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Some recent papers [5,9] have shown that congestion control based on additive increase
and multiplicative decrease tends to share bandwidth according to proportional fairness.
Proportional fairness is a form of fairness which distributes bandwidth with a bias in
favour of 
ows using a smaller number of hops; this is in contrast with max-min fairness,
which gives absolute priority to small 
ows. We revisit these results by using the modelling
framework based on the ordinary di�erential equation method in [7] and [6]. We �nd that
for the case of small increments and constant round trip times, and in the regime of rare
negative feedback, the proportional fairness result can only very approximately re
ect the
real rate allocation when we assume that the feedback received by sources is independent
of their sending rates. In the case where sources receive feedback proportionally to their
sending rates, and still for sources with identical round trip times, this is no longer true
and the fairness provided is di�erent. We show, by simulation on some examples, that
even for larger increments, the average rate convergence is in agreement with our results.
Finally, we establish that in the event of rate proportional feedback, our results maintain
consistency with the well-known derivations relating TCP throughput as a function of
loss ratio. However, this does not hold for the rate independent case, which we consider
further validation of the assumption of rate dependent feedback.

1. Introduction

In this article, we revisit the topic of the distribution of rates as determined by adher-
ence to the additive increase/multiplicative decrease algorithm. This algorithm [13] was
originally believed to exhibit max-min fairness, an allocation favouring smaller rates. This
is the allocation reached such that any further increase in the rate of one source results
in the decrease of some smaller rate. Results in [5,9] showed that for equal round-trip
times TCP appeared to provide proportional fairness, a form of fairness which distributes
bandwidth with a bias in favour of 
ows using a smaller number of hops.
We argue that TCP connections of equal round-trip times do not converge to long

term rates in agreement with proportional fairness. Rather, we show that in the event of
rare negative feedback and equal round trip times, TCP distributes rates more closely in
accordance with the fairness distribution algorithm derived here, FA-fairness.
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Even in the event where we have rate independent feedback we show a result which
closer re
ects the convergence than proportional fairness. To this aim, we use the tool of
the method of ordinary di�erential equation to examine the development of long term rates
for di�erent sources. This establishes, in the event of rare negative feedback, convergence
to FA-fairness, as the multiplicative decrease and linear increase factors approach zero. We
subsequently show, by simulation, that for large factors such as those speci�ed by TCP,
the average rate for each source converges around the value determined by FA-fairness.
We demonstrate the behaviour of an FA-fairness distribution in the context of the well-

known example; the parking lot scenario. Finally, we establish that in the event of rate
proportional feedback, our results maintain consistency with the well-known derivations
relating TCP throughput as a function of loss ratio. However, this does not hold for the
rate independent case, which we consider further validation of the assumption of rate
dependent feedback.

2. Model

We consider a simpli�ed network model, as follows. Tra�c sources, labelled
1; : : : ; i; : : : ; I, send data to one destination. The network is viewed as a collection of
links labelled 1; : : : ; l; : : : ; L, where the only resource to be consumed is link bandwidth.
Every tra�c source uses a �xed route. We call xi the sending rate for source i and assume
that the amount of tra�c from source i carried on link l is Al;ixi. The latter assumption
amounts to assuming that losses are negligible. If source i sends tra�c to one or several
destinations over one single route, then Al;i = 0 or 1 for all l, and those links l for which
Al;i = 1 constitute the route followed by the data. The general case where Al;i may have
values between 0 and 1 allows tra�c splitting over parallel paths.
We assume that the rates of all sources are controlled by a mechanism of additive

increase and multiplicative decrease as is encountered with TCP or ATM ABR.
Modelling this mechanism is very complex because it contains both a random feedback

(under the form of packet loss) and a random delay (the round trip time, including time
for destinations to give feedback). In this paper we consider that all round trip times are
constant and all equal. In a further paper we will consider constant round trip times that
are not equal for all sources. We model the system as follows.
We consider a number of time cycles or duration � , where � is the common round trip

for all sources. During time cycle number t, the source sending rate for source i is assumed
to be constant, and is noted xi(t). At the end of time cycle number t, source i receives
a random, binary feedback Ei(t), which is used to compute a new value of the sending
rate. The binary feedbacks Ei(t) for all i are independent Bernoulli random variables,
conditionally to the state of the system ~x(t) = (x1(t); : : : ; xi(t); : : : ; xI(t)). The sequence
~x(t)t is thus a markov chain. The feedback models packet losses in the Internet, or the
congestion experienced bit in DecNet, Frame Relay or ATM. In this paper, we assume
the regime of rare negative feedback, and thus Ei(t) takes values in the set f0; 1g.
Sources react to feedback by adjusting their rate, using an additive increase when

