Nb of parameters:	40
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-628.54
$ar{ ho}^2$:	0.272

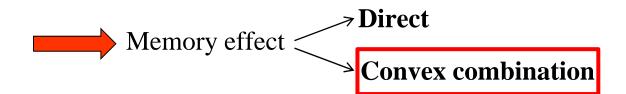
Model 3: estimation

Sub-model of expression perception

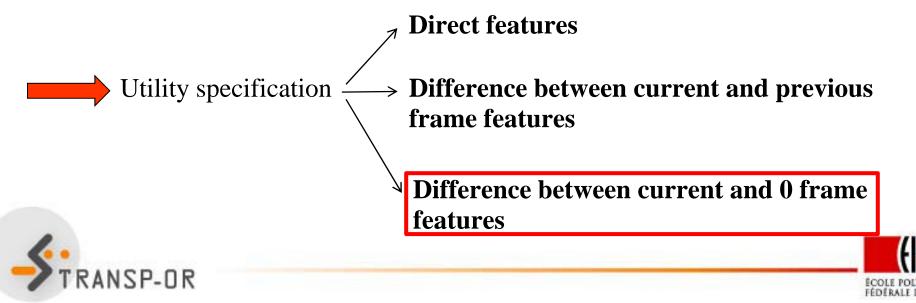
_	Id Parameter name	Value	Std-error	t-test 0
	1 ASC A	-17.15	6.20	-2.76
	2 ASC D	0.05		0.01
	3 ASC DK	-1.03	0.34	-3.04
ASCs _	4 ASC F	-21.86	6.74	-3.24
	5 ASC H	10.62	5.87	1.81
	6 ASC O	2.29		0.89
	7 ASC SA	3.58		0.78
L	8 ASC SU	-16.26	2.90	-5.60
	9 b broweye l2 SA	310.61	96.36	3.22
	$\begin{array}{c} 10 \\ b_broweye_l3_SU \end{array}$	86.50	18.61	4.65
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-70.48	18.56	-3.80
	12 b_{eye} angle $below$ l_F	1.69		1.00
	13 b eye angle l F SA	12.06		2.76
	14 b_{eye} angle r_F SA	-4.89	2.73	-1.79
	15 b eye brow angle 1 SA	-9.67	4.88	-1.98
	16 b eye mouth dist $l\overline{2}$ D	-45.00	16.31	-2.76
AUs	17 b eye mouth dist l H O SA	-35.27	32.97	-1.07
AUS	18 \overline{b} eye nose dist \overline{l} \overline{A}	192.37	39.23	4.90
	19 $b_eye_nose_dist_l_D_F_O_SA$	65.19	20.85	3.13
	20 $b_eye_nose_dist_r_D_F_O_SA_A$	-97.52	17.98	-5.42
	21 $b_leye_h_F$	435.32	99.89	4.36
	22 b leye h SU	225.31	49.87	4.52
	23 b mouth h A D H SA F SU	121.56	26.54	4.58
	24 b mouth nose dist2 A SA	-181.29	44.03	-4.12
	25 b mouth nose dist H	-255.18	55.01	-4.64
L	26 \overline{b} mouth w \overline{A} D \overline{F} H O	45.05	13.15	3.43
r	27 b XC 1 SU	48.06	19.96	2.41
	$28 b_XC_1_F$	82.65	26.61	3.11
C vector	$29 b_XC_1_D$	91.42	19.10	4.79
C vector	$30 b_XC_1_A$	174.43	36.07	4.84
	$31 b_XC_2_H$	91.34	17.31	5.28
<u> </u>	$32 b_XC_2_SU$	51.60	14.46	3.57
	33 A_H	-0.33	0.16	-2.11
lemory effect	34 A_D	0.13		0.99
initially check	$35 A_SA$	-0.22	0.22	-0.97
	36 A_A	-0.12	0.10	-1.19
	ISP-OR	-0.12	0.10	-1.19

Sub-model of frame influence

		Id	Parameter name	Value	Std-error	t-test 0
	ſ	37	$b_XC_0_deriv_1stFRAME$	-7.66	1.45	-5.28
	C vector deriv		$b_XC_1_deriv_1stFRAME$			2.36
C vector deriv	- 39	$b_XC_2_deriv_1stFRAME$			3.55	
		40	$b XC_4$ deriv 1stFRAME	-1.95	0.87	-2.24



