Files

Abstract

Gamma-secretase is an unconventional aspartyl protease that processes many type 1 membrane proteins within the lipid bilayer. Because its cleavage of amyloid-beta precursor protein generates the amyloid-beta protein (Abeta) of Alzheimer's disease, partially inhibiting gamma-secretase is an attractive therapeutic strategy, but the structure of the protease remains poorly understood. We recently used electron microscopy and single particle image analysis on the purified enzyme to generate the first 3D reconstruction of gamma-secretase, but at low resolution (15 A). The limited amount of purified gamma-secretase that can be produced using currently available cell lines and procedures has prevented the achievement of a high resolution crystal structure by X-ray crystallography or 2D crystallization. We report here the generation and characterization of a new mammalian cell line (S-20) that overexpresses strikingly high levels of all four gamma-secretase components (presenilin, nicastrin, Aph-1 and Pen-2). We then used these cells to develop a rapid protocol for the high-grade purification of proteolytically active gamma-secretase. The cells and purification methods detailed here provide a key step towards crystallographic studies of this ubiquitous enzyme.

Details

Actions