Ei(t) = 0 and a multiplicative decrease when Ei(t) = 1. This gives the following equation.

xi(t+ 1) = xi(t) + r0(1� Ei(t))� Ei(t)(�xi(t)) (1)
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or equivalently

xi(t+ 1) = xi(t) + r0 � Ei(t)(r0 + �xi(t)): (2)

In the equation, r0 is the rate additive increment and � the multiplicative decrease fac-
tor. For TCP, ignoring the e�ect of exponential increase during slow start, and assuming
that all packets have the same size, we have r0 = 1=� (in packets per second) and � = 0:5.
As discussed later, we derive a behaviour in an ideal case where, unlike with the real

TCP implementations, r0 and � are small. Afterwards we present simulation results which
show that a TCP-like connection's average rate converges in agreement with our results.
We also assume that all packets have the same, �xed size, as with ATM. The amount

of negative feedback received during one time cycle of duration � is equal in average to
E (Ei(t)j~x(t)), which is the expectation of Ei(t) conditionally to ~x(t).
We consider two possible cases for the distribution of feedback.

Case A: rate proportional feedback

The expectation of Ei(t) conditionally to ~x(t)t is given by

E (Ei(t)j~x(t)) = �
LX
l=1

gl(fl(~x(t)))Al;ixi(t) (3)

with fl(~x(t)) =
P

I

j=1Al;jxj(t). In the formula, fl(t) represents the total amount of tra�c

ow on link l, while Al;i is the fraction of tra�c from source i which uses link l. We
interpret Equation (3) by assuming that gl(f) is the probability that a packet is marked
with a feedback equal to 1 (namely, a negative feedback) by link l, given that the tra�c
load on link l is expressed by the real number f ; in the regime of rare negative feedback, we
assume that we can neglect the occurrence of one packet marked with a negative feedback
on several links within one time cycle. Then Equation (3) simply gives the expectation
of the number of marked packets received during one time cycle by source i.
We surmise that this models accurately the case where all 
ows receive the same loss

rate independent of packet level statistics. This is believed to be achieved by using active
queue management such as RED [3].

Case B: rate independent feedback

In this hypothetical case, the expectation of the amount of feedback received per cycle
would have the form

E (Ei(t)j~x(t)) = C
LX
l=1

gl(fl(~x(t))Al;i (4)

In the formula, C is a constant, and the rest is as for case A. We do not think that
this case is a realistic model for congestion control under the assumption of rare negative
feedback, and examine it partly because it implicitly underlies the �ndings in [5,9,4].

3. The method of the ordinary di�erential equation

With our system model, ~x(t) is a Markov chain and the transition probabilities can be
entirely de�ned using Equations (2) and (3) for case A, or 2 and 4 for case B. We use here
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an alternative tool, which gives some insight about the convergence of the system. The
tool is the method of the Ordinary Di�erential Equation (ODE), which was developed
by Ljung [7] and Kushner and Clark [6]. The method applies to stochastic iterative
algorithms of the form

~x(t+ 1) = ~x(t) + 
 ~H(~�(t); ~x(t)) (5)

where ~�(t) is a sequence of random inputs and 
 > 0 a small gain parameter, to which we
associate the ordinary di�erential equation

d~x(s)

ds
= h(~x(s)) (6)

where h(~x) = Ef ~H (~�; ~x(t))j~x(t))g: (7)

The result of the method is that the stochastic system in Equation (5) converges,
in some sense, towards an attractor of the ordinary di�erential equation (O.D.E.) in
Equation (6). An attractor ~x� of the ordinary di�erential equation is de�ned by the fact
that the solutions ~x(t) of Equation (6) satisfy limt!+1 ~x(t) = ~x� for appropriate initial
conditions. We are interested here in the case where the attractor is an equilibrium point.
Here ~� = ~E = (E1; E2; : : : EI). Since r0 and � are small, we can write r0 = kr


and � = k�
 where kr and k� are two positive constants. Then ~H = (H1; : : : ; HI) with