Model 3: prediction 1



Model 4: specification

- Sub-model of expression perception

- Sub-model of frame influence

Model 4: estimation

• General model fit:

Model 1:

Nb of observations:	418
Nb of parameters:	44
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-565.71
$ar{ ho}^2$:	0.336

Model 4:

Nb of observations:	418
Nb of parameters:	40
Null log-likelihood:	-918.43
Cste log-likelihood:	-826.31
Final log-likelihood:	-607.776
$ar{ ho}^2$:	0.295

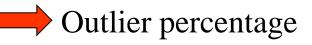
Model 4: estimation

Sub-model of expression perception

_	Id	Parameter name	Value	Std-error	t-test 0
Г	1	ASC A	-10.41	4.49	-2.32
	2	ASC D	4.69	3.15	1.49
	3	$ASC^{-}DK$	-0.94	0.34	-2.76
ASCs	4	ASC F	-23.54	6.99	-3.37
noes	5	ASC H	9.95	3.77	2.64
	6	$ASC^{-}O$	6.93	2.36	2.94
	7	ASC SA	6.00	5.37	1.12
	8	ASC SU	-16.59	2.76	-6.00
2	9	b broweye l2 SA	253.16	166.60	1.52
	10	b broweye 13 SU	104.75	17.89	5.86
	11	b broweye r2 A D F SA SU	-98.45	22.53	-4.37
	12	b eye angle below I F	2.97	1.88	1.58
	13	b eye angle l F SA	14.84	4.28	3.47
	14	b eye angle $r F SA$	-9.42	3.36	-2.80
	15	b eye brow angle l SA	-3.98	7.38	-0.54
	16	b eye mouth dist l2 D	-47.69	18.85	-2.53
A TT	17	b eye mouth dist l H O SA	-80.09	24.58	-3.26
AUs 🚽	18	b eye nose dist l A	161.33	30.25	5.33
	19	b eye nose dist l D F O SA	49.55	19.03	2.60
	20	b eye nose dist r D F O SA A	-87.41	15.60	-5.60
	21	b leye h F	584.81	125.88	4.65
	22	b leye h SU	225.82	51.64	4.37
	23	b mouth h A D H SA F SU	126.76	23.34	5.43
	24	b_mouth_nose_dist2_A_SA	-178.82	42.13	-4.24
	25	$b_mouth_nose_dist_H$	-224.37	42.53	-5.28
L	26	$b_mouth_w_A_D_F_H_O$	25.68	9.27	2.77
ř	27	$b_XC_1_SU$	56.25	17.79	3.16
	28	$b_XC_1_F$	71.84	26.79	2.68
Creator	29	$b_XC_1_D$	101.44	18.48	5.49
C vector	30	$b_XC_1_A$	125.85	26.40	4.77
	31	b_XC_2H	32.84	9.12	3.60
Ļ	32	$b_XC_2_SU$	64.65	15.01	4.31
F	33	A_H	-2.20	0.58	-3.82
amony offect	34	A_D	0.14	0.13	1.12
lemory effect -	35	A_SA	1.04	0.22	4.81
	36	A_A	-0.40	0.20	-2.04
STRA	NS	SP-OR			

Sub-model of frame influence

	Id	Parameter name	Value	Std-error	t-test 0
	37	$b_XC_0_deriv_1stFRAME$	-5.95	1.02	-5.82
C 1	38	$b_XC_1_deriv_1stFRAME$	3.02	1.01	2.98
C vector deriv	39	b XC 2 deriv 1stFRAME	2.39	0.58	4.10
	40	$b_XC_4_deriv_1stFRAME$	-0.96	0.70	-1.37



Model 4: prediction 1

New validation: prediction on estimation data

• Outlier: observation with predicted choice probability less than 1/9

ASC model	model 1	model 2	model 3	model 4
35.89%	18.90%	17.94%	17.93%	18.18%

New validation: prediction on estimation data

• Distance between observed and predicted expression distribution

Sum over all videos
$$T = \sum_{o} (\sum_{i=1}^{9} \frac{(N_{io} - n_{o}p_{io})^2}{n_{o}p_{io}})$$

$$N_{io}$$
 : number of labels for expression *i* and video *o*
 n_o : number of labels for video *o*
 \mathcal{D}_{io} : predicted probability of expression *i* for video *o*