Hi( ~E; ~x) = kr�Ei(kr+k�xi). The components of the mean vector �eld ~h(~x) are therefore,

hi(~x) = kr � �xi(kr + k�xi)
LX
l=1

gl(fl(~x))Al;i

in Case A and by a similar expression for Case B. As the random feedback ~E(t) are
independent variables depending only on the latest value of ~x(t), and as the mean vector
�eld satis�es the requirements of Theorem 3 of Chapter 2 from [1], we can apply this
theorem, which we rephrase as follows:

Theorem 3.1 If the ordinary di�erential equation (6) is globally stable, with a unique

stable equilibrium ~x�, then for 
 > 0 su�ciently small, for all " > 0 , there exists a

constant C(
) tending towards zero as 
 tends to zero, such that

lim sup
t!1

Pfk~x(t)� ~x�k > "g � C(
): (8)

Note that multiplying the right-hand side of Equation (6) by 
 > 0 does not modify the
convergence properties of the O.D.E. (it only amounts to a change of time scale). For

simplicity of notation, we therefore study the equivalent O.D.E. d~x(s)

ds
= 
h(~x(s)).

4. Application to the analysis of cases A and B

We apply the method of the ordinary di�erential equation to �nd some properties of
our system. First we need to study the ODE for both cases.
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Case A (rate proportional feedback)

Combining Equations (6), (7) with (2) and (3), we obtain:

dxi

ds
= r0 � �xi(r0 + �xi)

LX
l=1

gl(fl)Al;i (9)

where fl =
P

I

j=1Al;jxj. In order to study the attractors of this ODE, we identify a
Lyapunov for it [11]. To that end, we follow [5] and [4] and note that

LX
l=1

gl(fl)Al;i =
@

@xi

LX
l=1

Gl(fl) =
@G(~x)

@xi

where Gl is a primitive of gl de�ned for example by

Gl(f) =
Z

f

0
gl(u)du and G(~x) =

LX
l=1

Gl(fl):

We can then rewrite Equation (9) as

dxi

ds
= xi(r0 + �xi)

(
r0

xi(r0 + �xi)
� �

@G(~x)

@xi

)
(10)

Consider now the function JA de�ned by

JA(~x) =
IX

i=1

�(xi)� �G(~x) (11)

with �(xi) =
R
xi

0
r0du

u(r0+�u)
= log xi

r0+�xi
: Then we can rewrite Equation (10) as

dxi

ds
= xi(r0 + �xi)

@JA(~x)

@xi
: (12)

Now it is easy to see that JA is strictly concave and therefore has a unique maximum
over any bounded region. It follows from this and from Equation (12) that JA is a
Lyapunov for the ODE in (9), and thus, the ODE in (9) has a unique attractor, which is
the point where the maximum of JA is reached.
Combined with Theorem 3.1, this shows that, for case A, the rates xi(t) converge at

equilibrium towards a set of values that maximise JA(~x), with JA de�ned by

JA(~x) =
IX

i=1

log
xi

r0 + �xi
� �G(~x):

Case B (rate independent feedback)

The analysis follows the same line. The ODE is now

dxi

ds
= r0 � C(r0 + �xi)

LX
l=1

gl(fl)Al;i (13)

from where we derive that, for case B, the rates xi(t) converge at equilibrium towards a
set of value that maximises JB(~x), with JB de�ned by

JB(~x) =
r0

�

IX
i=1

log(r0 + �xi) � CG(~x):
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Interpretation and Comparison with previous results

In order to interpret the previous results, we follow [5] and assume that, calling cl the
capacity of link l, the function gl can be assumed to be arbitrarily close to �cl, in some
sense, where �c(f) = 0 if f < c and �c(f) = 1 if f � c. Thus, at the limit, the method in
[5] �nds that, for case A, the rates are distributed so as to maximise

FA(~x) =
IX

i=1

log
xi

r0 + �xi
; (14)

subject to the constraints
P

I

j=1Al;jxj � cl for all l. For case B, the rates tend to maximise

FB(~x) =
IX

i=1

log(r0 + �xi); (15)

subject to the constraints
P

I

j=1Al;jxj � cl for all l:
Now we compare these results with the results recalled in the introduction. Both [5]

and [9] �nd that, under the limiting case mentioned where gl tends to �cl, the rates xi are
distributed according to proportional fairness. This is equivalent to stating that the rates
xi tend to maximise F0(~x) =

P
I

i=1 log xi, subject to the constraints
P

I

j=1Al;jxj � cl for
all l. If we compare our results, we �nd two di�erences. Firstly, in [5] and [9], the model
implicitly assumes case B, whereas we contend that case A is more realistic, in the regime
of rare negative feedback.
Secondly, even for case B, our results do not exactly coincide. Indeed, in [5] and [9], the

system is directly modelled with a di�erential equation, without using the intermediate
stochastic modelling as we do in Section 3. The di�erential equation in [5] and [9] is

dxi

ds
= C

 
r0 � �xi

LX
l=1

gl(fl)Al;i

!

which di�ers from Equation (13) by a missing term r0 in the second part, and the constant
C being outside. It is our interpretation that our modelling method using the stochastic
system more accurately re
ects the real behaviour of the additive increase, multiplicative
decrease algorithm, at least for the cases where our assumptions hold.
If we compare case B versus proportional fairness, we �nd that, since r0 is assumed to

be small, the di�erence between FB and F0 is small, and thus, if feedback is distributed
independent of the sending rate, then rates tend to be roughly distributed according to
proportional fairness. In some sense, this con�rms the results in [5] and [9]. However, on
the example of the next section, we �nd that case B tends to give less to sources that use
several bottleneck links.
The situation is very di�erent for case A, which we claim is more realistic. Here, the

weight given to xi tends to � log � as xi tends to +1. Thus, the distribution of rates will
tend to favour small rates more than proportional fairness would. In the next section we
�nd an example that is indeed between proportional and max-min fairness.

5. Examples of FA and FB Fairness

We de�ne FA-fairness and FB-fairness as the distribution given by maximising FA and
FB respectively as shown in Equations (14) and (15). In this section we show, for the
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link i
capacity c

n0 Type 0 
Sources at rate x0

AA
AA

ni Type i 
Sources at rate xiAA
AA
AA

Figure 1. Parking lot Scenario with I links Figure 2. Numerical illustration of Sec-
tion 5.2: x0

c
as a function of c.

example of the parking lot scenario, that FA-fairness allocates more to sources that would
receive a small rate allocation from proportional fairness, and less to these sources than
max-min fairness. In event of very small capacity, it approximates proportional fairness.
For large c, FA-fairness varies between max-min and proportional fairness.
We also show that FB-fairness always allocates less than proportional fairness would to

sources that would get small rates from proportional fairness.

5.1. Parking Lot Scenario

The (in)famous parking lot scenario is shown in Figure 1. It consists of I links each
with capacity c. Sources of type 0 traverse the entire I links, while sources of type i � 1
only traverse the ith link. The number of sources of each type is given by ~n = (n0; n1; : : : ).
The distribution for max-min fairness and proportional fairness in the parking lot sce-

nario is x0 =
c

n0+maxi=1;::: ;I ni
and x0 =

cPI

i=0
ni

respectively [9].

5.2. Analysis of FA-fairness

Here we analyse, in the context of the parking lot scenario, the nature of rate distribu-
tions given by FA. The fraction of capacity distributed by FA-fairness is not independent
of the capacity, unlike the proportional and max-min fairness cases.
Since n0x0 + nixi = c, FA can be expressed in terms of x0,

FA(x0) = n0 log

 
x0

r0 + �x0

!
+

IX
i=1

ni log

 
c� n0x0

r0ni + �(c� n0x0)

!
: (16)

Note that FA(x0) goes to �1 as x0 goes to 0 and c

n0
. This guarantees that at least

one maximum in the valid range, x0 2 (0; c

n0
). We can thus determine the distribution

of ~x, by solving F 0
A
(x0) = 0. For general ~n maximising this directly soon becomes messy,

as it involves solving a polynomial of order up to 2I. So we focus on the case when
~n = (v; w; w; : : : ), for which the follow result may be derived:

Lemma 5.1 The FA-fairness distribution for the parking lot scenario where ~n = (v; w; w; : : : )
is given by

x0 =
v(2c� + r0w) + Iw2r0 �

q
(v(2c� + r0w) + Iw2r0)2 � 4(v2 � Iw2)c�(�c+ r0w)

2�(v2 � Iw2)
(17)
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when v2 � Iw2 6= 0, and

x0 =
c(�c+ r0w)

Iw2r0 + v(2c� + r0w)
(18)

when v2 � Iw2 = 0. xi is then given by xi =
c�vx0

w
; i = 1 : : : I.