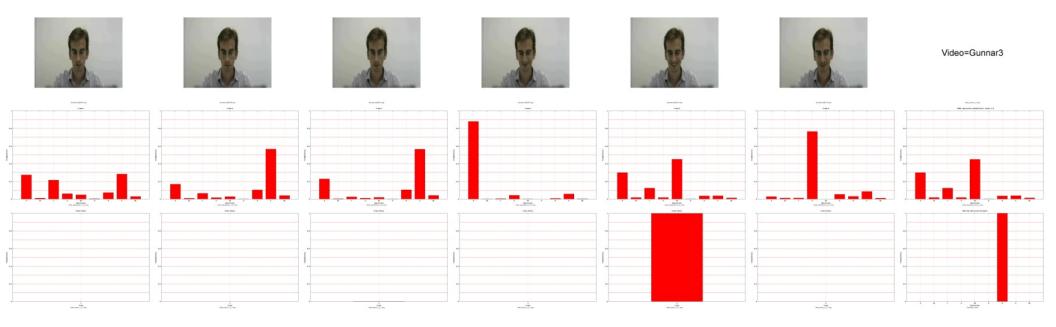
Null model	ASC model	model 1	model 2	model 3	model 4
1831.65	1472.38	1512.20	1091.00	2251.63	1342.90

New validation: cross-validation on estimation data

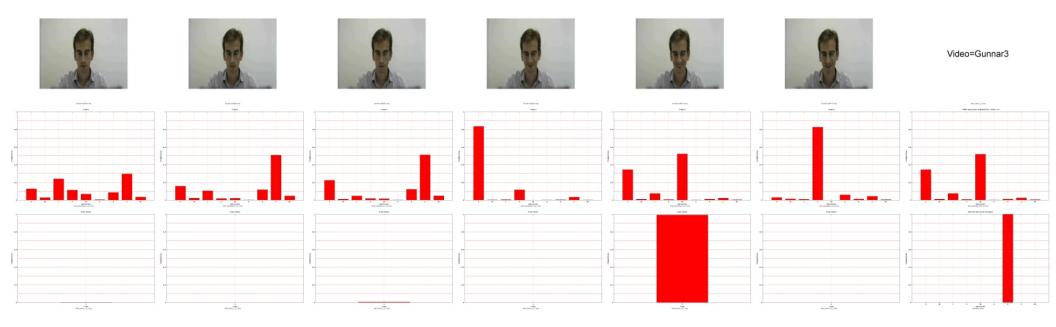
• Cross-validation:

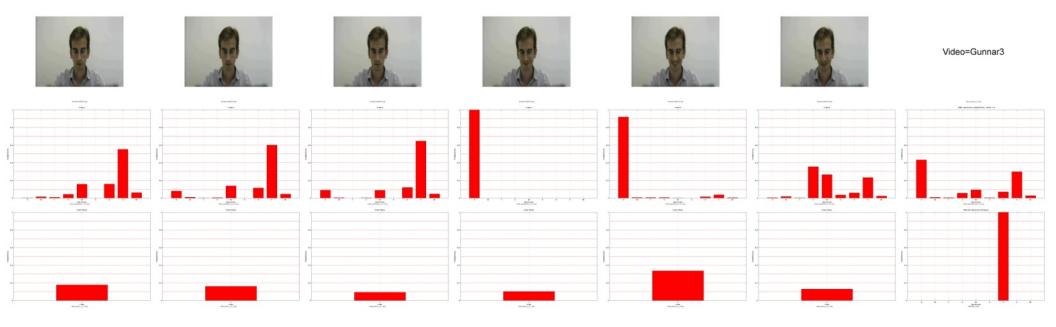
- Data statistics:

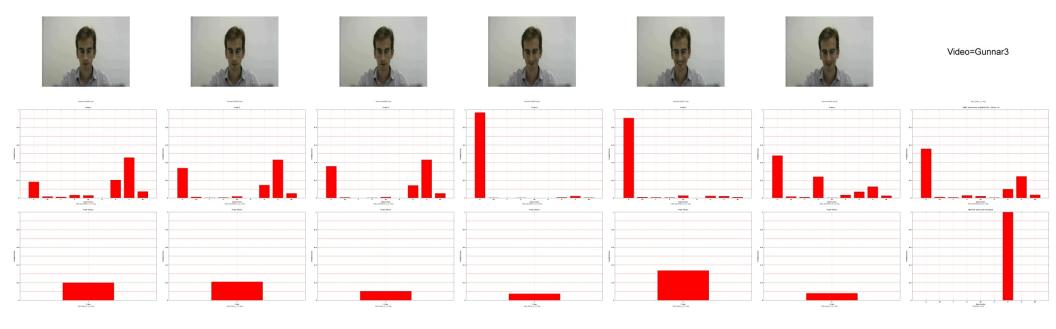
	data 1	data 2	data 3	data 4	data 5
Number of videos	14	14	14	14	17
Number of observations	65	102	74	79	98