When ~n = (v; w; w; : : : ), the distribution for max-min fairness and proportional fairness
is given by x0 =

c

v+w
and x0 =

c

v+Iw
respectively.

To examine how FA-fairness distribution varies with c we examine the fraction of ca-
pacity source 0 receives, x0

c
, as capacity increases.

For FA-fairness x0=c is increasing in c and we determine from Equation (17) that,

lim
c!1

x0

c
=

1

v +
p
Iw

and lim
c!0

x0

c
=

1

v + Iw
for all v; I; w: (19)

We can see that FA-fairness, in this case, allocates more of the fraction of capacity to
sources of type 0 than proportional fairness, getting further away from proportional fair-
ness as capacity increases, and exactly equalling it in the case of zero capacity.
We can also see that here FA-fairness allocates less capacity than max-min fairness for

any capacity. When capacity is large we can see from Equation (19) that the distribution
to type 0 sources can be approximated by c

v+
p
Iw
.

A graph of x0(c)

c
for FA-fairness alongside graphs for proportional and max-min fairness

is shown in Figure 2 for the example when � = 0:5; r0 = 5; I = 2; v = 3; w = 2). This
graph is representative of any parameter settings.

5.3. FB analysis

Lemma 5.2 The FB-fairness distribution for the parking lot scenario where ~n = (v; w; w; : : : )
can be shown to be given by

x0 = max

 
c

v + Iw
�

(I � 1)wr0
�(v + Iw)

; 0

!
: (20)

x0 is strictly increasing in c. limc!1 x0=c = 1
v+Iw

. Thus, when I = 1, FB-fairness'
fraction of capacity is the same as that for proportional fairness (and max-min fairness).
When I > 1, the fraction of capacity allocated is always less than proportional fairness.
In the limiting case, i.e. for very small capacity relative to the number of competing

sources, FB-fairness allocates zero to type 0 sources.

6. Veri�cation by Simulation

In this section, we investigate the convergence of the average rate of the time series
for the sources for small values of � and r0, and also for more TCP-like settings for
the parameters. This is done both for the cases of rate proportional feedback and rate
independent feedback.
We do this by simulation of the stochastic process in the parking lot scenario where

~n = (v; w; w; : : : ). We don't verify the validity of the model, described in Section 2, in
representing a real TCP in the case of rare negative feedback and equal round trip times.
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6.1. Rate Proportional Feedback

We �rst verify that the convergence holds for small increments of � and r0. We then
show that the series converges for TCP-like settings. More precisely, we show that in a
regime of rare negative feedback, the average of the series converges to that expected from
FA-fairness for TCP-like settings of � and r0 i.e. the distributed rates eventually oscillate
around the value determined by FA-fairness.
For the simulations, we use the family of gl(f; d; p) functions such that gl is 0 when the

link usage is less than dc, 1 when the link usage exceeds capacity available on the link

and an increasing function from 0 to 1 given by
�

f

c
�d

1�d

�
p

for link usage between dc and c.

At the start of each simulation, each xi is assigned a random number from a uniform
distribution on (0,c). At each iteration, the expectation, Ei for each source i is calculated.
Then a random number is drawn from a uniform distribution on (0,1). If this number is
greater than or equal to the calculated expectation, a value of Ei = 0 is assumed to have
occurred, and xi is linearly increased by r0. Otherwise, xi is multiplicatively decreased
by �. The system continues to evolve until the total average capacity allocated does not
change by a given tolerance.
The available simulation parameters are �, r0, � , I, v, w, d and p. For each chosen

parameter set, the simulation is run four times, and the average of all four are calculated
along with determined con�dence intervals.
With linear increase/multiplicative decrease, the aggregate average rate allocated on a

link will always be less than a link's nominal capacity c. Thus the sum of the average
rates of all sources converges to a value, c0, below this nominal rate c. How close c0 is to
c is determined by the e�ciency of the gl function in maximising overall throughput.
So, for each source, we consider the proportion of its average rate that it has of c0. This

value is what we refer to as the scaled average. We obtain the FA fairness distribution
from Equation (17).