- Outlier percentage :

	simulation 1	simulation 2	simulation 3	simulation 4	simulation 5
ASC model	23.08%	50.98%	35.13%	27.85%	35.71%
model 1	23.07%	28.43%	25.67%	31.64%	Not converged
model 2	35.38%	35.29%	21.62%	27.84%	Not converged
model 3	36.92%	40.20%	22.97%	32.91%	50.00%
model 4	33.85%	34.31%	22.97%	50.63%	42.86%


- Model 1
- Expressions order: H, SU, F, D, SA, A, N, O, DK

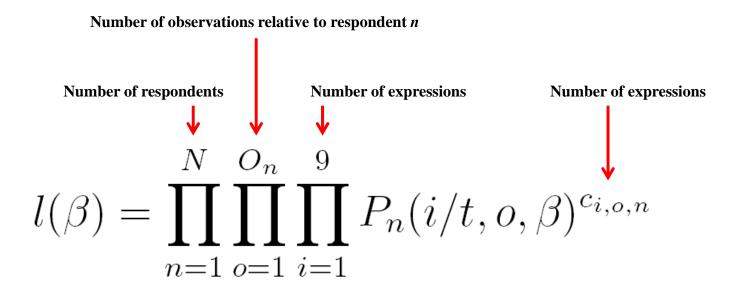

- Model 2
- Expressions order: H, SU, F, D, SA, A, N, O, DK


- Model 3
- Expressions order: H, SU, F, D, SA, A, N, O, DK

- Model 4
- Expressions order: H, SU, F, D, SA, A, N, O, DK

Conclusions and Perspectives

- <u>Conclusion</u>:
 - Database of face video annotations
 - Model estimated using behavioral data
 - Validation procedure
- <u>Perspectives</u>:
 - Improve the specification
 - Validation