Small Values of � and r0
Here we consider values of � = r0 = 0:01 and � = 0:2. We varied the parameters as

follows: I = 2; 5, v and w = 1; 2; 6; 12, c = 250; 625, d = 0; 0:5; 1, and p = 1; 2; 5; 10. In all
cases except when d = 1, we found the scaled average to converge to that expected from
FA-fairness, which can be seen in Figure 3, which includes error bars for 95% con�dence.
When d = 1, the assumption of rare negative feedback no longer held because every

source was receiving a large amount of negative feedback at the same time.

TCP-like parameter settings

Here we set � = 0:5, � = 0:2 and r0 =
1
�
. We varied the parameters as in the previous

case. As before, we found the scaled average to converge to that expected from FA-fairness
except for the case d = 1. This is illustrated by the scatter plot in Figure 4 for simulation
values not including the d = 1 case. The error bars for 95% con�dence are there, but
perhaps not too visible given that the highest con�dence interval is �0:002.
To summise, we have established that FA-fairness is a realistic model for TCP-like

connections with equal round-trip times.
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Figure 3. FA versus simulation results of
type 0 sources' fraction of capacity. For
small values of � and r0.

Figure 4. FA versus simulation results of
type 0 sources' fraction of capacity. For
TCP-like parameter settings.

Figure 5. FB versus simulation results of
type 0 sources' fraction of capacity. For
small values of � and r0

Figure 6. FB versus simulation results of
type 0 sources' fraction of capacity. For
TCP-like parameter settings.

6.2. Rate Independent Feedback Simulation

The case when the feedback is assumed to be rate independent as described in Section 2
was also simulated. This was done for small and TCP-like values of � and r0 and the
results compared with the values as detemined by FB-fairness.
We found that in both cases, the results agree with that anticipated from FB-fairness,

the main �nding being that even with TCP-like parameter settings, the average rate
converges in agreement with FB.
We preserve the same conditions for simulation as in the rate proportional feedback

case. The only di�erence is that the expectation of Ei(t) is given by Equation (4) rather
than Equation (3).

Small Values of � and r0
Again we consider values of � = r0 = 0:01, where � = 0:2 and for the same range of

parameters as in the previous simulations. We found the scaled average to converge to
that expected from FB-fairness. This is shown in Figure 5.

TCP-like parameter settings

Here we set � = 0:5, � = 0:2 and r0 = 1
�
. Again the same parameter set was used.

Figure 6 shows the converged rate of x0 sources versus results from calculating FB-fairness.
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Even when FB-fairness determines that sources of type 0 should be allocated a rate
of zero, the result converges to almost zero. This is in contrast to the rate allocated by
proportional fairness. For a typical example, in one case the simulation average rate for
type 0 sources converged about 0:0000006. Here, FB would allocate 0 to type 0 sources,
while proportional fairness would allocate 0.08333323.

7. Rate as a function of packet loss ratio

The analysis also provides a simple means to derive the source rates as a function of
the packet loss ratio experienced by the source. For a given rate distribution vector ~x,
the packet loss ratio qi(t) over the path of source i is qi(t) =

P
L

l=1 gl(fl(~x(t)))Al;i and we
interpret Equation (3) by observing that, with case A, the expected feedback over one
time cycle of duration � is proportional to the number of packets sent xi(t)� . With the
hypothetical case B, we would say that the feedback is proportional to the packet loss
ratio, but independent of the number of packets sent over one time interval (Equation (4)).

In the limit, we must have, for case A, limt!+1
dxi(t)

dt
= 0 which, combined with Equa-

tion (9) gives r0��x�
i
(r0+�x��i)q

�
i
= 0 where limt!+1 xi(t) = x�

i
and limt!+1 qi(t) = q�

i
.

Solving for x�
i
gives

x�
i
=
��q�

i
r0 +

q
4r0�q�i � + � 2q�2

i
r20

2�q�
i
�

: (21)

For very small loss ratio q�
i
, the leading term in Equation (21) is given by x�

i
�q

�

i
!0

q
r0

�q
�

i
�
:

In the case of a TCP connection, we have r0 = 1
�
(packets per second) and � = 0:5.