Thanks for your attention and help

Model: likelihood function

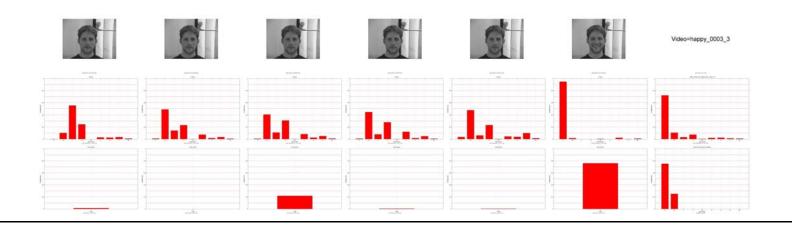
Vector of parameters

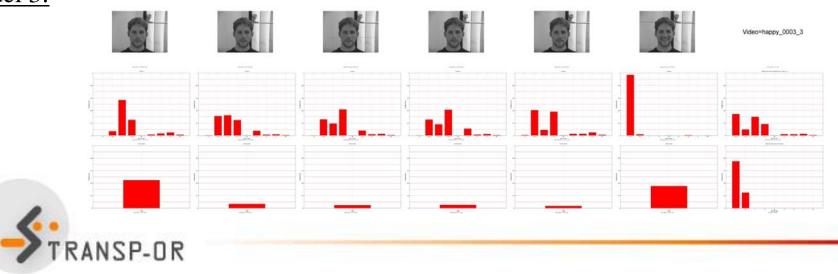
Model 1: prediction 4

Model 1: prediction 5

Model 2: prediction 2

Model 2: prediction 3

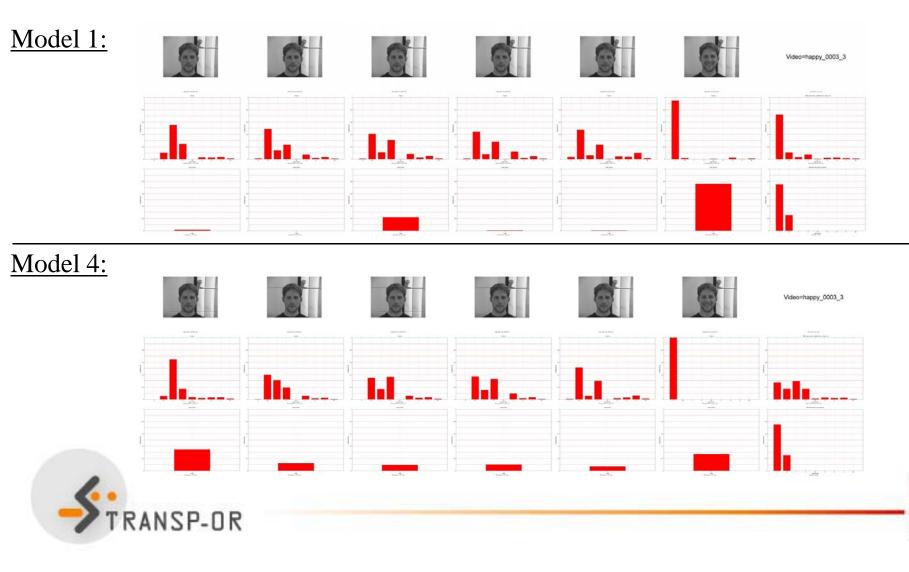

• Expressions order: H, SU, F, D, SA, A, N, O, DK



Model 3: prediction 2

- Expressions order: H, SU, F, D, SA, A, N, O, DK
- Model 1:

Model 3:



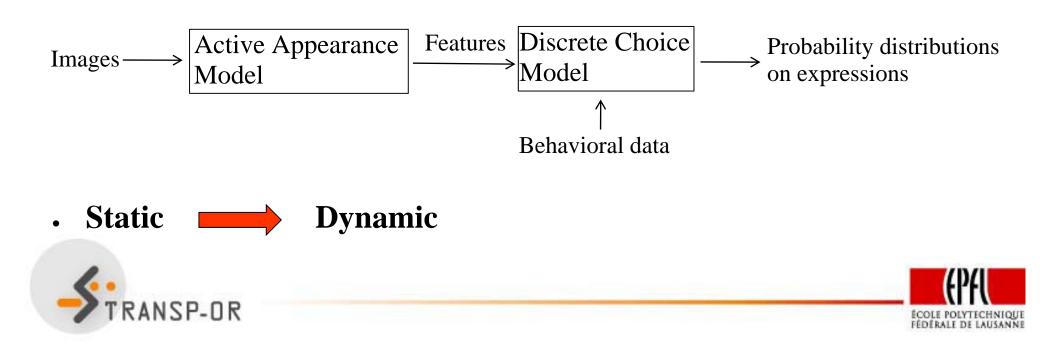
Model 3: prediction 3

Model 4: prediction 2

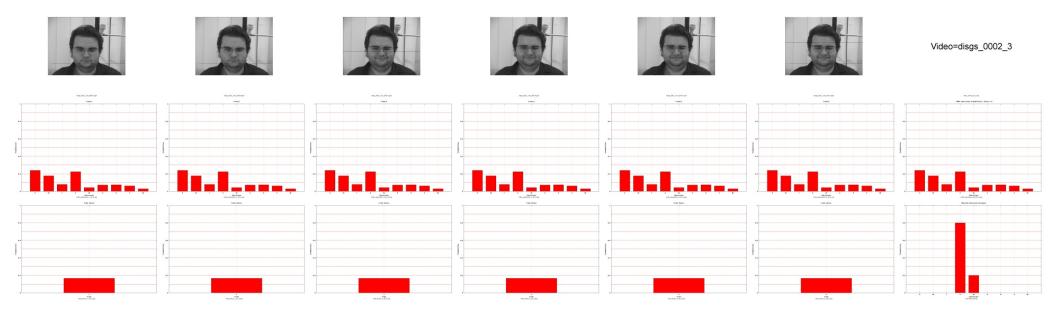
• Expressions order: H, SU, F, D, SA, A, N, O, DK

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Model 4: prediction 3



Introduction


Static version of the work:

Sorci, M., Antonini, G., Cruz, J., Robin, T., Bierlaire, M. and Thiran, J.-P. (n.d.). Modelling human perception of static facial expressions, Image and Vision Computing. Accepted for publication.

Images: Cohn-Kanade databaseBehavioral data: internet survey

ASC model