The previous equations give rates in packets per seconds; calling MSS the packet size in
bits, we obtain the rates in bits per second from the previous equation:

x�
i
�q

�

i
!0

MSS

�

C
p
q�
i

b/s

with C =
p
2. This last result is in line with a family of similar results [10,2,8]. Our

results di�ers in the value of C, which we attribute to the fact that we have assumed
a 
uid model converging towards some equilibrium, whereas in reality the TCP window
size oscillates around some equilibrium.
If we did the same analysis with the modelling of case B, we would �nd that the leading

factor in x�
i
would be in 1

q
�

i

, which does not match the previous results. We interpret this

as a further con�rmation that model A is closer to reality than model B.

8. Conclusions and Future Work

TCP compliant sources with equal round trip times competing for bandwidth do not,
as was previously thought, end up with a distribution of rates in accordance with propor-
tional fairness.
Rather, we show that when feedback is rate dependent and negative feedback rare, the

distribution agrees with FA-fairness. In addition, we con�rm this by derivation of the
standard TCP throughput as a function of loss formula.
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Even in the cases where feedback could no longer be assumed to be rate dependent,
we have shown that proportional fairness would only approximate the long term rate
distribution, and would be re
ected closer by FB-fairness.
An assumption of rare negative feedback is valid when the increments are small (i.e.

the round-trip time � is small) and the losses relatively low. It is our belief that these
results essentially hold when we remove the assumption of rare negative feedback, but
this remains to be veri�ed. The larger puzzle will be solved when the rate distribution
behaviour is determined for di�erent round trip times and this forms part of our intended
ongoing work.
It is known that TCP gives less throughput to connections with longer round trip times.

Based on our analysis there are two possible reasons: FA-fairness which provides less to
connections that use several hops; or the fact that TCP maintains a sending window
rather than a sending rate. It is not clear to us what the respective a�ects of each of these
factors are.
The results shown have potential implications for multimedia applications which are

and will be expected (or even required) to be \TCP friendly" conformant [12]. Namely,
they behave like TCP source would in receipt of both negative and positive feedback.

REFERENCES

1. A. Benveniste, M. Metivier, and P. Priouret. Adaptive Algorithms and Stochastic Approxi-

mations. Springer Verlag, Berlin, 1990.

2. S. Floyd. Connections with multiple congested gateways in packet switched networks, part

1. ACM Computer Communication Review, 22(5):30{47, Oct 1991.

3. S. Floyd, V. Jacobson, Random Early Detection gateways for Congestion Avoidance.

IEEE/ACM Transactions on Networking, V.1 N.4, August 1993, p.397-413.

4. S. Golestani and S. Bhattacharyya. End-to-end congestion control for the internet: A global

optimization framework. Proc of ICNP, Oct 98, 1998.

5. F.P. Kelly, A. K. Maulloo, D.K.H. Tan. Rate control for commmunication networks:

Shadow prices, proportional fairness and stability. Journal of the Operational Research

Society, 49, 1998.

6. H. J. Kushner and D.S. Clark. Stochastic approximations for constrained and unconstrained

systems. Applied Mathematical Sciences, 26, 1978.

7. Liung L. Analysis of recursive stochastic algorithms. IEEE Trans. on Automatic Control,

22:551{575, 1977.

8. T. V. Lakshman and U. Madhow. The performance of TCP for networks with high band-

width delay products and random loss. IEEE/ACM Trans on Networking, 5(3):336{350,

June 1997.

9. L. Massoulie and J. Roberts. Fairness and QoS for elastic tra�c. CNET, 1998.

10. M. Mathis, J. Semke, J. Mahdavi, T. Ott. The macroscopic behaviour of the TCP congestion

avoidance algorithm. Comp, Comm. Review, 3, July 1997.

11. R.K. Miller, A. N. Michell. Ordinary Di�erential Equations. Academic Press, 1982.

12. TCP friendly web site. http:==www.psc.edu=networking=tcp friendly.html

13. D. Chiu, R. Jain Analysis of the Increase and Decrease Algorithms for Congestion Avoid-

ance in Computer Networks. Computer Networks and ISDN Systems, vol. 17, pp. 1-14,

June 89.


